

1

Introduction to ROOT

ROOT: object-based development environment dedicated to data analysis, and based mostly on C++
www : root.cern

Modes of work
● Interactive (terminal session)

 ▻ online-interpretted C++ commands
 ▻ macros (interpretted or compiled), two possible modes:

– simplified: just commands in a file
 – within functions ; more conformity to C++ standards required

● As compilable C++ code : using Root libraries

Includes:
● Graphical windows, histograms, scatter plots (with uncertainties)
● Mathematical function (including special functions) : drawing, evaluation, pulling from distributions
● Fitting of functions to data
● Data bases ("trees") , Data filtering ("cuts")
● Pulling from random distributions
● Collections of objects, I/O with storage of objects
● Numerical algorythms, analysis of spectra
● DataFrame – type programming
● Machine learning ("TMVA")
● GUI building, Multithreading

krzysztof.piasecki@fuw.edu.pl

http://root.cern/

2

Installation:

● Download: root.cern/install/#download-a-pre-compiled-binary-distribution
 sources or binaries for: Linux, Windows, Mac

● Linux: Go to your login script (~/.bash_login or ~/.bashrc) and add line:

 . [your_ROOT_path]/bin/thisroot.sh

● Quantum jump: Versions ≤ 5.34 vs Versions ≥ 6.00
 "cint" interpretter "cling" interpretter

 Syntax tolerance Syntax rigor
 Standard: ~ C++98 Standard ~ C++11

Guides, manuals, help

● Help TOC: root.cern/get_started/
● Manual: root.cern/manual/
● Primer: root.cern/primer/
● Slides indico.cern.ch/event/395198/attachments/791523/1084984/ROOT_Summer_Student_Tutorial_2015.pdf
● Forum: root-forum.cern.ch
● Documentation: root.cern/doc/master/

Notice: class names in this script are clickable and point to relevant ROOT help pages :)

http://root.cern/install/
http://root.cern/install/#download-a-pre-compiled-binary-distribution
http://root.cern/get_started/
http://root.cern/manual/
http://root.cern/primer/
http://indico.cern.ch/event/395198/attachments/791523/1084984/ROOT_Summer_Student_Tutorial_2015.pdf
http://root-forum.cern.ch/
http://root.cern/doc/master/

3

MODE I: Interactive session ROOT as a calculator and interpretter of C++ commands

● Launching: root
 root -l (without ‘welcome’ splash screen)
 root -b (without graphics, but faster instead)

● Inside session. Quitting: .q
 Shell command: .![command]

 Executing a macro: .x
 Forced exit: .qqqqqqqq

root [0] sqrt (1.23)
(const double)1.10905365064094164e+00
root [1] double x = pow (sin(0.5),2.) + pow (cos(0.5),2.)
root [2] x
(double)1.00000000000000000e+00
root [3] cout << x << endl
1
(class ostream)139768533438272

Data types

 C++ types: int, double, char text[100], string napis,
 vector<double> vec, double* d, int& i, ...

 Internal (ROOT) types, as overlays on the C++ types:

Int_t , Float_t , Double_t, Char_t, Bool_t

Motivation: making the code machine-indepent

List of machine-independent types:
 root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#machine-independent-types

http://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#machine-independent-types

4

TMath Mathematical class (Notice: class names are links to help sites)

– Functions (TMath::Sqrt(x) , Power, SinH, Exp, Gaus, Factorial, ...)
– Mathematical and physical constants (TMath::Pi(), E, RadToDeg, DegToRad, Hbar, K)
– Operations (TMath::Abs(x) , Min, Max, ...)
– Special functions (TMath::BesselI (x) , BesselJ/K/Y , Erf, ...)

root [0] TMath::Power (TMath::Pi() , 1./3.)
(Double_t)1.46459188756152314e+00

NoticeNotice: The ROOT::Math namespace containes even more functions and algorithms

 Autocompletion – intelligent handy help

root [1] TMath::Pi
Pi
PiOver2
PiOver4
root [1] TMath::Pi(

Double_t Pi()
root [1] TMath::Power(

LongDouble_t Power(LongDouble_t x, LongDouble_t y)
LongDouble_t Power(LongDouble_t x, Long64_t y)
LongDouble_t Power(Long64_t x, Long64_t y)
Double_t Power(Double_t x, Double_t y)
Double_t Power(Double_t x, Int_t y)

https://root.cern.ch/doc/master/namespaceTMath.html
https://root.cern.ch/doc/v608/namespaceROOT_1_1Math.html

