Introduction to ROOT

ROOT: object-based development environment dedicated to data analysis, and based mostly on C++
www : root.cern

Modes of work

e Interactive (terminal session)
> online-interpretted C++ commands

> macros (interpretted or compiled), two possible modes:
— simplified: just commands in a file
— within functions ; more conformity to C++ standards required

e As compilable C++ code : using Root libraries

Includes:

e Graphical windows, histograms, scatter plots (with uncertainties)

e Mathematical function (including special functions) : drawing, evaluation, pulling from distributions
 Fitting of functions to data

e Data bases ("trees"), Data filtering ("cuts")

e Pulling from random distributions

e Collections of objects, 1/0O with storage of objects

e Numerical algorythms, analysis of spectra

e DataFrame — type programming

e Machine learning ("TMVA")

e GUI building, Multithreading

krzysztof.piasecki@fuw.edu.pl

http://root.cern/

Guides, manuals, help

e Help TOC: root.cern/get_started/

e Manual: root.cern/manual/

e Primer: root.cern/primer/

e Slides indico.cern.ch/event/395198/attachments/791523/1084984/ROOT_Summer_Student_Tutorial 2015.pdf
e Forum: root-forum.cern.ch

e Documentation: root.cern/doc/master/

Notice: class names in this script are clickable and point to relevant ROOT help pages :)

Installation:

« Download: root.cern/install/#download-a-pre-compiled-binary-distribution
sources or binaries for: Linux, Windows, Mac

e Linux: Go to your login script (~/.bash login or ~/.bashrc) and add line:

[your ROOT path]/bin/thisroot.sh

e Quantum jump: Versions < 5.34 S Versions 2 6.00
"cint" interpretter "cling" interpretter
Syntax tolerance Syntax rigor

Standard: ~ C++98 Standard ~ C++11

http://root.cern/install/
http://root.cern/install/#download-a-pre-compiled-binary-distribution
http://root.cern/get_started/
http://root.cern/manual/
http://root.cern/primer/
http://indico.cern.ch/event/395198/attachments/791523/1084984/ROOT_Summer_Student_Tutorial_2015.pdf
http://root-forum.cern.ch/
http://root.cern/doc/master/

MODE I: Interactive session ROOT as a calculator and interpretter of C++ commands

e Launching: root
root -1 (without ‘welcome’ splash screen)
root -b (without graphics, but faster instead)
e Inside session. Quitting: .q
Shell command: . ! [command]
Executing a macro: X
Forced exit: . q99999qq

root [0] sgrt (1.23)

(const double)1.10905365004094164e+00

root [1] double x = pow (sin(0.5),2.) + pow (cos(0.5),2.)
root [2] X

(double)1.00000000000000000e+00

root [3] cout << x << endl

1

(class ostream) 139768533438272

Data types

@ C++ types: int, double, char text[100], string napis,
vector<double> wvec, double* d, inté& 1,

@ Internal (ROOT) types, as overlays on the C++ types:
Int t , Float t , Double t, Char t, Bool t

Motivation: making the code machine-indepent

List of machine-independent types:
root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#machine-independent-types

http://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#machine-independent-types

TMath Mathematical class (Notice: class names are links to help sites)

— Functions (TMath::Sqrt(x) , Power, SinH, Exp, Gaus, Factorial, ...)
— Mathematical and physical constants (TMath: :Pi (), E, RadToDeg, DegToRad, Hbar, K)
— Operations (TMath: :Abs (x) , Min, Max, ...)

— Special functions (TMath: :Bessell (x) , BesselJd/K/Y , Erf, ...)

root [0] TMath: :Power (TMath::Pi() , 1./3.)
(Double t)1.46459188756152314e+00

Notice: The ROOT: :Math namespace containes even more functions and algorithms

Autocompletion - intelligent handy help

root [1] TMath::Pi
Pi

PiOver?2

PiOver4

root [1] TMath::Pi (

Double t Pi()
root [1] TMath: :Power (

LongDouble t Power (LongDouble t x, LongDouble t y)
LongDouble t Power (LongDouble t x, Long64 t y)
LongDouble t Power (Long64 t x, Long6t4 t vy)
Double t Power (Double t x, Double t y)

Double t Power (Double t x, Int t y)

https://root.cern.ch/doc/master/namespaceTMath.html
https://root.cern.ch/doc/v608/namespaceROOT_1_1Math.html

TCanvas Graphical window

root[0] new TCanvas «— “quick” creation of graphical window with generic properties
(class TCanvas*)0x2clebe0 «— Notice: automatic name assignment (“c1”)
root[1] cl->Set

root[1] cl->SetTitle |("HelloCanvas")
root[2] cl->GetTitle |()
(const char* 0x1557339)"HelloCanvas"

root[3] cl-31s] ()

root[4] cl-%Close()

root[5] TCanvas c2 «— We create a new window. Before we used pointer. Now — object.
root[6] CZJGetNamek)

(const char* 0x16632bl)"cl n2" <« Titleis different than variable name!
root[7] TCanvas c3 (
~_ Multitude of constructors

TCanvas TCanvas (Bool t build = kTRUE) <«

TCanvas TCanvas (const char* name, const char* title = "", Int t form = 1)

TCanvas TCanvas (const char* name, const char* title, Int t ww, Int t wh)
(

TCanvas TCanvas (const char* name, const char* title, Int t wtopx, Int t wtopy,
Int t ww, Int t wh)
TCanvas TCanvas (const char* name, Int t ww, Int t wh, Int t winid)

root[7] TCanvas c3 ("c3canvas", "My cgnvas", 606, 400) ;
0 t t
Proper name ”"Name” Displayed title
of object (identifier) (just a c-string)

(within C++). (within ROOT)
root[8] c3Canvas < Name as identifier or replacement of C++ name
(class TCanvas*)0x16964d0
root[9] TCanvas* c4 = new TCanvas ("c4d4canv", "2nd Canvas", 600, 400);

A
| Dynamic allocation (we then use a pointer to an object)

https://root.cern.ch/doc/master/classTCanvas.html

TFn n={1, 2, 3} Functions

root[0] TF1 f1 ("f1", "sin(x)/x", 0. , 10.); «— function with given formula and range
root[1l] f1./Draw| ()

root[2] fl/SetRange| (-10. , 10.)

root[3] fl.Draw ()

root[4] fl.Eval (1.) or £f1(1.)

root[5] fl.Integrall (0. , TMath::Pi())

root[6] fl.GetMinimum (le-10 , 5.)

root[7] TF1 f2 ("f2", "[0]*sin([1]*x)/x", 0., 10.); « parameter-dependent function
root[8] f2/SetParameter| (0, 0.5);

root[9] f2.SetParameter (1, 2.);

root[10] f2.Draw ("same") 0 a1 = | e ” -----
root[11] £2/SetLineColor |(2); ﬂﬂ-ﬂ------

root[12] fl.SetLineWidth| (2);

root[13] fl.SetLineStyle (2);

root[1l4] fl.Draw ("same");

o I |

n----5-’*-

Color numbering scheme for the generic palette

Numbering scheme of line styles

https://root.cern.ch/doc/master/classTF1.html
https://root.cern.ch/doc/master/classTF1.html
https://root.cern.ch/doc/master/classTF2.html
https://root.cern.ch/doc/master/classTF3.html

root[15] TF2 £3 ("£f3", "exp(-(x-0.5)*(x-0.5)/0.05 - (y-0.5)*(y-0.5)/0.05)
root[1l6] f£3.Draw ()

root[1l7] f£3.Draw ("lego2")

root[18] f3.Draw ("colz") — Graphical options, e.g.: "surf", "surf2", "cont"

root.cern/doc/master/classTHistPainter.html#HPO1

(Notice: more methods of declaring functions are available in C++ macros.)

Saving a graphical window in a file:

root [10] cl.@rint}("picture.ext");

ext = {qgif, jpg, pdf, png, (e)ps, svg, root, tex, tiff, xml, xom, json cxx}

Caution: lossy -vs- lossless formats of graphics storage
How to create multipage pdf (and ps) files.

Imagine that we have 3 x TF1 to plot (separately) on TCanvas c1.

root[1l] fl.Draw() ; cl->Print ("MyPortfolio.pdf ("):;
root[2] f2.Draw() ; cl->Print ("MyPortfolio.pdf");
root[3] f3.Draw() ; cl->Print ("MyPortfolio.pdf)");

Clearing the TCanvas:

root[4] cl->Clear ();

http://root.cern/doc/master/classTHistPainter.html#HP01
https://root.cern/doc/master/classTPad.html#ae44fee7e51d69841c1dce4b899eee14d

TGraph

In a Linux console:

root[1]
root[2]

root [3]
root[4]
root [5]

You can select which columns to read:

wget www.fuw.edu.pl/~kpias/ctnp/tgraph2.dat

root[1]
root[2]

root [3]
(...)

TGraph TGraph
TGraph TGraph
TGraph TGraph

(...)

tgraph.dat x

Scatter plots of data points
(and related ones: TGraphErrors / TGraphAsymmErrors / TGraphBentErrors)

wget www.fuw.edu.pl/~kpias/ctnp/tgraph.dat

TGraph g ("tgraph.dat")

g.Draw | ("AP")

g.SetMarkerSize (0.8) QEHBAVO |AOan ¥ XK ¢4
g .EetMarkerstyle] (20) 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
9. Draw (TAFY 00000000

RO X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Marker styles

$*1g %$19"]);
%$1g : read column as double precision
$*1g: column type is double; omit it.

: column type is string; omit it.

TGraph g ("tgraphZ.dat",{"%*s 31g
g.Draw ("AP");

TGraph gr2 (

Q
$*s

(Int t n, const Double t* x, const Double t* y)
(Int £t n, const Float t* x, const Float t* y)
(Int £t n, const Int t* x, const Int t* y)
Double t x[] = {0.05, 0.95, 1.95, 2.05, 3.05, 3.95};
Double t y[] = {1.00, 1.11, 1.29, 1.41, 1.52, 1.59};
TGraph gr2 (6, x, Vy);
gr2.SetMarkerSize (0.8) ; gr2.SetMarkerStyle (24)

gr2.SetMinimum | (0.) ; gr2.SetMaximum |(5.5);

gr2.GetXaxis () ->SetLimits (0, 5);
gr2.Draw ("AP")
gr.Draw ("sameP")

http://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#graphs
https://root.cern.ch/doc/master/classTGraphErrors.html
https://root.cern.ch/doc/master/classTGraphAsymmErrors.html
https://root.cern.ch/doc/master/classTGraphBentErrors.html

TRandomN ,N={1,2,3} Pseudorandom numbers

I Usage of TRandom3 is advised in the documentation. Calling time ~ 45 ns. Period ~ 10%°%

root[1l] TRandom3 r;
root[2] r.SetSeed (); « initializing the seed of pseudorandom generator

I TRandomN have predefined distributions, e.g. :

Binomial (ntot, prob) BreitWigner (mean, gamma)
Exp (tau) Integer (imax)

Landau (mean, sigma) Gaus (mean, sigma)

Rndm () « returns double € [0, 1) Poisson (mean)

root[3] r!Rndm ()

(Double t) 9.997417e-01

root[4] iGaus\(15.3, 0.02)