5

TCanvas Graphical window

root[0] new TCanvas  “quick” creation of graphical window with generic properties
(class TCanvas*)0x2c1e5e0  Notice: automatic name assignment (“c1”)
root[1] c1->Set

root[1] c1->SetTitle ("HelloCanvas")
root[2] c1->GetTitle ()
(const char* 0x1557339)"HelloCanvas"
root[3] c1->ls ()
root[4] c1->Close()
root[5] TCanvas c2  We create a new window. Before we used pointer. Now – object.
root[6] c2.GetName()
(const char* 0x16632b1)"c1_n2"  Title is different than variable name!
root[7] TCanvas c3 (

Multitude of constructors
TCanvas TCanvas(Bool_t build = kTRUE)
TCanvas TCanvas(const char* name, const char* title = "", Int_t form = 1)
TCanvas TCanvas(const char* name, const char* title, Int_t ww, Int_t wh)
TCanvas TCanvas(const char* name, const char* title, Int_t wtopx, Int_t wtopy,
Int_t ww, Int_t wh)
TCanvas TCanvas(const char* name, Int_t ww, Int_t wh, Int_t winid)
root[7] TCanvas c3 ("c3canvas", "My canvas", 600, 400);

root[8] c3Canvas Name as identifier or replacement of C++ name
(class TCanvas*)0x16964d0
root[9] TCanvas* c4 = new TCanvas ("c4canv", "2nd Canvas", 600, 400);

Proper name
of object

(within C++).

”Name”
(identifier)

(within ROOT)

Displayed title
(just a c-string)

Dynamic allocation (we then use a pointer to an object)

https://root.cern.ch/doc/master/classTCanvas.html

6

TFn n = {1, 2, 3} Functions

root[0] TF1 f1 ("f1", "sin(x)/x", 0. , 10.);  function with given formula and range
root[1] f1.Draw ()
root[2] f1.SetRange (-10. , 10.)
root[3] f1.Draw ()
root[4] f1.Eval (1.) or f1(1.)
root[5] f1.Integral (0. , TMath::Pi())
root[6] f1.GetMinimum (1e-10 , 5.)

root[7] TF1 f2 ("f2", "[0]*sin([1]*x)/x", 0., 10.);  parameter-dependent function
root[8] f2.SetParameter (0, 0.5);
root[9] f2.SetParameter (1, 2.);
root[10] f2.Draw ("same")

root[11] f2.SetLineColor (2);

root[12] f1.SetLineWidth (2);

root[13] f1.SetLineStyle (2);

root[14] f1.Draw ("same");

Color numbering scheme for the generic palette

Numbering scheme of line styles

https://root.cern.ch/doc/master/classTF1.html
https://root.cern.ch/doc/master/classTF1.html
https://root.cern.ch/doc/master/classTF2.html
https://root.cern.ch/doc/master/classTF3.html

7

root[15] TF2 f3 ("f3", "exp(-(x-0.5)*(x-0.5)/0.05 - (y-0.5)*(y-0.5)/0.05) ");
root[16] f3.Draw ()
root[17] f3.Draw ("lego2")
root[18] f3.Draw ("colz")  Graphical options, e.g.: "surf", "surf2", "cont"

 root.cern/doc/master/classTHistPainter.html#HP01

(NoticeNotice: more methods of declaring functions are available in C++ macros.)

Saving a graphical window in a file:

root[10] c1.Print ("picture.ext");

 ext = {gif, jpg, pdf, png, (e)ps, svg, root, tex, tiff, xml, xpm, json cxx}

 Caution: lossy -vs- lossless formats of graphics storage

How to create multipage pdf (and ps) files.

Imagine that we have 3 × TF1 to plot (separately) on TCanvas c1.

root[1] f1.Draw() ; c1->Print ("MyPortfolio.pdf(");
root[2] f2.Draw() ; c1->Print ("MyPortfolio.pdf");
root[3] f3.Draw() ; c1->Print ("MyPortfolio.pdf)");

Clearing the TCanvas :

root[4] c1->Clear ();

http://root.cern/doc/master/classTHistPainter.html#HP01
https://root.cern/doc/master/classTPad.html#ae44fee7e51d69841c1dce4b899eee14d

8

TGraph Scatter plots of data points
 (and related ones: TGraphErrors / TGraphAsymmErrors / TGraphBentErrors)

In a Linux console: wget www.fuw.edu.pl/~kpias/ctnp/tgraph.dat

root[1] TGraph g ("tgraph.dat")
root[2] g.Draw ("AP")

root[3] g.SetMarkerSize (0.8)
root[4] g.SetMarkerStyle (20)
root[5] g.Draw ("AP")

You can select which columns to read:

wget www.fuw.edu.pl/~kpias/ctnp/tgraph2.dat

root[1] TGraph g ("tgraph2.dat", "%*s %lg %*lg %lg");
root[2] g.Draw ("AP");

root[3] TGraph gr2(
(…)
TGraph TGraph (Int_t n, const Double_t* x, const Double_t* y)
TGraph TGraph (Int_t n, const Float_t* x, const Float_t* y)
TGraph TGraph (Int_t n, const Int_t* x, const Int_t* y)
(…)
root[4] Double_t x[] = {0.05, 0.95, 1.95, 2.05, 3.05, 3.95};
root[5] Double_t y[] = {1.00, 1.11, 1.29, 1.41, 1.52, 1.59};
root[6] TGraph gr2 (6, x, y);
root[7] gr2.SetMarkerSize (0.8) ; gr2.SetMarkerStyle (24)
root[8] gr2.SetMinimum (0.) ; gr2.SetMaximum (5.5);
root[9] gr2.GetXaxis()->SetLimits (0, 5);
root[10] gr2.Draw ("AP")
root[11] gr.Draw ("sameP")

Marker styles

%lg : read column as double precision
%*lg: column type is double; omit it.
%*s : column type is string; omit it.

http://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#graphs
https://root.cern.ch/doc/master/classTGraphErrors.html
https://root.cern.ch/doc/master/classTGraphAsymmErrors.html
https://root.cern.ch/doc/master/classTGraphBentErrors.html

9

TRandomN , N = { 1, 2, 3 } Pseudorandom numbers

 Usage of TRandom3 is advised in the documentation. Calling time ~ 45 ns. Period ~ 106000 .

 root[1] TRandom3 r;
 root[2] r.SetSeed ();  initializing the seed of pseudorandom generator

 TRandomN have predefined distributions, e.g. :

Binomial (ntot, prob) BreitWigner (mean, gamma)
Exp (tau) Integer (imax)
Landau (mean, sigma) Gaus (mean, sigma)
Rndm ()  returns double ∈ [0, 1) Poisson (mean)

 root[3] r.Rndm ()
 (Double_t) 9.997417e-01
 root[4] r.Gaus (15.3, 0.02)
 (Double_t) 1.531998e+01

 Moreover, you can pull numbers from distribution defined by the user in form of TF1 object, e.g. :

 root[5] TF1 fun1 ("fun1", "x*x*exp(-x/0.5)" , 0., 5.) ;
 root[6] fun1.GetRandom ()
 (Double_t) 6.916067e-01

 You can also pull a number from an user-defined histogram (description of histograms – soon).

http://root.cern.ch/doc/master/classTRandom.html
https://root.cern.ch/doc/master/classTRandom1.html
https://root.cern.ch/doc/master/classTRandom2.html
https://root.cern.ch/doc/master/classTRandom3.html
https://root.cern.ch/doc/master/classTRandom3.html

10

TVectorN , N = {2, 3} 2-3 dimensional vectors

root[1] TVector3 v1 (1, 2, 3) , v2, v3;
root[2] v2.SetXYZ (-1,-2,-3);

 v1.Mag() Mag2() Theta() CosTheta() Phi() Perp()  basic properties

root[3] v3 = -3. * (v1 + v2); v3 -= 2. * v1; v3.Print()
root[4] v1.Cross(v2) .Print();  cross product
root[5] v1.Dot (v3.Orthogonal ())  dot product; perpendicular vector

 v1.Angle (v2); v1.RotateX/Y/Z (angle); v3.Rotate (angle, v2)

TLorentzVector Four-vector

Has 4 dimensions, that you can use either as [X, Y, Z, T] or [PX , PY , PZ , E] . (Caution: sequence!)
It is implemented as TVector3 ⊕ double .

root[1] TLorentzVector L (1, 2, 3, 4); cout << L.T() << endl;

 L.Pt() P() 
 L.M() 
 L.Beta() Gamma() 

root[2] TLorentzVector v4piplus (0., 0., 1., sqrt(1*1 + 0.1395*0.1395));
root[3] v4piplus.Rapidity(); 

root[4] TVector3 beta (0., 0., 0.7);
root[5] v4piplus.Boost (beta);  Apply Lorentz transform by “beta” velocity vector
root[5] v4piplus.BoostVector().Z()  Retrieve velocity vector, then its Z th component