(Double t) 1.531998e+01

> Moreover, you can pull numbers from distribution defined by the user in form of TF1 object, e.g. :

root [5] TF1 funl ("funl", "x*x*exp(-x/0.5)" , 0., 5.) ;
root[6] funl.GetRandom| ()
(Double t) 6.916067e-01

> You can also pull a number from an user-defined histogram (description of histograms — soon).

http://root.cern.ch/doc/master/classTRandom.html
https://root.cern.ch/doc/master/classTRandom1.html
https://root.cern.ch/doc/master/classTRandom2.html
https://root.cern.ch/doc/master/classTRandom3.html
https://root.cern.ch/doc/master/classTRandom3.html

TVectorN,N={2,3} 2-3 dimensional vectors

root[1] TVectorB Vl (1, 2, 3) , v2, v3;
root[2] v2.SetXYZ (-1,-2,-3);

vl.Mag() Mag2() Theta() CosTheta() Phi() Perp() <« basicproperties
root[3] v3 = =-3. * (vl + v2); v3 -= 2. * vl; v3.Print/()
root[4] v1.Cross(v2) .Print(); « cross product
root[5] vl1.Dot| (v3.Orthogonal| ()) «— dot product; perpendicular vector

vl (v2); vl /Rotatex/Y/Z| (angle); v3.Rotatel (angle, v2)
TLorentzVector Four-vector

Has 4 dimensions, that you can use eitheras [X,Y,Z,T] or [P ,P,,P,, E]. (Caution:sequence!)
It is implemented as TVector3 @ double

root[1]

root[2]
root [3]

root[4]
root [5]
root [5]

TLorentzVector L (1, 2, 3, 4); cout << L.T() << endl;

L.Pt() P() ! — P2+ P, |B|

L.M() < ++/spacetime interval / +available energy / =+invariant mass
L.Beta () Gamma () — B =+BIE, y=1\1 - &

TLorentzVector v4piplus (0., 0., 1., sgrt(l*1 + 0.1395*0.1395)),
vidpiplus.Rapidity () ; — y =05" mrKE—P)KE+P)]

TVector3 beta (0., 0., 0.7);
vipiplus.Boost (beta); «— Apply Lorentz transform by “beta” velocity vector
vdpiplus.BoostVectorl() .Z2() <« Retrieve velocity vector, then its Z* component

10

https://root.cern.ch/doc/master/classTVector3.html
https://root.cern.ch/doc/master/classTVector2.html
https://root.cern.ch/doc/master/classTVector2.html
http://root.cern.ch/doc/master/classTLorentzVector.html

THdt, d={1, 2, 3} Histograms
A t={cl SI Il FI D}

4 . .
L Type of variables that stores the bin content

Dimension of histogram

M - N I A

Max bin content

Max precision 7 dIgItS 14 dIgItS
No of bins From To
\/ \ \]
root[1] THlF hl ("histl", "My histogram", 100, -10., 10.);
root[2] hl. (5 23) < Fill the bin containing x = 5.23, with weight of 1.
root[3] hl. () N Fill the bin containing x = 3.21, with weight of 0.1.
root[4] hl.Fill (3 21 0.1); hl.Draw ();
root[5] hl.Draw ("hist");

root[6] TRandom3 r; r.SetSeed ();
root[7] for (int i=0; i1 < 1le5 ; i++) hl.Fill (r.Gaus{());
root[8] hl.Draw ();

Drawing options:

For TH1_:. "same", "e", "e0O .. 4", "histr,
For TH2 : "box", "col", "cont", "lego", "surf" (+ otheroptions, e.g."lego2")

- root.cern/root/htmldoc/guides/users-guide/RO0TUsersGuide.html#draw-options

Options can be combined, e.g. h.Draw ("colz") , h.Draw ("elsame")

http://root.cern.ch/root/HowtoHistogram.html
https://root.cern.ch/doc/master/classTH1.html
https://root.cern.ch/doc/master/classTH2.html
https://root.cern.ch/doc/master/classTH3.html
http://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#draw-options

Histograms, cont.
root[1] hl.Set

root[1] hl.SetTitle |("New title") | | \
root[3] hl.SetLineColor (..) /| SetLineStyle (..) /| SetLineWidth (..)

root [4] }illSetStats} (0 / 1); <« (Don't) plot stats (for details, see description of TStyle)

hl.SetNdivisions| (code , "™ Axis ");

‘
New title
Code = N1 + 100*N2 + 10000*N3, where: -
8000— 0
N1: (expected) number of leading divisions o00F- A
N2: (expected) number of 2. rank divisions - L
N3: (expected) number of 3. rank divisions 00)
5000 !
40005— " '
Summing up the counts: 3000E-
2000— . .
root[5] hl.Integral (mm;
Double t Integral (Int t binxl, Int t binx2,) =SS S R S IR R s’ R S B

Option t* option = "")
We have a problem. How to find the bin index that corresponds to a givenx? — FindBin (x) method.

root[6] hl.Integral (hl.FindBin (-3.) , hl.FindBin (3.))

Caution: by default this method does not integrate (X h - A) but sums up the contents of bins (X h).
To calculate the integral, you have to add "width" as an option.

12

Histograms, cont.

root[4] hl.Get (G

root[4] cout << hl./GetMean|) << '\t' << hl.GetRMS() << '\t' << hl.GetNbinsX|();

You can retrieve the maximal/minimal bin-content of histogram, and the index of a bin that contains it:

root[5] cout << hlﬂGetMaximumk) << "\t << hllGetMaximumBink) << endl;
7834 50

To define the range of Y axis drawn, by default ROOT sets up minimum to 0 and maximum to =10% above
the max bin-content. You can change this range using SetMaximum/SetMinimum (value) :

root[2] hl.SetMinimum | (-20) ; hl./SetMaximum (200)

Side effect: since now hl.GetMaximum () willshow 200.

13

Histograms, cont.

P Access to histogram data.
¥

root[1l] cout << hlJGetBinContent}(4l) <<\ t'<< hlﬂGetBinError}(41) << endl;
11 3.31662 -

As you can see, uncertainties are Poissonian

root[2] Float t* hy = hl,GetArray ()

Will return the array with bin contents
Attention for the numbering: hy[1] ... hy[N]
In hy[0] , hy[N+1] the underflow / overflow are stored

> Unfortunately, there is no method directly extracting the array of uncertainties. Instead you can:
root[3] Float t* hyerr = new Float t [hl.GetNbinsX() + 2]

root[4] for (int i1=0; i<= hl.GetNbinsX()+1l; i++) hyerr[i] = hl.GetBinError (i)
> You can also extract the array of positions of centers of bins:

root[5] Float t* hx = new Float t [hl.GetNbinsX() + 2]
root[6] for (int i=0; i<= hl.GetNbinsX()+1l; i++) hx[i] = hl.GetBinCenter (i)

P To create a separate data structure for uncertainties, issue this before filling the histogram:

root[7] hl.Sumw2 ()

——— Bin numbering convention: [1 .. hl.GetNbinsX()]

14

Histograms, cont.
Operations on histograms

root[1l] THIF::Add (

(Addition, multiplication, division)

Bool t Add (TF1* hl, Double t cl = 1, Option t* option = "")
Bool t Add (const TH1* h, const TH1* hZ, Double t cl = 1, Double t c2 = 1)
Bool t Add (const TH1* hl, Double t cl = 1) W
‘
this =cl1*h +c2*h2
this +=c1*h1
root[2] THIF h2 (hl); h2.Reset () < New histogram: such as h1, but empty.

. NP o .) Filling with
root[3] for (int i=0; i < 1le5 ; i++) h2.Fill (r.Gaus (5., 1.)); < Gauss distrib.
root[4] h2.Draw(); h2.Add|(&hl , 0.1); h2.Draw ("el™) < We are

adding
root[5] TH1F h3 (hl); h3.Reset ()
root[6] for (int i=1; 1<1000; i++) h3.Fill (-9.99 + 0.02*i) ; <« Uniform
root[7] h2.Multiply | (&h3) - W e SV
) : = e are multiplyin
root[8] h2.Draw ("el") < S
x . . .
Uncertainties follow the propagation formula
root[9] THI1IF h4 (hl); h4.Reset ()
root[10] h4/Divide| (&h2 , &h3) < We are dividing
root[1l1l] h4.Draw ("el") <
x

Uncertainty arise, not cancel out, as expected

15

. . X AXIS Y AXIS
2-Dim Histograms
No of bins From To No of bins From To

root [0] TRandom3 r; r.SetSeed (); \/ v \/] \/ \/

root[l] TH2F h2d ("h2d4d", "My histogram", 100, 0., 10., 100, 0., 10.);

root[2] for (int i=0,; i<leb5; i++) h2d.Fill (r.Gaus(3,1.5) , r.Gaus(5,0.5));
root[3] h2d.Draw ("colz")

My histogram -

10 Enties 100000 | |20
Mean x 3.089
9 Mean y 4998 200

Std Dev x 1.413
B Std Devy (0.4998 —(180

—160

—140
—{120

- " —100

—80
60
40

20

G||| o
] 1 2 3 4 5 5] 7 8 9 10

root[4] cout << h2d.GetNbinsX () << '\t' << h2d.GetNbinsY () << endl;
100 100

e Access to axis range, number of bins and bin width (for any axis): object of TAxis class

root[5] TAxis* ax = h2d.GetXaxis () , * ay = h2d.GetYaxis ();

root[6] cout << ax-dGetXmin/() <<' '<< ax-dGetXmax/() <<' '<< ax->GetNbins|()<< endl;
root[7] cout << ay->GetXmin () <<' '<< ay—ﬁGetXmaxM) <K' T ay—ﬁGethinsK)<< endl;
root[8] cout << ax->GetBinWidth|(l) <<' '<< ay->GetBinWidth|(1l) << endl;

16

https://root.cern.ch/doc/master/classTH2.html
https://root.cern.ch/doc/master/classTAxis.html

Histograms cont.