±√spacetime interval / ±available energy / ±invariant mass
β = ±|P⃗|/E , γ = 1/√1 − β2

√P x2 + P y
2 , |P⃗|

y = 0.5 ⋅ ln [(E−pz)/(E+p z)]

https://root.cern.ch/doc/master/classTVector3.html
https://root.cern.ch/doc/master/classTVector2.html
https://root.cern.ch/doc/master/classTVector2.html
http://root.cern.ch/doc/master/classTLorentzVector.html

11

THdt, d = {1, 2, 3} Histograms
 t = {C, S, I, F, D}

Dimension of histogram
Type of variables that stores the bin content

root[1] TH1F h1 ("hist1", "My histogram", 100, -10., 10.);
root[2] h1.Fill (5.23);
root[3] h1.Draw ();
root[4] h1.Fill (3.21, 0.1); h1.Draw ();
root[5] h1.Draw ("hist");

root[6] TRandom3 r; r.SetSeed ();
root[7] for (int i=0; i < 1e5 ; i++) h1.Fill (r.Gaus());
root[8] h1.Draw ();

Type C S I F D
Max bin content

Max precision
28 - 1 216 - 1 231 - 1

7 digits 14 digits

Fill the bin containing x = 5.23, with weight of 1.
Fill the bin containing x = 3.21, with weight of 0.1.

Drawing options:

For TH1_ : "same", "e", "e0 … 4", "hist", …
For TH2_ : "box", "col", "cont", "lego", "surf" (+ other options, e.g. "lego2")

 root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#draw-options

Options can be combined, e.g. h.Draw ("colz") , h.Draw ("e1same")

 No of bins From To

http://root.cern.ch/root/HowtoHistogram.html
https://root.cern.ch/doc/master/classTH1.html
https://root.cern.ch/doc/master/classTH2.html
https://root.cern.ch/doc/master/classTH3.html
http://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#draw-options

12

Histograms, cont.
root[1] h1.Set

root[1] h1.SetTitle ("New title")
root[3] h1.SetLineColor (…) / SetLineStyle (…) / SetLineWidth (…)

root[4] h1.SetStats (0 / 1);

 h1.SetNdivisions (code , " Axis ");

Code = N1 + 100*N2 + 10000*N3 , where:

 N1: (expected) number of leading divisions
 N2: (expected) number of 2. rank divisions
 N3: (expected) number of 3. rank divisions

(Don’t) plot stats (for details, see description of TStyle)

Summing up the counts:

root[5] h1.Integral (

Double_t Integral (Int_t binx1, Int_t binx2,
 Option_t* option = "")

We have a problem. How to find the bin index that corresponds to a given x ?  FindBin (x) method.

root[6] h1.Integral (h1.FindBin (-3.) , h1.FindBin (3.))

Caution: by default this method does not integrate (Σ h
i
· Δ) but sums up the contents of bins (Σ hi).

To calculate the integral, you have to add "width" as an option.

13

root[4] h1.Get

root[4] cout << h1.GetMean() << '\t' << h1.GetRMS() << '\t' << h1.GetNbinsX();

You can retrieve the maximal/minimal bin-content of histogram, and the index of a bin that contains it:

root[5] cout << h1.GetMaximum() << '\t' << h1.GetMaximumBin() << endl;
7834 50

To define the range of Y axis drawn, by default ROOT sets up minimum to 0 and maximum to ≈ 10% above
the max bin-content. You can change this range using SetMaximum/SetMinimum (value) :

root[2] h1.SetMinimum (-20) ; h1.SetMaximum (200)

Side effect: since now h1.GetMaximum() will show 200.

Histograms, cont.

14

Histograms, cont.

 Access to histogram data.

root[1] cout << h1.GetBinContent (41) <<'\t'<< h1.GetBinError (41) << endl;
11 3.31662

root[2] Float_t* hy = h1.GetArray ()

 Unfortunately, there is no method directly extracting the array of uncertainties. Instead you can:

root[3] Float_t* hyerr = new Float_t [h1.GetNbinsX() + 2]
root[4] for (int i=0; i<= h1.GetNbinsX()+1; i++) hyerr[i] = h1.GetBinError(i)

 You can also extract the array of positions of centers of bins:

root[5] Float_t* hx = new Float_t [h1.GetNbinsX() + 2]
root[6] for (int i=0; i<= h1.GetNbinsX()+1; i++) hx[i] = h1.GetBinCenter (i)

 To create a separate data structure for uncertainties, issue this before filling the histogram:

root[7] h1.Sumw2 ()

As you can see, uncertainties are Poissonian

Bin numbering convention: [1 … h1.GetNbinsX()]

Will return the array with bin contents
Attention for the numbering: hy[1] … hy[N]
In hy[0] , hy[N+1] the underflow / overflow are stored

15

Histograms, cont.

Operations on histograms (Addition, multiplication, division)

root[1] TH1F::Add (

Bool_t Add (TF1* h1, Double_t c1 = 1, Option_t* option = "")
Bool_t Add (const TH1* h, const TH1* h2, Double_t c1 = 1, Double_t c2 = 1)
Bool_t Add (const TH1* h1, Double_t c1 = 1)

root[2] TH1F h2 (h1); h2.Reset()

root[3] for (int i=0; i < 1e5 ; i++) h2.Fill (r.Gaus (5., 1.));

root[4] h2.Draw(); h2.Add (&h1 , 0.1); h2.Draw ("e1")

root[5] TH1F h3 (h1); h3.Reset()

root[6] for (int i=1; i<1000; i++) h3.Fill (-9.99 + 0.02*i) ;
root[7] h2.Multiply (&h3)
root[8] h2.Draw ("e1")

root[9] TH1F h4 (h1); h4.Reset ()
root[10] h4.Divide (&h2 , &h3)
root[11] h4.Draw ("e1")

 this = c1*h + c2*h2

 this += c1*h1

New histogram: such as h1, but empty.

Filling with
Gauss distrib.

We are
adding

Uniform
distribution

We are multiplying

Uncertainties follow the propagation formula

We are dividing

Uncertainty arise, not cancel out, as expected

16

2-Dim Histograms

root[0] TRandom3 r; r.SetSeed ();
root[1] TH2F h2d ("h2d", "My histogram", 100, 0., 10., 100, 0., 10.);
root[2] for (int i=0; i<1e5; i++) h2d.Fill (r.Gaus(3,1.5) , r.Gaus(5,0.5));
root[3] h2d.Draw ("colz")

root[4] cout << h2d.GetNbinsX() << '\t' << h2d.GetNbinsY() << endl;
100 100

● Access to axis range, number of bins and bin width (for any axis) : object of TAxis class

root[5] TAxis* ax = h2d.GetXaxis () , * ay = h2d.GetYaxis ();
root[6] cout << ax->GetXmin() <<' '<< ax->GetXmax() <<' '<< ax->GetNbins()<< endl;
root[7] cout << ay->GetXmin() <<' '<< ay->GetXmax() <<' '<< ay->GetNbins()<< endl;
root[8] cout << ax->GetBinWidth(1) <<' '<< ay->GetBinWidth(1) << endl;

No of bins From To

X AXIS Y AXIS

No of bins From To

https://root.cern.ch/doc/master/classTH2.html
https://root.cern.ch/doc/master/classTAxis.html

17

Histograms cont.
 2dim 1dim projections (into X axis or Y axis)

On the canvas, position your mouse inside the histogram. Rt Click + select SetShowProjectionX.
Still on the 2D histogram, slide your mouse up/down. In a separate window you’ll see the projections 

● How to get a projection as an object of TH1_ class :

root[8] h2d.ProjectionX ("h2dpx", ay->FindBin(4.5) , ay->FindBin(5.5))
h2dpx(class TH1D *) 0x3660560
root[9] h2dpx->Draw()

root[10] h2d.ProjectionY ("h2dpy", ax->FindBin(2.5) , ax->FindBin(3.5))
root[11] h2dpy->Draw()

https://root.cern.ch/doc/master/classTH2.html#a974ece9e7d260f92df00a39dba14e5b0
https://root.cern.ch/doc/master/classTH2.html#a04917d549aa802ce2489692da74348f8
https://root.cern.ch/doc/master/classTH2.html#a974ece9e7d260f92df00a39dba14e5b0
https://root.cern.ch/doc/master/classTH2.html#a04917d549aa802ce2489692da74348f8

18

Basic graphics
 Points/Markers (TMarker), Lines (TLine) , Arrows (TArrow)

 Boxes (TBox) , Circles/Ellipses (TEllipse)

 Inscriptions (TText) , also in the LaTeX style (TLatex)

Exemplary help
  Manual: Graphics chapter
  User guide: Graphics chapter

Basic objects
[1] TLine (Lines)

root[1] TH2F h2d ("h2d", "My Histo", 10, 0., 10., 10, 0., 10.); h2d.Draw()
root[2] TLine l1 (0., 0., 1., 1.) ; l1.Draw ()
root[3] TLine l2 (0., 0., 1., 1.) ; l2.SetNDC (kTRUE) ; l2.Draw("same")