P 2dim — 1dim projections (into X axis or Y axis)

On the canvas, position your mouse inside the histogram. Rt Click + select SetShowProjectionX.
Still on the 2D histogram, slide your mouse up/down. In a separate window you’ll see the projections ©

e How to get a projection as an object of TH1 class:

root[8] h2d.ProjectionX ("h2dpx", ay->FindBin(4.5) , ay->FindBin(5.5))
h2dpx (class THID *) 0x3660560 —hzdox
rOOt [9] h2 de—>DraW () 2000 Entries 72716

Mean 3.088
Std Dev 1.415

1800

1600

1400

1200

1000

800

600

400

200

OD

root [10] thJProjectionY}("h2dpy", ax->FindBin(2.5) , ax->FindBin(3.5))
root[11] h2dpy->Draw () gy

Entries 28736
Mean 4998
Std Dev 0.5007

2200

2000

1800
1600
1400
1200
1000
8OO
600
400
200

':D

https://root.cern.ch/doc/master/classTH2.html#a974ece9e7d260f92df00a39dba14e5b0
https://root.cern.ch/doc/master/classTH2.html#a04917d549aa802ce2489692da74348f8
https://root.cern.ch/doc/master/classTH2.html#a974ece9e7d260f92df00a39dba14e5b0
https://root.cern.ch/doc/master/classTH2.html#a04917d549aa802ce2489692da74348f8

Basic graphics
B Points/Markers (TMarker), Lines (TLine), Arrows (TArrow)

P Boxes (TBox), Circles/Ellipses (TE1lipse)
P Inscriptions (TText), also in the LaTeX style (TLatex)

Exemplary help

— Manual: Graphics chapter
— User guide: Graphics chapter

Basic objects
[1] TLine (Lines)

root[1l] TH2F h2d ("h24d", "My Histo", 10, 0., 10., 10, 0., 10.); h2d.Draw/()

root[2] TLine 11 (0., O., 1., 1.) ; 11.Draw/ ()
root[3] TLine 12 (0., O., 1., 1.) ,; 12.SetNDC (kTRUE) ; 12.Draw("same")

NDC (Normalized Device Coordinates) : SetNDC (0) ¢« Coordinates according to actual plot
SetNDC (1) <« as fractions of window dimensions

root[4] 12.SetlLineColor (2); 1l2.SetlLineStyle (2); 12.SetLineWidth (3)

w|[a][«][a][«][e] R [«] =])
]
» “-ﬂ------ :
7
B m o e -
n |[= --ﬂ S LTI
4
3
2
1

-] I ;
) I O

Color numbering scheme in generic palette Numbering of line styles

18

https://root.cern.ch/doc/master/classTMarker.html
https://root.cern.ch/doc/master/classTLine.html
https://root.cern.ch/doc/master/classTArrow.html
https://root.cern.ch/doc/master/classTBox.html
https://root.cern.ch/doc/master/classTEllipse.html
https://root.cern.ch/doc/master/classTText.html
https://root.cern.ch/doc/master/classTLatex.html
https://root.cern/manual/graphics/
https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#graphics-and-the-graphical-user-interface
https://root.cern.ch/doc/master/classTLine.html

Basic graphics, cont.

Basic objects

[2] TMarker (Points/ markers)

] TMarker m (3., 8., 31)
] m.SetMarkerColor (4);
]
]

(
m.SetMarkerSize (2.0);
m.Draw ()

OEAVO[|ACar XKV ¢4

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

F+xOX - - 00000000

1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15

Numbering scheme of markers

[3] TBox (Rectangles)

root[l] TBox b (5., 2., 8., 3.);
root[2] b.SetLine... :

root [3] Db.SetFillColor (4)
root[4] b.SetFillStylel (3014);

Conventions of defining the filling style:

root.cern/doc/master/classTAttFill. htmI#ATTFILL2

3006 | {3007] 3008 3009

R R e e e SIS TSN R]E]

Lo bk B e e T TaTaTata s T 2 0"’0’0‘."0“0*”0’: L] e I-‘T [H]
H (] I
ot poodieraocdl SIS BoEC] [y
HIH

[1 —
3305 | 3350 [3490 | (3600 |
] 1
[3315 | |3351] 3481 3618

i e e [

KNS SIZ

ot

SN N T s
R\ /) LB [
=\ e /) i b

Numbering scheme of some hatch styles

19

https://root.cern.ch/doc/master/classTMarker.html
https://root.cern.ch/doc/master/classTBox.html
https://root.cern/doc/master/classTAttFill.html#ATTFILL2

Basic graphics, cont.

[4] TEllipse (Circles/ ellipses)
root[1] TEllipse e (

TEllipse TEllipse (Double t x1, Double t yl1,
Double t rl, Double t r2 = 0,

Double t phimin = 0, Double t phimax = 360,
Double t theta = 0)

Range of angles of ellipse fragment : [PhiMin, PhiMax]
Angle of figure rotation : Theta

E.g.:
root[l] TEllipse e (5, 5, 4, 2, 0, 270, 45)

Line and filling — specific attributes work here.

[5] TText (Basic text)

[1] TText t (0.5, 0.5, "Hello World!");
[2] t.SetTextColor (
root[3] t.SetTextFont] (
[4]
[5]
[6]

2
43
t.SetTextSize | (40
t.SetTextAngle(45
t.Draw ()

)
)
)
)

> Numbering scheme of font styles.

U

12
22
32
42
52
62
72
82 :
92 :

102 :
112 :

122
132

142 :

152

nits digit = degree of precision

: ABCDEFGH abcdefgh 0123456789 @#$

: ABCDEFGH abcdefgh 0123456789 @#$

: ABCDEFGH abcdefgh 0123456789 @#$

: ABCDEFGH abcdefgh 0123456789 @#$
: ABCDEFGH abcdefgh 0123456789 @#$
: ABCDEFGH abcdefgh 0123456789 @#$
: ABCDEFGH abcdefgh 0123456789 @#$

ABCDEFGH abcdefgh 0123456789 @#5

ABCDEFGH abcdefgh 0123456789 @#3
ABCDEFGH abcdefgh 0123456789 @#$
ABCDEFGH abcdefgh 0123456789 @#$

: ABXAE®TH afixdedyn 0123456789 =#3

: ABCDEFGH abcdefgh 0123456789 @#$

Faes ModVesn CIF7BEEEA wdear

: ABXAE®I'H oy Sedyn 0123456789 =#7

20

https://root.cern.ch/doc/master/classTEllipse.html
https://root.cern.ch/doc/master/classTText.html

Basic graphics, cont.
[6] TLatex (advanced text: mathematical expressions, etc.)

Helpful summary: root.cern/doc/master/classTLatex.html

root[1l] TLatex 1; < A single object acts as a text processor
root[2] 1.SetNDC (1);

root[3] 1l.SetTextSize |(0.06);

root[4] 1.SetTextAngle) (45.);

root[5] 1.SetTextColor (4);

root[6] 1.DrawLatex (0.5, 0.6, "E~{2} = m"~{2} + p*{2}1")

I A few basic rules:

AL : top index #frac{Numerator}{Denom.} : Horizontal fraction

.} : bottom intex #sqrt{x} , #sqrt{N}{x} : rootofdegree 2 and higher
#bf{..} : bold font #splitline{Above}{Below} : two lines, one above the other
#it{..} : italicfont #color[4] {Blue} : local change of color

#vec{..} : vector #font[12] {Font} : local change of font size
#(){..} : large brackets #scale[l.2] {Larger} : local rescaling of font size

root[7] 1l.DrawLatex (0.5,0.6,"#gamma {cm} = #frac{l}{#sgrt{l-#beta”{2} {cm}}}")

I Some examples from the ROOT site:

(}7{40} _{20}Ca : »Ca
B . . _y+z/2
X = #frac{y+z/2{y"2}+1} : :n':-?'fg_'__1

21

https://root.cern.ch/doc/master/classTLatex.html
https://root.cern/doc/master/classTLatex.html

Basic graphics, cont.
[6] TLatex class, cont.

Codes for Greek symbols (preceded by #) Upper diacritic signs:
Lower case Upper case Variations

alpha : o Alpha : A #tilde : a
beta : p Beta: B #ddot E
gamma : T Gamma : r .
delta : & Delta : A #dot a
epsilon : £ Epsilon : E varepsilon: = #grave : A
zeta: C Zeta : z
eta: n Eta: H #acute : &
theta : 8 Theta : (2] vartheta : i #check - 5
iota : 1 lota : I "
kappa : K Kappa : K #hat : a
e w3
nu: v Nu': N #vec{a} : a
xi: £ Xi: =
omicron : o Omicron : 0
pi : w Pi: Il
tho : p Rho : P
sigma : [Sigma : T varsigma : g
tau : T Tau: T
upsilon : u Upsilon : Y varUpsilon: v
phi : ¢ Phi : b varphi : P
chi : X Chi : X
psi: L Psi : gy
omega : © Omega: Q varomega: g

https://root.cern.ch/doc/master/classTLatex.html

[6] TLatex class, cont.

T

M

@ 3 u

= 1 <

#club

#voidn

#leq

#approx

#in

#supset

#cap
#ocopyright
#trademark
#times
#bullet
#voidb
#doublequote
#lbar
#arcbottom
#downarrow
#leftrightarrow

#Downarrow

m R o=

I

%]

T — N

Basic graphics, cont.

Mathematical and other special symbols

#Leftrightarrow
#void8
#hbar
#diamond
#aleph
#geq

#neq
#notin
#subseteq
#cup
#copyright
#void3
#divide
#circ
#infty
#angle
#cbar
#arctop

I

=

H o e @

#leftarrow
#otimes
#Leftarrow
#prod
#Box
#parallel
#heart
#Jgothic
#LT
#equiv
#subset
#supseteq
#wedge
#oright
#AA

“’E{i+-ﬂ:|—M:>93'—>*|

S I

@

#nabla
#downleftarrow
#topbar
#arcbar
#uparrow
#oplus
#Uparrow
#sum
#perp
#forall
#spade
#Rgothic
#GT
#propto
#notsubset
#oslash
#vee
#voidi

U

=

oW @e—

#aa

#/
#backslash
#upoint
#partial
#corner
#ltbar
#bottombar
#rightarrow
#surd
#Rightarrow
#int

#odot
#exists
#plus
#minus

23

https://root.cern.ch/doc/master/classTLatex.html

TPad graphical area placed in a subregion of TCanvas (or another TPad)

Let’s try it out:
root[0] TCanvas cl;

root[l] TPad p1 ("p1", "", 0.0, 0.0, 0.7, 0.6, 18);
Range coordinates
> order: [Xiow, Yiow] [Xup, Yup]

» given in NDC units.
root[2] pl.Draw (); pad colour
root[3] pl.cd(); (default: white)
root[4] TF1 fun ("fun", "x*x", -2, 2);
root[5] fun.Draw/() ;

We can also divide the TCanvas automatically into matrix of TPad’s:
root[6] cl/Divide (Ncols , Nrows)
root[7] cl.ls ()

We can see that: » the created TPads “belong” to c1,

» they were automatically given names: c1 1,cl1 2, ...

To activate one TPad belonging to a given TCanvas, we call it by its number:
root[8] cl->cd ([1 .. Nc x Nr]);

Caution: Changing back to c1 and drawing something there — deletes all the above TPads.

> We always have at disposal the pointer to the active window: gPad

root[9] gPad->Print ("tpad plot.gif");

24

https://root.cern/doc/master/classTPad.html

TStyle

Object managing the graphical style

> In ROOT session, the gStyle object of TStyle class is available. It keeps settings of graphics style.
The settings concern e.g. the attributes of canvas, lines, markers, stats.
Access is through the getters and setters.

root[0]

gStyle->Set

gStyle->SetLabelSize (0.07, "XY");
gStyle->SetlLabelOffset (0.01, "Y");
gStyle->SetNdivisions (2 , "X");
TH1F h1 ("h1", "", 10, -5, 5);
hl.Draw ()

I However, if we first define a histogram, and change the style later on,
we need to tell this histogram to update the style:

root [5]
root [6]
root [7]
root [8]

gStyle->SetNdivisions (8 , "X");
hl.Draw ()

hl{UseCurrentStyle}();

hl.Draw ()

B Important: TStyle allows to modify the contents of displayed statistics:

root[9]

Symbols {r m e n} are the basic 4 of 9 attributes to display. They can take values {0, 1}, sometimes 2.

Basic properties:

gStyle->SetOptStat ({rmen});

(do not) display RMS

(do not) display the mean

(do not) display the count numbers
(do not) display the histogram name

5 0 3 B

1
1:
1:
1

Link to the full list.

25

https://root.cern/doc/master/classTPaveStats.html
https://root.cern/doc/master/classTStyle.html

TFile communication with files in .root format (root.cemiroothtmidoc/guides/users-guide/inputOutput.html

root.cern/doc/master/classTFile.html)

ROOT’s native format allows to store every object of class recognized by ROOT.
It should be then retrievable as an object.

Let’s first learn the basics.

WEe’'ll create the .root file, put some histogram there and close this file.

root[0] TFile £ ("myfile.root", "RECREATE");

root[l] THIF h ("myhisto", "My Histo's Title", 10, -5., 5.);

root[2] TRandom3 r; for (int 1 =0 ; 1 < 1leb ; i++) h.Fill (r.Gaus()):
root [3] h{Writej(); < Writing object to file
root[4] f.Close ()

root[5] .! 1ls -og myfile.root

Let’s leave and reenter ROOT. Now, we’ll open the written file for reading, extract the histo and draw it.

root[0] TFile f ("myfile.root", "READ"); <— Opening file for reading
root[1l] f£.1s(); <— Listing file’s content
root[2] TH1F* hread = (TH1F*) f.Get | ("myhisto");

It’s important to understand the command above. TFile::Get extracts from the file
the address of the required object, but returns itin the TObject* type (base class of the others).
It is on our shoulders to cast it onto the relevant type (here, TH1F*).

An alternative way to write it: \
root[3] THI1F* hread2 = f.Get<THIF> ("myhisto");

root[4] hread->Draw () ;
root[5] f.Close ();

26

https://root.cern.ch/doc/master/classTFile.html
https://root.cern/root/htmldoc/guides/users-guide/InputOutput.html
http://root.cern/doc/master/classTFile.html

TFile (cont.)

Let’s have a closer look and first check if a given file exists:

root[0] cout <<{gSystem—>AccessPathName}("myfile.root");
false < false if file exists

The .root file can be open in different modes, depending if you want to only read, or write (and how) :

root[1l] TFile £ ("myfile.root", "RECREATE");
_options: "NEW" "RECREATE" "UPDATE" "READ"

You may want to check if the file was opened successfully:
root[2] if (f.IsOpen| () == true) cout << "File open.\n";
Now let’s see the file length and print out its table of contents:

Root[3] .! 1ls -og myfile.root
root[4] f.ls();

Okay. Now we’re going to create some histogram:

root[5] THIF h ("h", "myhisto", 10, 0., 10.);

root[6] f.l1ls(); <— hlinked, but not saved yet.
root[7] .! 1ls -og myfile.root

Hm, despite size didn’t change, myhisto is listed. We’ll explain it later. Let’s store myhisto in the file:

root[8] h.Write ();

root[9] .! 1ls -og myfile.root
root[10] f.ls(); <— hlinked and saved.

Now, file size increased and myhisto hasa "KEY".
Nb. while writing, we can also give the object another name inside that file. Finally, let’s close the file.

root[11l] h.Write ("h copy"):

root[1l2] f.ls () < h written under the new name
root[13] f£.Close();
27

https://root.cern.ch/doc/master/classTFile.html

1/O cont.

B> ROOT session with file connection:

$ root -1 myfile.root

root [0]
Attaching file myfile.root as fileO...
(class TFile *) 0x1943c70 < Pointer to object of TFile class

root[1l] fileO->1s();

I Setting up the work directory on a disk:

root[2]{gSystem—>pwd}()

(const char *) "/home/krzysztof/didact/informatyka/nuctools"
root[3] gSystem->cd ("../")

root[4] gSystem->pwd ()

(const char *) "/home/krzysztof/didact/informatyka/"

ROOT Object Browser b4
| Browser |Eile Edit View Optons Took Hep
. . . Files Canvas 1 IE Editar
B TBrowser: the object-oriented browser O Lo b o TS _
gwot . - 35000 — Enkias mﬁmmu
root[5] new TBrowser @gm H 30000 = Suber oo
[T = majplik. oot -
| g, iz 25000 —
& -
E@Ee S 200002—
In some Root versions the TBrowser will appear & Ehnt | o0
as embedded in the web browser. s -a
You may like it or not. R (—
If you want to prevent it, launch Root this way: Qe SN reves RTINS veres SOV
..... Dp_,m -
----- ([sasvioghfn D
$ r O O t - Web: O f f (L] Tamplaz Command
..... Cvideos w = Command (beal):
"N Il e »
Fiter: Al Files 2.4 [+]
| canm 1t] | camaz_1 526,197 wefi 11679, 3= 13078 4 r

28

https://root.cern.ch/doc/master/classTSystem.html
https://root.cern.ch/accessing-ttree-tbrowser

gDirectory Hierarchy of objects in Root files and memory

P ROOT maintains a structure of directories (in memory, as well as inside .root files) .

(memory) (root file) = il elod)

..... ‘ THlF ‘ ‘ TGraph ‘
----- \ TF1 \ ----- \ TCanvas \
o
... TGraph.] ' THD
e TRL S TEllipse
$ root -1
root [0] [gDirectory->pwd () or .pwd
Current directory: Rint:/ <—— Main directory in memory

root[l] TFile f1 ("myfile.root"); cout << gDirectory->GetPath () << endl;
Myfile.root:/

root[2] gDirectory->1s () or .1s

TFilex* myfile.root <— We see we've moved to a file
TFile* myfile.root
KEY: THI1F h;1 myhisto

29

http://root.cern.ch/input-and-output#The-Current-Directory

gDirectory Hierarchy of objects in Root files and memory

I Creating subdirectories (in memory or inside a . root file)

root[3] TFile f2 ("newfile.root", "RECREATE")

root[4] gDirectory->mkdir| ("folderl"); <
root[5] gDirectory->cd | ("folderl");

root[6] gDirectory->pwd ()

newfile.root:/folderl <

root[7] THI1IF h ("myhisto", "", 10, -5., 5); h.Write();
root[8] .1ls

TDirectoryFile* folderl folderl

OBJ: THIF myhisto : 0 at: 0x7f06ee3ce000

KEY: TH1F myhisto;1

root[8] gDirectory->cd ("..") ; <

root [9] gDirectory->rmdir| ("folderl")
root[10] f2.Close ()

root[11l] cout << gDirectory->GetPath() << endl;
Rint:/

root[12] fl.cd() ; gDirectory->pwd() ; <
Myfile.root:/

root [13] gDirectory->cd ("Rint:/") ; <
root[14] gDirectory->pwd()
Rint:/

New directory in file

myhisto savedin folderl

Back to main folder in file

cd () as method of TFile

way to get back to memory

30

http://root.cern.ch/input-and-output#The-Current-Directory

MACROS C++/ROOT codes in a file

Handy mode: \ macro_noname.C \

{

TH1F hl ("histl", "",
TH1IF* h2 = new THIF
("hj_StZ", "", 50,

SetSeed () ;

TRandom3 r; r.

for (int i=0 ; i<leb ; i++) {
hl.Fill (r.Gaus()):
h2->Fill (r.Gaus ())

}
hl.Draw() ;

50, -5., 5.

Name the same

After execution, in an interactive session:

hl (object) and h2 (pointer)
hl, h2, histl, hist?2

o Exists:
o One can call:

Full mode (functions): as filename
intmacro_function??) {
TH1F hl ("hist1", "", 50, -=-5., 5.);
TH1F* h2 = new THI1F

("hiStZHI "",

r.SetSeed () ;

TRandom3 r;

for (int i=0 ; i<leb ; 1i++) {
hl.Fill (r.Gaus ());
h2->Fill (r.Gaus());

}

//TCanvas canl ("cl1l", "", 640, 480); <=
hl.Draw() ;

//canl.Update () ; <=

//cin.ignore () ; <

return 0;

After execution, in an interactive session:

o hl (object) not present (alsoviahistl)
o one cannot call h2
o possibletocall hist2

Additional commands needed to capture graphics

50, _5-1 5-);

31

http://root.cern.ch/working-macros
https://www.fuw.edu.pl/~kpias/ctnp/macro_noname.C
https://www.fuw.edu.pl/~kpias/ctnp/macro_function.C

MACROS cont.

double macro inputarg (double x = 0)

® Input arguments of function: {

cout << "Hello world! " << x << endl;
return Xx;

$ root -b "macro inputarg.C(12.34)" <— No space between .Cand (...)

® Calling from session:

root[0] .x macro inputarg.C(-12.)
Double t W (Double t x) {
» A macro can contain more functions. ‘ return 3*pow(x,2) - 1.5*x + 4.;
}
» The starting function (equivalent of main)
MUST have the same name as a filename int]macro giveW‘ (double x) ({
cout << "W(x) = " << W(x) << endl;

return 0;

» A macro can be loaded first and run later:

root[0] .L macro_ inputarg.C < This way you can quickly check the integrity of C++ code.
root[1l] macro inputarg (123) ;
Hello world! 123

® One can compile the macro in the session. But the code must contain #include< .. >

root[0] .L macro inputarg.C+ < Will create file macro _inputarg C.so

root[1l] macro inputarg (-123.45);
32

http://root.cern.ch/working-macros
https://www.fuw.edu.pl/~kpias/ctnp/macro_inputarg.C
https://www.fuw.edu.pl/~kpias/ctnp/macro_giveW.C

MACROS cont. Some goodies:

» You can include some macro A.C into yours, and further use its functions by simply:

#include "A.C"

» You can also achieve this, also interactively, by:

{gROOT—>LoadMacro}("A.C");

» ... and then execute a given function by:

{gROOT—>ProcessLine}(" myFunction() ")

» You can also execute the whole macro (while sitting inside your macro)

{gROOT—>Macro}("A.C")

» Also, you can execute a Linux command:

root[O]{gSystem—>Exec}("date")
Tue, Nov 5, 09:55:01 CET

» and if a Linux command prints something out, you can retrieve it with:

root [5] TString datenow = gSystem->GetFromPipe | ("date")

33

http://root.cern.ch/working-macros

TLegend

Legend for a plot

P Each plot can be accompanied with a legend (one or more).
An object of TLegend class needs to be linked with the plotted: functions, histograms or graphs.
We decide, what inscription and symbol we assign (line, marker, rectangle, point with uncertainty).

int]macro_TLegend\() {
TH1F* h = new TH1F ("h", "Example", 200, -14, 10);
h->FillRandom ("gaus", 30000);

h->SetFillColor
h->Draw () ;

(18);

TF1* f= new TF1("f", "1000*abs(sin(x)/x)",-14,14);

f->SetLineColor (kBlue);
f->Draw ("same");
Int t i = 0;
Double t x[50], y[50], ex[50], ey[50];
for (Double t xval = -9; xval <= 9; xval++, 1i++){
x[1] = xval;
y[i] = 1000 * sin ((xval + 9)/10) ;
ex[1] = 0.3;
eyl[i] = (xval+9) * 3 ;

}

TGraphErrors* gr = new TGraphErrors (i,x,y,ex,ey);

gr->SetName ("gr");
gr->SetMarkerStyle (21);
gr->SetMarkerColor (kRed) ;

gr->Draw ("P");

TLegend* leg = new TLegend (0.1, 0.6, 0.48, 0.9);
leg->SetHeader ("The Legend Title");

leg->AddEntry (h ,"Histogram filled rand", "f");
leg->AddEntry ("f" ,"abs (#frac{sin(x)}{x})", "1");
leg->AddEntry ("gr","Graph with errors" "lep")
leg->AddEntry ((TObject*)0, "Just some text", "");

leg->Draw

() ’ ‘T
t 0; '
return —e Legend must be displayed by command

This macro draws histogram, function and TGraph.