NDC (Normalized Device Coordinates) : SetNDC (0)  Coordinates according to actual plot
 SetNDC (1)  as fractions of window dimensions

root[4] l2.SetLineColor (2); l2.SetLineStyle (2); l2.SetLineWidth (3)

Color numbering scheme in generic palette Numbering of line styles

https://root.cern.ch/doc/master/classTMarker.html
https://root.cern.ch/doc/master/classTLine.html
https://root.cern.ch/doc/master/classTArrow.html
https://root.cern.ch/doc/master/classTBox.html
https://root.cern.ch/doc/master/classTEllipse.html
https://root.cern.ch/doc/master/classTText.html
https://root.cern.ch/doc/master/classTLatex.html
https://root.cern/manual/graphics/
https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#graphics-and-the-graphical-user-interface
https://root.cern.ch/doc/master/classTLine.html

19

Basic graphics, cont.

Basic objects

[2] TMarker (Points / markers)

root[1] TMarker m (3., 8., 31)
root[2] m.SetMarkerColor (4);
root[3] m.SetMarkerSize (2.0);
root[4] m.Draw()

 Numbering scheme of markers

[3] TBox (Rectangles)

root[1] TBox b (5., 2., 8., 3.);
root[2] b.SetLine……….
root[3] b.SetFillColor (4)
root[4] b.SetFillStyle (3014);

 Conventions of defining the filling style:

 root.cern/doc/master/classTAttFill.html#ATTFILL2 Numbering scheme of some hatch styles

https://root.cern.ch/doc/master/classTMarker.html
https://root.cern.ch/doc/master/classTBox.html
https://root.cern/doc/master/classTAttFill.html#ATTFILL2

20

 Basic graphics, cont.

[4] TEllipse (Circles / ellipses)

root[1] TEllipse e (

TEllipse TEllipse (Double_t x1, Double_t y1,
 Double_t r1, Double_t r2 = 0,
 Double_t phimin = 0, Double_t phimax = 360,
 Double_t theta = 0)

 Range of angles of ellipse fragment : [PhiMin, PhiMax]
 Angle of figure rotation : Theta

E.g.:
root[1] TEllipse e (5, 5, 4, 2, 0, 270, 45)

Line and filling – specific attributes work here.

[5] TText (Basic text)

root[1] TText t (0.5, 0.5, "Hello World!");
root[2] t.SetTextColor (2)
root[3] t.SetTextFont (43)
root[4] t.SetTextSize (40)
root[5] t.SetTextAngle(45)
root[6] t.Draw()

 Numbering scheme of font styles.
 Units digit = degree of precision

https://root.cern.ch/doc/master/classTEllipse.html
https://root.cern.ch/doc/master/classTText.html

21

Basic graphics, cont.

[6] TLatex (advanced text: mathematical expressions, etc.)

Helpful summary: root.cern/doc/master/classTLatex.html

root[1] TLatex l;
root[2] l.SetNDC (1);
root[3] l.SetTextSize (0.06);
root[4] l.SetTextAngle (45.);
root[5] l.SetTextColor (4);
root[6] l.DrawLatex (0.5, 0.6, "E^{2} = m^{2} + p^{2}")

 A few basic rules:

^{…} : top index #frac{Numerator}{Denom.} : Horizontal fraction
_{…} : bottom intex #sqrt{x} , #sqrt{N}{x} : root of degree 2 and higher
#bf{…} : bold font #splitline{Above}{Below} : two lines, one above the other
#it{…} : italic font #color[4]{Blue} : local change of color
#vec{…} : vector #font[12]{Font} : local change of font size
#(){…} : large brackets #scale[1.2]{Larger} : local rescaling of font size

root[7] l.DrawLatex (0.5,0.6,"#gamma_{cm} = #frac{1}{#sqrt{1-#beta^{2}_{cm}}}")

 Some examples from the ROOT site:

A single object acts as a text processor

https://root.cern.ch/doc/master/classTLatex.html
https://root.cern/doc/master/classTLatex.html

22

 Basic graphics, cont.
[6] TLatex class, cont.

#bar{a} :

#vec{a} :

Codes for Greek symbols (preceded by #) Upper diacritic signs:

https://root.cern.ch/doc/master/classTLatex.html

23

 Basic graphics, cont.

[6] TLatex class, cont.