Next, it creates the legend for them
and modifies the symbols’ attributes in the legend.

TLegend Example

The Legend Title
[] Histogram filled randomly
Function abs{sm{x))

1200 _ X
—&— Graph with errors

1400

Just some text

1000

800

600

400

200

< Creating legend within certain canvas area
< Legend’s title
Entries corresponding to objects.
Options: f=filled box, |=line
p = marker e = error bar

In case if text only

34

https://root.cern/doc/master/classTLegend.html
https://www.fuw.edu.pl/~kpias/ctnp/macro_TLegend.C

Good plot in ROOT. This macro is a proposition of the way of creating a readable and clear plot.

int macro GoodPlotExample (
gStyle->SetOptStat (0);
gStyle->SetlLegendBorderSi
gStyle->SetLegendTextSize
gStyle->SetLabelSize (0.
gStyle->SetNdivisions (5
gStyle->SetTextFont (42);

{.. creation of histogram, curve and TGraphErrors

hl->GetXaxis () ->SetTitle
hl->GetXaxis () ->CenterTit
hl->GetXaxis () ->SetTitleO

{... same for Y axis ..}

TCanvas* cl = new TCanvas
cl->SetGrid (0, 0);

cl->SetTopMargin (0.05
cl->SetBottomMargin (0.15
cl->SetRightMargin (0.04
cl->SetLeftMargin (0.16

hl->Draw () ;
fl->Draw ("same"):;
gr->Draw ("P");

) A

ze (0);
(0.055) ;
055, "XY");

05 , "XY") ;

("Position

le (true);
ffset (1.25);
hl->GetXaxis () ->SetTitleSize (0.055);

("cl",

TLegend* leg = new TLegend

(0.21, 0.63, 0.5
leg->AddEntry (hl , "
leg->AddEntry ("£f1", "
leg->AddEntry ("gr", "
leg->Draw ()

TLatex 1;

1.SetNDC (1) ;
1.SetTextSize (0.055);
1.SetTextFont (42);
l.DrawlLatex (0.82, 0.845,

, 0.86,

Experiment"

Model"

Efficiency"

" (A) "

mwn
’

nwn

) ;

4

(#mum) ") ;

<«

800, 600)

4

Style settings

o}

Axis Title

.
4

Margins

Text overlay

Legend

Do not plot stats

Legend: no frame

Legend: font size

Font size of axis values

Number of divisions of X and Y axis
Set font to Helvetica and precision 2

1500—
- [] Experiment
. — Model
) - -4+ Efficienc
= 1000— Y
>3 L
o) N
8 N
2 L
c‘cﬁ 500_—

A
-10 -5 0
Position (um)

Use coordinates of TCanvas
Font size

Font style: Helvetica, precision: 2
Print the text

35

https://www.fuw.edu.pl/~kpias/ctnp/macro_GoodPlotExample.C

MACROS : C++ functions used by TFn objects

Through “Inline Expression” : Through function with parameters:
Double t W (Double t x) { Double t myFun (Double t *xarg,
return pow(x,3) - 6.*pow(x,2) Double t *par)
+ x - 1.; {
} Double t x = xarg[0] , result = 0.;
int macro funcInline () for (int deg = 0 ; deg <= 3 ; degt+)
{ result += par[deqg]
TCanvas cl ("c1", "", 640, 480); * TMath::Power (x, deqg);
Tl £1 ("£1", "w(x)", -10., 10.); return result;
f1.Draw(); }
cl.Update() ;
cin.ignore () ; int macro funcFunc ()
return O; {
} TCanvas cl1 ("c1", "", 0640, 480);
" TF1 f1 ("myfunl", myFun, -3, 5, 4);
fl.SetParameters (-1., 1., -6., 1.);
fl1.Draw();
cl.Update () ;
cin.ignore () ;
return O;

)

Notice:

in myFun we can encode anything
e.g. if/else blocks or calls to other functions

http://root.cern.ch/working-macros
https://www.fuw.edu.pl/~kpias/ctnp/macro_funcInline.C
https://www.fuw.edu.pl/~kpias/ctnp/macro_funcFunc.C

Please download the test data:

Fitting of function to data points

void‘macro_FitTGraphErrors M) {
TCanvas* cl = new TCanvas ("cl");
TGraphErrors gr
gr.SetTitle ()
gr.Draw ("AP") ;

TF1l fun ("fun", myFun ,
fun.SetParameters (-1. , 1. ,
gr.Fit/ (&fun);

cl->Update() ;
cin.ignore () ;

}

("dataPoints.txt") ;

i
i

Exemplary result of (successful) fit:

X

FCN=10.8023 FROM MIGRAD

EXT PARAMETER
NO.

1

Found values ‘
of parameters

2
3
ﬂ‘l_

poe
pl
p2
p3

Status of fit (v)
|

Y
STATUS=CONVERGED 91

STRATEGY= 1
STEP
SIZE

3.548060e-04

2.52787e-04
1.13715e-084
4.27100e-085

CALLS
EDM=5.47088Be-07

NAME VALUE
-1.31434e+00
1.25659e+00
-5.75515e+80 .76173e-01
9.12643e-01 .B84954e-02

Values Uncertainties

ERROR
.32403e-01
.08140e-01

92 TOTAL

FIRST
DERIVATIVE
1.79927e-03
4.11222e-063
1.26442e-02
3.82217e-082

ERROR MATRIX ACCURATE

wget www.fuw.edu.pl/~kpias/ctnp/dataPoints.txt

Graph with
experimental data

Model function
(with parameters - !)

Fit command.
MINUIT package
(from CERN)

e Status of

covariance matrix

()

37

http://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#fitting-histograms
https://www.fuw.edu.pl/~kpias/ctnp/macro_FitTGraphErrors.C

Fitting of function to data points cont.

> Setting up the initial parameters:

funl./SetParameter | (index, value)
funl.SetParameters (value, value,
funl.FixParameter | (index, value)

funl.SetParlLimits |
gr.Fit (&fun , "");

P Getting the values of found parameters:

funlfGetParameter\(index) ;
funl.GetParError @ (index) ;
funl.GetChisquare ()
funleetNDF (),

(index, min, max)

< Set parameter’s value
value) ; < Set all the parameters
< Fix a given parameter

< Set the fitting range

<— Get parameter’s value
< (et parameter’s error
< Get x?value

<— Get number of d.o.f.

P Usage of built-in (predefined) functions

[full list here]

" polN
expo
gaus
gausn
crystalball
breitwigner
landau

_ chebN

gr.Fit ("pol3");

f(x) = p0 + pl*x + p2*x2 + ..

f(x) = exp (pO0+tpl*x)

f(x) = pO0*exp (-0.5* ((x-pl)/p2)"2)
(Normal Distribution)

(Crystal Ball function for “Gaussian with low tail”)
(Breit-Wigner distribution of particle’s mass)
(Landau distribution of energy losses)
(Chebyshev polynomial of degree N)

Caution: for a predefined function, if we narrow down the range of parameters (or fix some value(s)),
we have to add "B" into the option of Fit method.

38

http://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#fitting-histograms
https://root.cern/doc/master/classTFormula.html#FormulaFuncs
https://root.cern/doc/v634/group__PdfFunc.html#ga8f46b655fa77cceb930ddb11e4e12196
https://root.cern/doc/v634/group__PdfFunc.html#ga674162ea051bf687243264996d046f73
https://root.cern/doc/master/namespaceTMath.html#a656690875991a17d35e8a514f37f35d9
https://root.cern/doc/v634/namespaceROOT_1_1Math_1_1Chebyshev.html

Fitting of function to data points cont.

P The Fit method works also for histograms, including 2, 3 — dimensional ones. Full form of method:
TFitResultPtr Fit (TF1l* f1, Option t* option = "", < Fitting options
Option t* goption = "", <— Drawing options
Double t xmin = 0, Double t xmax = 0) < Range on X axis
» Fitting options (selection of more practical ones; for details see this link)

only for histograms (THdf)

T (Integral) Average the function over each bin (for strongly changing functions)

1L (rogLikelinood) Use the Log Likelihood method (instead of x?).

For histograms and graphs (TGraph) :

M (iMprove) Obtain the more precise fit results

E (Error) Obtain uncertainties more exactly with help of Minuit's MINOS package.

B (Bound) For predefined functions: if range of parameter values is limited

R (Range) Fit in range, in which the function is defined

0 Do not plot the fitted function

\Y (Verbose) Verbose mode

0 (Quiet) Quiet mode

P In case of fitting the 2 (3) — dimensional function to the 2 (3) — dimensional function:

o The fitting range should be specified in the constructor of the TFn object
o Add "R" to the fitting options of the Fit method.

o If you specify xmin and/or xmax in arguments of Fit method, these values work only for X axis
39

http://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#fitting-histograms
http://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#fitting-histograms

Fitting of function to data points cont.

B Extraction of covariance matrix (goal: linear correlations between fitted parameters)

void macro_FitErrorMatrix‘() {
TCanvas* cl = new TCanvas ("cl");
TGraphErrors* gr = new TGraphErrors ("dataPoints.txt");
gr->SetTitle ();
gr—->Draw ("AP") ;
TF1l* fun = new TF1l ("fun", myFun , -3, 5, 4); TFitResultPtr
fun->SetParameters (-1. , 1. , -6. , 1.); stores the fit results
y S
' TFitResultPtr fitRes = gr->Fit (&fun , "S"); |
TMatrixDSym cov = fitRes->GetCovarianceMatrix(); T TMatrl%DSym.
- - symmetric matrix of
_ . N v double elements
for (int r = 0; r < cov.%etNrows V) ;o rH+) |
for (int ¢ = 0; c < cov.GetNcols/() ; c++) GetCovariance. ..
cout << setw(l6) << covl[r][c] ; returns the covariance
matrix
cout << endl;
}
cl->Update () ;
cin.ignore() ;
!
P To access the fit status inside the code (string)
#include "TMinuit.h" <—— At the beginning of the code
string myFitStatus = gMinuit->fCstatu ; 7 Getting the status (string)

40

https://www.fuw.edu.pl/~kpias/ctnp/macro_FitErrorMatrix.C
http://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#fitting-histograms

TTree Trees (data bases)

Eg. experiment measuring particles in detectors: i-th particle with {N. T. E} from a detector (detectors)
Eg. experiment measuring tracks of particles in drift chambers : set of p, p,, P, AE, from a chamber

A simple data scheme

> ’ Det (int) , Time (float) , Energy (float) \

>] Det (int) , Time (float) , Energy (float) \

- \ Det (int) , Time (float) , Energy (float) \

Possible data structures for an

event behind ROOT tools:

> Branch: Det (int) (easier)
Branch: Time (float)
Branch: Energy (float)

> Branch: Object { Det (int), Time (float) , Energy (float) } (more advanced)

i Let’s first look at variant 1.

41

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html

TTree Simplest way to create a tree from data in a text file

11 16.832 10.8703

® Download data. They are in 3 columns (int, float, float) 11 20.4335 8.65938

wget www.fuw.edu.pl/~kpias/ctnp/MyExpData.txt

7 0.634218 8.03354
1 21.3472 19.6014

@ Let's open the TTree object and fill the database with data using the ReadFile method:

Declaration of tree

ReadFile fills the tree
from txt file

Print displays stats
Scan prints out data

Draw . en-time plot
We set up filter on det

Write saves treein file ~—

int‘TTree_ReadFile‘()

TFile £ ("simplest tree.root", "RECREATE");

TTree t ("mytree" , "Tree of data for my analysis");

tJReadFile}("MyExpData.txt", "det/I:energy/F:time/F");

tﬂPrint}();

tﬂScan}("det:energy:time");
tJDraw}("energy:time" , "det >= 7");
t. Write ();

return 0;

42

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
http://www.fuw.edu.pl/~kpias/ctnp/MyExpData.txt
https://root.cern.ch/doc/master/classTTree.html#a9c8da1fbc68221b31c21e55bddf72ce7
https://www.fuw.edu.pl/~kpias/ctnp/TTree_ReadFile.C

TTree cont. Now we’ll design the tree by ourselves.

P Scheme “1 branch =1 variable”

Define the branch:

/intTTree simple‘() {

Int t det;

Float t energy , time;
TFile £
TTree t

("simple.root",
("tree", "My tree");

"RECREATE") ;

) ;

) ;

t.Branch ("Name" , t.Branch ("Det" , &det , "det/I"
&variable, t.Branch ("En" , &energy, "energy/F");
"variableCF"); t.Branch ("Time", &time , "time/F"
Encodlng the variable S|ze:/ | TRandom3 r; r.SetSeed ();
'F : float . 4bytes | for (int i = 0; i < 100; i++) {
D : double , 8 bytes det = r.Integer (24);
I : signedinteger , 4 bytes time = r.Rndm() * 20.;
i : unsigned integer, 4 bytes energy = r.Rndm() * 30.;
C : c-string £.Fill | ();
B : signed integer , 1 byte }
b : unsigned integer, 1 byte t.Write ();
S : signedinteger , 2 bytes AR O;
s : unsigned integer, 2 bytes)
L : signedinteger , 8 bytes
1 : unsigned integer, 8 bytes
O : bool , 1 Dit
Making an entry in the tree: t.Fill ()
Writing the tree in a file: t.Write ()

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://www.fuw.edu.pl/~kpias/ctnp/TTree_simple.C

TTree cont.

"> Inspection of the tree in an interactive session

root -1 simple.root
root[0] tree->Print ()

Rk b I d dh dh Ib b b b b b d 2 db db Sb Ib b b b b i db db Sb Sb I b b b i i S S Sh Sh Ib b b b S S 2 dh db Ib Ib b b b b i 2 dh db Ib b b b b b b db S dh db b b b b b i 2 g b Y

*Tree :tree : My tree *
Entries : 100 : Total = 3169 bytes File Size = 1701 ~
b : : Tree compression factor = 1.21 w
R R b b b b b b b b b b b g b db b b b b b b b b b b b b b b db b b b b I b b b b b b b d b b b b b b b b b b b b ¢
*Br 0 :Det : det/I *
*Entries : 100 : Total Size= 936 bytes File Size = 230 *
*Baskets : 1 : Basket Size= 32000 bytes Compression= 2.04 W
* *
*Br 1 :En : energy/F &
*Entries : 100 : Total Size= 943 bytes File Size = 469 *
*Baskets : 1 : Basket Size= 32000 bytes Compression= 1.00 %
* *
F B 2 :Time : time/F &
*Entries : 100 : Total Size= 941 bytes File Size = 471 *
*Baskets : 1 : Basket Size= 32000 bytes Compression= 1.00 W
* *

root[1] tree—ﬁShow}(lO)

======> EVENT:10
det = 10
energy = 3.10897
Time = 5.81155

root[2] tree->Scan ()

R R I d dR dh db b b b b b S b b g dh db b b b b b i 2 S db I b b b b b b e S SR IR b b b b b b b g 4

* Row * Det.Det.d * En.En.ene * Time.Time *
KAKAKAKAAKRAKRAA XA A KRNI AR A A A I A I A dA A h A rhAk kA kA hAk kA Xk %
* 0 * 1 * 2.7607548 * 2.8281364 *
* 1 = 12 * 13.696406 * 2.2420666 *
* 2 * 12 * 21.884300 * 11.228475 *
* 3 * 11 * 10.673481 * 10.060612 *
* 4 * 17 * 16.904376 * 18.435609 *
* 5 * 5 * 9.2536840 * 7.2596163 *

m

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html

TTree cont.

b Plotting the histogram of a variable (variables, combination of variables, etc)

root[0] tree- }Draw\('energy")

root[1l] tree->Draw ("sqgrt (energy)") <—— Example of function of variable
root[2] tree->Draw ("time:energy", "", "colz") <—— 2-dimensional plot

root[3] tree->Draw ("time:EntryS$") <— Entry$ is a special keyword

= entry number
[Plotting the histogram of a variable with some filters (cuts) required

root[4] tree->Draw ("time", "det>14 && det<23")

P Projection of variables from a tree to a histogram

root[5] tree->Project] (

Long64 t Project (const char* hname, const char* varexp, const char* selection
= "", Option t* option = "", Long64 t nentries = 1000000000, Longbt4 t
firstentry = 0)

root[5] TH1F henergy ("henergy", "", 15, 0., 30.);
root[6] tree->Project ("henergy", "energy", "det<=10");
root[7] henergy.Draw ();

Caution: while projecting onto 2D histograms, an order in the varexp string is “first Y : then X”

P Cuts (TCut)

root[8] TCut cutl ("det<=10") , cut2 = "det>=20" ;

root[9] henergy.Reset] ()

root[10] tree->Project ("henergy", "energy", cutl || cut2); _
root[11l] tree->Draw ("energy", cutl && "EntrysS <= 50"); <« One can combine

TCut with string

45

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
http://root.cern.ch/doc/master/classTCut.html

/ TTree cont.

P Graphical cut performed on TH2 (TCutG)

$ wget www.fuw.edu.pl/~kpias/ctnp/auau 1.23AGeV 8dsts.root
$ root -1 auau 1.23AGeV 8dsts.root

root[1l] wars tree->Draw ("dEdxToF:totmom", "totmom<l500 && dEdAxToF<15.");

® From the menue of the TCanvas: View —Toolbar , then 3£ .

@ By clicking mouse — mark the vertices of the polygon. Double click to finish.
® A pointer to the TCutG object is available in the session: TCutG* CUTG .

root[2] wars tree->Draw ("dEdxToF:totmom", "totmom<l500 && dEdxToF<15. && CUTG")

root[3] CUTG->Draw ("same")

By using the IsInside method we can examine if the pair of coordinates lies inside the contour, e.g.:

root[4] CUTG->IsInside| (500, 7)

The cut object can be renamed, as well as stored in a root file:

root[5] CUTG->SetName ("mycutg");
root[6] TFile £ ("mycutg.root" , "recreate"); mycutg->Write();

However, if we want to get it from a file and use as a tree selection, we first have to assign variables to axes:

$ nice root -1 auau 1.23AGeV 8dsts.root

root[0] TFile filecut ("mycutg.root");

root[1l] TCutG* cgl = (TCutG*) filecut.Get ("mycutg");

root[2] cgl->SetVarX ("totmom"); cgl->SetVarY ("dEdxToF");

root[3] fileO->cd();

root[4] wars tree->Draw ("dEdxToF:totmom","totmom<1l500 && dEdxToF<15. && mycutg");

46

https://root.cern.ch/doc/master/classTCutG.html
http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html

TTree cont.

P Trick for drawing from TTree into user-defined histogram

By default, for drawing ROOT creates a temporary histogram named htemp with predefined structure.
A trick to override these defaults is:

root[5] wars tree->Draw ("X >> histName (nBins, Xmin, Xmax)")
which can be nicely generalized to 2-Dim:

root[5] wars tree->Draw ("Y:X >> histName (nBinsX,Xmin, Xmax,nBinsY,Ymin, Ymax)")

[Quick TTree manipulation in ROOT macro, including functions on variables:

double mtm (double pt, double m) ({
return sqgrt (pt*pt + m*m) J\m;

}

\
\

int’ttree_project_fun‘() { \
TFile* fin = new TFile ("auau_ﬁ.23AGeV_8dsts.root");
TTree* tin = (TTree¥*) fin—>Geﬁs("wars_tree");
TCut cSelectProtons ("mass>§§b §&& mass<1200");

tin->Draw (" |mtm (pt,mass)|" , cSelectProtons);

return 0O;

» if you need to draw a more complicated expression based on variables,
you can create a function as above — and use it in the Draw formula string.

47

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://www.fuw.edu.pl/~kpias/ctnp/ttree_project_fun.C

[Getting the TTree from the ROOT file + readout of data from TTree:

int TTree simple read () {
@® Connect to the tree: Int t det;
Float t energy , time;
TTree* t = (TTree*) f.Get ("tree");
TFile £ ("simple.root");
@ Connect the variables to the branches: TTree* t = (TTree*) f.Get ("tree");
t->SetBranchAddress ("name",&variable);g——>-t:—ﬁSetﬂ&rancﬁﬂMijreSS }("Det" , &det),
t->SetBranchAddress ("En" , &energy):;
® Get the number of entries: t->SetBranchAddress ("Time", &time);
t->GetEntries(); » for (int i=0; i<t->GetEntries/(); i++)
@ Read the full event into the variables: > { t->GetEntry| (i) ;
cout << setw(5) << det
t->GetEntry (1); << setw(12) << time
<< setw (1l2) << energy << endl;

}

return 0O;

| P Status of branches

One can define, which branches should be analysed, and which ones — not. Before the event loop, one should issue:

TTree::SetBranchStatus ("branch", status):;

"branch" — wimn :

(0)/1 = (in)active
(de)activation concerns all the branches

status.

Notice: Deactivation of unnecessary branches shortens the analysis time (important for large data files!)

48

https://www.fuw.edu.pl/~kpias/ctnp/TTree_simple_read.C

™ Creating new TTree from the old one

@® Impose a cut on an original tree — create a resultant tree.

TTree* NewTree = tree original->CopyTree (" {some cut} ");
N
| int TTree cut and branch () {
s TFile fin ("simple.root");
\ TTree* tree in = (TTree*) fin.Get ("tree");
" TFile fout cut ("simple cut.root", "RECREATE");

& TTree* tree cut =
tree cut->Write();
fout cut.Close();

tree in-3CopyTree |("det < 10") ;

tree in->SetBranchStatus ("*", 0);

tree in->SetBranchStatus ("Time", 1);

y TFile fout bran ("simple bran.root", "RECREATE");
ya TTree* tree bran = tree in->CloneTree|() ;
/ tree bran->Write();

fout bran.Close();

@ Select some branches from an original tree — create a resultant tree.

tree original->SetBranchStatus ("*", 0);
tree original->SetBranchStatus ("{selected branch}", 1);
TTree* NewTree = tree original->CloneTree();

Caution: here, the new tree is connected to the old one.
The solution above works e.g. if we just need to store the new tree in a file.

https://www.fuw.edu.pl/~kpias/ctnp/TTree_cut_and_branch.C

P Adding a Friend tree to your tree

If you have T1 and T2 trees with the same No. of entries, you can analyse them together “as one tree”.
The tool for thatis T1.AddFriend (T2) .
You will not merge trees in a file (or memory), but effectively you can Draw, Scan, Project them together.

int TTree AddFriend () {
TFile* fin = new TFile ("simple branch.root");
TTree* tl = fin->Get<TTree> ("tree time"),
* t2 = fin->Get<TTree> ("tree energy");
tl->AddFriend (t2) ;

tl->Draw ("time:energy");
return 0O;

https://www.fuw.edu.pl/~kpias/ctnp/TTree_AddFriend.C

TNtuple (TNtupleD) Simple trees composed of only floats (doubles)

Even simpler data scheme (case of floats) :

.