Mathematical and other special symbols

https://root.cern.ch/doc/master/classTLatex.html

24

TPad graphical area placed in a subregion of TCanvas (or another TPad)

Let’s try it out:
root[0] TCanvas c1;
root[1] TPad p1 ("p1", "", 0.0, 0.0, 0.7, 0.6, 18);

 Range coordinates
 ► order: [xLow, yLow] [xUp, yUp]

 ► given in NDC units.

root[2] p1.Draw ();
root[3] p1.cd();
root[4] TF1 fun ("fun", "x*x", -2, 2);
root[5] fun.Draw();

We can also divide the TCanvas automatically into matrix of TPad’s:
root[6] c1.Divide (Ncols , Nrows)
root[7] c1.ls()

 We can see that: ► the created TPads “belong” to c1,
► they were automatically given names: c1_1, c1_2, ...

To activate one TPad belonging to a given TCanvas , we call it by its number:

root[8] c1->cd ([1 .. Nc × Nr]);

Caution: Changing back to c1 and drawing something there – deletes all the above TPads.

We always have at disposal the pointer to the active window: gPad

root[9] gPad->Print ("tpad_plot.gif");

pad colour
(default: white)

https://root.cern/doc/master/classTPad.html

25

Symbols {r m e n} are the basic 4 of 9 attributes to display. They can take values {0, 1} , sometimes 2.

Basic properties:

Link to the full list.

TStyle Object managing the graphical style

root[0] gStyle->Set

root[0] gStyle->SetLabelSize (0.07, "XY");
root[1] gStyle->SetLabelOffset (0.01, "Y");
root[2] gStyle->SetNdivisions (2 , "X");
root[3] TH1F h1 ("h1", "", 10, -5, 5);
root[4] h1.Draw ();

 In ROOT session, the gStyle object of TStyle class is available. It keeps settings of graphics style.
 The settings concern e.g. the attributes of canvas, lines, markers, stats.
 Access is through the getters and setters.

 However, if we first define a histogram, and change the style later on,
 we need to tell this histogram to update the style:

root[5] gStyle->SetNdivisions (8 , "X");
root[6] h1.Draw ();
root[7] h1.UseCurrentStyle ();
root[8] h1.Draw ();

r = (0) 1: (do not) display RMS
m = (0) 1: (do not) display the mean
e = (0) 1: (do not) display the count numbers
n = (0) 1: (do not) display the histogram name

 Important: TStyle allows to modify the contents of displayed statistics:

root[9] gStyle->SetOptStat ({rmen});

https://root.cern/doc/master/classTPaveStats.html
https://root.cern/doc/master/classTStyle.html

26

TFile communication with files in .root format (root.cern/root/htmldoc/guides/users-guide/InputOutput.html

 root.cern/doc/master/classTFile.html)
ROOT’s native format allows to store every object of class recognized by ROOT.
It should be then retrievable as an object.

Let’s first learn the basics.

We’ll create the .root file, put some histogram there and close this file.

root[0] TFile f ("myfile.root", "RECREATE");
root[1] TH1F h ("myhisto", "My Histo's Title", 10, -5., 5.);
root[2] TRandom3 r; for (int i = 0 ; i < 1e5 ; i++) h.Fill (r.Gaus());
root[3] h.Write ();
root[4] f.Close ();
root[5] .! ls -og myfile.root

Let’s leave and reenter ROOT. Now, we’ll open the written file for reading, extract the histo and draw it.

root[0] TFile f ("myfile.root", "READ");
root[1] f.ls();
root[2] TH1F* hread = (TH1F*) f.Get ("myhisto");

It’s important to understand the command above. TFile::Get extracts from the file
the address of the required object, but returns it in the TObject* type (base class of the others).
It is on our shoulders to cast it onto the relevant type (here, TH1F*).

An alternative way to write it:
root[3] TH1F* hread2 = f.Get<TH1F> ("myhisto");

root[4] hread->Draw ();
root[5] f.Close ();

Writing object to file

Opening file for reading
Listing file’s content

https://root.cern.ch/doc/master/classTFile.html
https://root.cern/root/htmldoc/guides/users-guide/InputOutput.html
http://root.cern/doc/master/classTFile.html

27

TFile (cont.)
Let’s have a closer look and first check if a given file exists:
root[0] cout << gSystem->AccessPathName ("myfile.root");
false

The .root file can be open in different modes, depending if you want to only read, or write (and how) :
root[1] TFile f ("myfile.root", "RECREATE");

options: "NEW" "RECREATE" "UPDATE" "READ"