Time (float)
Energy (float)
~dEdx (float)

Time (float)
Energy (float)
~dEdx (float)

Time (float)
Energy (float)
~dedx (float) |

. .

> Variables are defined
in the constructor.

> For every variable
a branch is made.

> Filling is done by
giving variable values

> Direct filling up to
15 variables:

Fill (varl, var?2,
> ... Or via array:

Fill (Float t* x)

)

int TNtuple example () {
Float t energy , time,

dEdx;

TFile £ ("tntuple.root", "RECREATE");
TNtuple n ("tntuple", "My ntuple", "Time:En:dEdx"
TRandom3 r; r.SetSeed ();
for (int 1=0; i<100; i++) {
time = r.Rndm() * 20.;
energy = r.Rndm() * 30.;
dEdx = r.Rndm() * 0.5;
n.Fill (time, energy, dEdX);

}

n.Write() ;
return 0;

) ;

51

http://root.cern.ch/doc/master/classTNtuple.html
http://root.cern.ch/doc/master/classTNtupleD.html
https://www.fuw.edu.pl/~kpias/ctnp/TNtuple_example.C

® Merging data from ROOT files with the same structure

If we need to analyse a series of files with TTree that has the same structure, we can of course
make a loop: open i-th file, connect the tree and branches, analyse data, and close that file.
However, if we store the resulting histograms in a common output file,

one often has to switch back and forth the gDirectory.

There is an alternative: meraing the input data.

P TChain. Object being effectively a batch of consecutive TTree objects in specified files.
Let’'s assume that every input file has a TTree called “T".

@® Create the TChalin: TChain myChain ("T");

@ Add subsequent files: myChain.Add ("filel.root");
myChain.Add ("file2.root");

myChain.Add ("file3.root");

® Since now we use the myChain object, as if it was the common input tree.

B The hadd executable, runnable from prompt :

> hadd data merged.root data 1l.root data 2.root
(or: data *.root)

Caution: the maximum size of resulting file is set to 100 GB.
For bigger data there is a TFileMerger class. One can use this macro.

52

https://root.cern.ch/how/how-use-chains-lists-files
https://root.cern.ch/how/how-merge-histogram-files
https://root.cern.ch/doc/master/classTFileMerger.html
https://www.fuw.edu.pl/~kpias/ctnp/ttree_merger.C

TTree cont. Handling the TVectorN {N = 2, 3} | TLorentzVector object in an event:

P Storage: P Readout:
int‘TTree_TVector‘() { int‘TTree_TVector_read‘() {
' TVector3 v3; ‘ "TVector3 v3;
_TVector3* pv3 = &v3; | TVector3* pv3 = &v3; |
" TLorentzVector vL; ‘TLorentzVector vL;
_TLorentzVector* pvL = &vL; | TLorentzVector* pvL = &vL; |
TFile file ("TTree TVector.root", "recreate"); TFile £ ("TTree TVector.root");
TTree* ttree = new TTree ("ttree", "ttree"); TTree* ttree = (TTree*) f.Get ("ttree");
ttree->Branch ("v3", "TVector3" , &pv3); ttree->SetBranchAddress ("v3", [&pv3));
ttree->Branch ("vL", TTLorentzVector", &vab; ttree->SetBranchAddress ("vL", | &pvLl))
TRandom3 r; r.SetSeed (0); for (int evt=0; evt < ttree->GetEntries(); evt++)
{
for (int evt = 0; evt < 100; evt++) ttree->GetEvent (evt):;
{ , ,
v3j’SetXYz (r.Rndm(), r.Rndm(), r.Rndm()):; cout << "[" << evt << "]: ["
vL\SetXYZT/(r.Rndm(), r.Rndm (), << fixed << setprecision (3) <<
' ~ r.Rndm(), r.Rndm()); << v3[0] <<" : "<< v3[1] << " "
ttree->Fill () ; << v3[2] << M"IM << "\t";
}
ttree->Write () ; cout << "[" << vL[0] << " : " << VvL[1]
<< " " < VL[2] <" " << vL[3]
file.Close () ; << "]\n";
return 0; }
} f.Close();
return 0;
}

Notice: Methods of TVvector3 and TLorentzVector classes work. E.g.: tree->Draw ("v3.Mag()") 3
5

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://root.cern.ch/doc/master/classTVector2.html
https://root.cern.ch/doc/master/classTVector3.html
https://root.cern.ch/doc/master/classTLorentzVector.html
https://www.fuw.edu.pl/~kpias/ctnp/TTree_TVector_read.C
https://www.fuw.edu.pl/~kpias/ctnp/TTree_TVector.C

TTree cont. Events with variable number of particles (the simplest way)
P Storage: P Readout:
1nt‘TTree EventManyPartlcles‘() { int‘TTree_EventManyParticles_read‘() {

"Int t Npart;
\Int_t det [500];

for (int ievt=0; ievt < 100 ; ievt++)

{

Npart = r.Integer(6);

cout << "Event " << ievt

ipart++)

for (int ipart=0; ipart<Npart;

{

(24) ;
* 20.;
w 30, ¢

det [ipart] = r.Integer
time [ipart] = r.Rndm()
energy[ipart] = r.Rndm()
cout << setw(1l0) << det [ipart]
<< setw(l2) << time [ipart]
<< setw(1l2) << energyl[ipart]
}
t.Fill () ;
}
t.Write ()
return 0;

3}

Float t energy[500] , time[500];

TFile £ ("manyparticles.root", "RECREATE");
TTree t ("tree", "My tree") ;

t.Branch ("Npart",| &Npart, "Npart/I");
t.Branch ("Det" ,|det , "det[Npart]/I") ;|
t.Branch ("Time" , time , "time[Npart]/F");
t.Branch ("En" , energy, "energy|[Npart]/F")
TRandom3 r; r.SetSeed ();

<< " has " << Npart << " particles.\n";

<< endl;

Int t Npart;

Int t det[500];

Float t energy[500] , time[500];

TFile f ("manyparticles.root", "READ");

TTree* t = (TTree*) f£.Get ("tree");

t->SetBranchAddress ("Npart", | &Npart|);

t->SetBranchAddress ("Det" , det)
) ;
);

(
t->SetBranchAddress ("Time" , time ;
t->SetBranchAddress ("En" , enerqgy);
cout << "* This tree has "
<< t->GetEntries () << " entries.\n\n";

for (int ievt=0; ievt<t->GetEntries(); ievt++)

{
t->GetEntry (ievt);
cout << "* Event " << ievt
<< " has " << Npart << " particles:\n";

for (int ipart=0; ipart<Npart; ipart++)
{
cout << setw(l0) << det [ipart]

<< setw(1l2) << time [ipart]

<< setw(l2) << energyl[ipart] << endl;

}
}

return 0;

}

Drawback:

it's necessary to predefine the dimension limit (here: 500). Dynamic memory allocation does not work.

54

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://www.fuw.edu.pl/~kpias/ctnp/TTree_EventManyParticles.C
https://www.fuw.edu.pl/~kpias/ctnp/TTree_EventManyParticles_read.C

TTree cont. Trees with user-defined objects

> Branch: Object { Det (int) , Time (float) , Energy (float) }

P The implementation recipes changed throughout ROOT versions.
Method suggested for ROOT 5,6 : via ACLIC mechanism. Below — demonstrator code for a minimal object.

1. Create a header file myClass.h 2. Create the class source code myClass.cxx :

#ifndef myClass
#define myClass

$include "TObject.n" #include <iostream.h>

#include <myClass.h>

class myClass : public TObject { without
public: ClassImp (myClass) <« e
Int t det; // det
Double t ToF; // ToF // Implementations of our other methods

Double t Energy; // Energy

myClass () { det
ToF

0;
0.; Energy = 0.; }

// Declarations of our other methods

ClassDef (myClass,l) // My simple class
i e

#endif \\\\\\\NnhQUt
semicolon
— Class must inherit after TObject.
— It must contain the () constructor.
— ClassDef and ClassImp are the preprocessor macros, which paste here the additional builtin methods,

e.g. enabling the storage of objectina TTree (::Streamer) or creating the documentation.

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
http://root.cern.ch/root/html/guides/users-guide/AddingaClass.html#adding-a-class-with-aclic
https://www.fuw.edu.pl/~kpias/ctnp/myClass.h
https://www.fuw.edu.pl/~kpias/ctnp/myClass.cxx

TTree cont. Trees with user-defined objects

3. Encoding the TTree, which for every event
stores 1 object of myClass class.

#ifdef CINT

felse Enables
#include "myClass.h" = both RO_OT
#endif 5/6 versions

int’TTree myObject‘()
{ /7

if (!TClass::GetDict ("myClass"))
gROOT->ProcessLine (".L myClass.cxx+")A

(TRandomB r; r.SetSeed
‘myClass* myObj =

()

new myClass

0;:)

TFile f ("myobjs.root", "recreate");
TTree* t = new TTree ("tree", "My Treg");
' t->Branch ("myObj", &myObj, 8000, 0); |

for (int evt = 0; evt < 100; evt++) {
myObj—->det = r.Integer (24) ;
myObj->ToF = r.Rndm() * 20. ;
myObj->Energy = r.Rndm() * 30. ;

t->Fill () ;
}
t->Write () ;
t->Print ()
f.Close();
return O;

R

.

4

The .L command will create 2 files on the current path:
- myClass cxx.so (compiled object — shared library)

4. Encoding the readout of such a TTree.

#include "myClass.h"

int‘TTree_myObject_read‘()
{
myClass* myObj =

new myClass ;}

TFile £ ("myobjs.root");
TTree* t = (TTree*) f£.Get ("tree");
t->SetBranchAddress ("myObj", &myOb7j) ;

cout << "This tree has "
<< t->GetEntries () << " events.\n";
for (int evt=0; evt < t->GetEntries(); evt++)
{
t->GetEntry (evt);
cout << "[Event " << evt << "] : "
<< setw(4) << myObj->det
<< setw(1l2) << myObj->ToF
<< setw (12) << myObj->Energy
<< " J\n";
}
f.Close () ;

return 0;

}

— myClass cxx.d (“dependencies”; information for ROOT)

56

https://www.fuw.edu.pl/~kpias/nkfj/TTree_myObject.C
http://root.cern.ch/root/html/guides/users-guide/AddingaClass.html#adding-a-class-with-aclic
https://www.fuw.edu.pl/~kpias/nkfj/TTree_myObject_read.C

TTree cont. Collection (array) of objects (of the same class) stored in a TTree event

>\ Branch: Collection ofobjects:

» Branch: Collection of objects

> In order to encode such a structure, we'll use the object of TClonesArray class.
It is an array of objects of the same class. These objects must inherit after TObject .

A created TClonesArray is given the default initial size: 1000 objects.
Once we insert an element at higher position, the enlargement of dimension is done automatically.

I Nb. ROOT features several kinds of arrays for objects (so-called Collections).

E.g., within TOrdCollection one can store objects of different classes (inheriting after TObject) .

P On the next slides: exemplary codes that save and read such a “structure” .

57

https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuideChapters/AddingaClass.pdf
http://root.cern.ch/doc/master/classTClonesArray.html
https://root.cern.ch/doc/master/classTObject.html
https://root.cern.ch/doc/master/classTOrdCollection.html

TTree cont.
Collection of objects of the same class

> Exemplary code to store the
TCloneArrays in the TTree entries:

— Create the TClonesArray object,
giving the name of class of elements.

Creating also the pointer to TClassArray. ¢ >
If we don’t set the size, the default
size will be 1000 elements. .
If we overfull, the array will resize.

— In branch’s definition we give the o
pointer to the pointer of TClassArray.

— Cleaning the array ~—

o~ >»

— Creating a new object of myClass class
will automatically store it in the array
at a given position.

#ifdef CINT _
#else

#include "myClass.h"
#endif

int TTree TClonesArray ()

{
if (!TClass::GetDict ("myClass"))
gROOT->ProcessLine (".L myClass.cxxt+");

TFile £ ("clonesarray.root", "recreate");

{TClonesArray* myArrayPtr = new TClonesArray

("myClass")f

myClass* myObjectPtr;

TTree* t = new TTree ("tree", "My Tree");
t->Branch ("ObjClones", |&myArrayPtr , 256000, 0);
TRandom3 r; r.SetSeed();
fqr (int evt=0; evt<1l00; evt++) {

 myArrayPtr->Clear () ; |

int Npart = rand() % 6;

cout << "Event " << evt << " has "

<< Npart << " particles. \n";
for (int iPart = 0; iPart < Npart; iPart++)
{
myObjectPtr = (myClass¥*)
myArrayPtr->ConstructedAt (iPart);

‘myObjectPtr->det = r.Integer (24);
myObjectPtr->ToF = r.Rndm() ;
myObjectPtr->Energy = r.Rndm() ;
}
t->Fill () ;
}
t->Print (); t->Write();
f.Close();

return 0;

58

https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuideChapters/AddingaClass.pdf
https://www.fuw.edu.pl/~kpias/ctnp/TTree_TClonesArray.C

TTree cont. Collection of objects (of the same class) stored in a TTree event

= Exemplary code to read out the
arrays of objects from TTree entries:

Create 1X TClonesArray
through pointer.

We connect to a branch,
giving the pointer to the pointer
to the TClonesArray object.

Clearing array before event readout
If we get the event,
the TClonesArray object

is filled automatically.

Iteration over array elements.

- >

#include "myClass.h"

int‘TTree_TClonesArray_read ()

{
TFile £

("clonesarray.root");

TClonesArray* myArrayPtr =

new TClonesArray ("myClass");:

TTree* t = (TTree*) f.Get ("tree"x; \
t->SetBranchAddress ("ObjClones",L&myArrayPtr});

myClass* myObjPtr;

for (int evt = 0 ; evt < t->GetEntries () ; evt++)
{
myArrayPtr->Clear(); |
t—>GetEvent/(evt);
int Npart = myArrayPtr->GetEntries() |;
cout << "\nEvent " << evt << " has "
<< Npart << " particles: \n";
for (int iPart = 0; iPart < Npart; iPart++)
{
myObjPtr = (myClass*) myArrayPtr->At (iPart); |
cout << " [" << setw (2) << myObjPtr->det
<< ": " <K setw (9) << myObjPtr->ToF
<< " " << setw (9) << myObjPtr->Energy << "
}
}
f.Close () ;

return 0;

]

\n";

59

https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuideChapters/AddingaClass.pdf
https://www.fuw.edu.pl/~kpias/ctnp/TTree_TClonesArray_read.C

Finding the root of function

P ROOT contains numerical algorythms,
borrowed from the GSL library.
In script we’ll consider 2 of them.

We start the root search by deciding
if it's enough that method uses only the

function (e.g. bisection), or a derivative
is needed (e.g.. Newton).

We write function (+ derivative if needed) «—

We put function (+derivative if needed)
into a special object called “wrapper”.

We create the RootFinder tool,

and set the type of algorythm.

Here we use: bhisection and Newton.
Full set of methods is available here.

We link the tool and the functions

[—

® We evaluate the root finder.

® Aresultis given by Root () method.

#include <Math/RootFinderAlgorithms
#include <Math/RootFinder.h>
#include <Math/Functor.h>

.h>

using namespace ROOT: :Math;

double myfunc (double x) {
return 3*x - 10;

}

double myfunc deriv (double x) {
return 3 ;

}

void macro_RootFinderz()
{
FunctorlD f (
RootFinder k
k.SetFunction
k.Solve ()
cout << "Root via bisection:
<< endl;

&myfunc) ;
(RootFinder::kGSL BISECTION)
(f/ :I-/ 10) ;

" << k.Root ()

GradFunctorlD g (&myfunc ,

k.SetMethod (RootFinder::kGSL NEWTON) ;

k.SetFunction (g , 4.);

k.Solve ();

cout << "Root via Newton
<< endl;

" << k.Root ()

&¢myfunc deriv);

.
14

60

https://root.cern.ch/doc/master/group__NumAlgo.html
https://www.gnu.org/software/gsl/doc/html/interp.html?highlight=interpolation
https://www.fuw.edu.pl/~kpias/ctnp/macro_RootFinder.C
https://root.cern.ch/doc/master/classROOT_1_1Math_1_1RootFinder.html
https://root.cern.ch/doc/master/group__RootFinders.html

Interpolation between points

P Available tool:
ROOT::Math::Interpolator,
borrowed from the GSL library.

P Algorithm steps:

@O Store your data points in
double* Oor vector<double> arrays

@ Create the Interpolator object,
giving the interpolation type:

KLINEAR
kPOLYNOMIAL
kCSPLINE
kCSPLINE_PERIODIC
KAKIMA
kKAKIMA_PERIODIC

O O O O O O

® Pass your data using setbata method

@ Values of interpolation function are
available immediately via Eval method

20—

D R

void macro interpolation ()

{

float xmin = -3, xmax = 2.5;
Int t Ndata = 10;
double xi[Ndata], yi[Ndata];

TF1* funPoly = new TF1 ("fp",
"[O]H+[1]*x+[2]*x"2+[3]*x"3", xmin, xmax):;
funPoly->SetParameters (1, -1.5, 1, 1);

for (int 1 = 0; 1 < Ndata; i++) {

xi[i]= 1 * (xmax - xmin) / (Npts-1) + xmin;
yi[i]= funPoly->Eval (xi[i])

}

ROOT: :Math::Interpolator inter (Ndata ,
ROOT: :Math::Interpolation: : kPOLYNOMIAL) ;

inter.SetData (Npts, xi, vyi);

int Nprobes = 100;
double Xint [Nprobes], Yint [Nprobes];

for (int i = 0; i < Nprobes; ++i) {
Xint[i] = i* (xmax-xmin)/ (Nprob-1) +xmin;
Yint[i] = inter.Eval (Xprob[i]);

}

TGraph* gf = new TGraph (Npts, xi, vyi);
gf->Draw ("AP");

TGraph* gi = new TGraph (Nprob, Xprob, Yinter);
gi->Draw ("SAME L") ;

61

https://root.cern.ch/function-interpolation
https://root.cern.ch/root/html/ROOT__Math__Interpolator.html
https://www.gnu.org/software/gsl/doc/html/interp.html?highlight=interpolation
https://www.fuw.edu.pl/~kpias/ctnp/macro_interpolation.C

Compilation of standalone C++ code with ROOT functionality

Necessary steps

It should be a “decent”, compilable code.
E.g. should contain the main function.

In the code we have to include all the headers
corresponding to used ROOT objects, e.g.:

#include "TH1F.h"

If we use graphics, we should add the
TRint graphical interface. In order to do that,

o include the TRint.h header

o Declare the main function with the input arguments:
int main (int argc, char* argv][])

o In the main function we create the TRint object
TRint myRint ("myRint", &argc, argv);

Compilation with “typical” tools — via :

g+t+ code.C "root-config --cflags --libs’

In case of extra libraries, we add them at the end:

-1MathMore for Root::Math

-1Spectrum for TSpectrum, -1TMVA for TMVA

Exemplary code in C++ : fit of TF1 to TGraph
We compile it as above. =

 Cstandalone fitTGraphErrors.C |

#include "TF1l.h"
#include "TGraphErrors.h"
#include "TMath.h"

#include "TRint.h"
#include "TCanvas.h"

// graphics interface

using namespace std;

Double t myFun (Double t* xarg, Double t* par)

{
Double t x = xarg[0] , result = 0.;

for (int st=0; st<=3; st++)
result += par[st] * TMath::Power (x, st);

return result;

}

int main
{
TRint myRint ("myRint", &argc, argv);
TCanvas* canl = new TCanvas ("canl",
"canl", 600, 400);

(int argc, char* argvl])

TGraphErrors gr ("dataPoints.txt");
gr.SetTitle ();

TF1l fun ("fun", myFun , -3, 5, 4);
fun.SetParameters (-1. , 1. , -6. , 1.);
gr.Fit (&fun , "");

gr.Draw ("AP");

canl->Update () ;
cin.ignore () ;
return 0;

62

https://root.cern.ch/doc/master/classTRint.html
https://www.fuw.edu.pl/~kpias/ctnp/Cstandalone_fitTGraphErrors.C

Compilation through make

Within Linux, many applications are installed from
sources using make.

The aim of make is the compilation and, if needed,
linking of the package.

You can see the minimal make macro for the code —»

from previous page. It doesn’t perform linking,
but has options for linking to ROOT libraries ready.

makefile

CC=g++
CFLAGS= root-config --cflags --libs"
LDFLAGS="root-config --glibs"
SOURCE=Cstandalone fitTGraphErrors.C
TARGET=Cviamake fitTGraphErrors
Cviamake fitTGraphErrors: $ (SOURCE)

S(CC) -o S$(TARGET) $(SOURCE) $ (CFLAGS)
clean:

rm -f ./*~ ./*.0 ./Cviamake fitTGraphErrors

Unification of code

Solutions are available for a common
code, which handles two variants
of launching:

@® as a compilable code
(eg. via g++ with ROOT flags)

@ as a macro in interactive session.

One of solutions is the usage of

#if defined preprocessor commands.
)

The demonstrator code shows also,

— how to handle the input arguments

— where to place #include headers.

#if defined CINT ||

defined @ CLING

int lmacro cprogram unifier‘(int InputValue = 123) {
cout << "\n Hello, I am being interpretted." << endl;

#else

#include "TMath.h"
#include <iostream>
#include <iomanip>
using namespace std;

int main (int argc, char* argv[]) {
cout << "\n Hello, I was compiled." << endl;
int InputValue = (argc > 1) ? atoi (argv([1l]) 123 ¢
#endif
cout << "\n Okay, and this is the common portion of code.";
cout << "\n TMath::Pi() = " << setprecision (18) << TMath::Pi();
cout << "\n Input value (default: 123) = " << InputValue;
cout << "\n\n";

return O;

63

https://www.fuw.edu.pl/~kpias/ctnp/makefile
https://www.fuw.edu.pl/~kpias/nkfj/macro_cprogram_unifier.C
https://www.fuw.edu.pl/~kpias/ctnp/macro_cprogram_unifier.C

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63