You may want to check if the file was opened successfully:
root[2] if (f.IsOpen () == true) cout << "File open.\n";

Now let’s see the file length and print out its table of contents:
Root[3] .! ls -og myfile.root
root[4] f.ls();

Okay. Now we’re going to create some histogram:
root[5] TH1F h ("h", "myhisto", 10, 0., 10.);
root[6] f.ls();
root[7] .! ls -og myfile.root

Hm, despite size didn’t change, myhisto is listed. We’ll explain it later. Let’s store myhisto in the file:
root[8] h.Write ();
root[9] .! ls -og myfile.root
root[10] f.ls();

Now, file size increased and myhisto has a "KEY".
Nb. while writing, we can also give the object another name inside that file. Finally, let’s close the file.
root[11] h.Write ("h_copy");
root[12] f.ls ();
root[13] f.Close();

h linked, but not saved yet.

h linked and saved.

h written under the new name

false if file exists

https://root.cern.ch/doc/master/classTFile.html

28

I/O cont.
 ROOT session with file connection:

$ root -l myfile.root
root[0]
Attaching file myfile.root as _file0...
(class TFile *) 0x1943c70
root[1] _file0->ls();

 Setting up the work directory on a disk:

root[2] gSystem->pwd ()
(const char *) "/home/krzysztof/didact/informatyka/nuctools"
root[3] gSystem->cd ("../")
root[4] gSystem->pwd()
(const char *) "/home/krzysztof/didact/informatyka/"

 TBrowser: the object-oriented browser

root[5] new TBrowser

In some Root versions the TBrowser will appear
as embedded in the web browser.
You may like it or not.
If you want to prevent it, launch Root this way:

$ root --web=off

Pointer to object of TFile class

https://root.cern.ch/doc/master/classTSystem.html
https://root.cern.ch/accessing-ttree-tbrowser

29

gDirectory Hierarchy of objects in Root files and memory

 ROOT maintains a structure of directories (in memory, as well as inside .root files) .

Main directory in memory

We see we’ve moved to a file

Rint:/

TH1F

TF1

MyFolder

(memory)

TGraph

TF1

myfile.root:/

TGraph

TCanvas

(root file)

TH2D

TEllipse

MyFolder

$ root -l
root[0] gDirectory->pwd () or .pwd
Current directory: Rint:/

root[1] TFile f1 ("myfile.root"); cout << gDirectory->GetPath () << endl;
Myfile.root:/

root[2] gDirectory->ls () or .ls
TFile** myfile.root
 TFile* myfile.root
 KEY: TH1F h;1 myhisto

http://root.cern.ch/input-and-output#The-Current-Directory

30

gDirectory Hierarchy of objects in Root files and memory

 Creating subdirectories (in memory or inside a .root file)

root[3] TFile f2 ("newfile.root", "RECREATE")
root[4] gDirectory->mkdir ("folder1");
root[5] gDirectory->cd ("folder1");
root[6] gDirectory->pwd ()
newfile.root:/folder1

root[7] TH1F h ("myhisto", "", 10, -5., 5); h.Write();
root[8] .ls
TDirectoryFile* folder1 folder1
 OBJ: TH1F myhisto : 0 at: 0x7f06ee3ce000
 KEY: TH1F myhisto;1

root[8] gDirectory->cd ("..") ;
root[9] gDirectory->rmdir ("folder1")
root[10] f2.Close ();

root[11] cout << gDirectory->GetPath() << endl;
Rint:/

root[12] f1.cd() ; gDirectory->pwd();
Myfile.root:/

root[13] gDirectory->cd ("Rint:/") ;
root[14] gDirectory->pwd();
Rint:/

New directory in file

myhisto saved in folder1

Back to main folder in file

cd() as method of TFile

way to get back to memory

http://root.cern.ch/input-and-output#The-Current-Directory

31

MACROS : C++/ROOT codes in a file
Handy mode: macro_noname.C Full mode (functions):

After execution, in an interactive session:

○ Exists: h1 (object) and h2 (pointer)
○ One can call: h1, h2, hist1, hist2

{
 TH1F h1 ("hist1", "", 50, -5., 5.);
 TH1F* h2 = new TH1F
 ("hist2", "", 50, -5., 5.);

 TRandom3 r; r.SetSeed ();

 for (int i=0 ; i<1e5 ; i++) {
 h1.Fill (r.Gaus());
 h2->Fill (r.Gaus());
 }
 h1.Draw();
}

int macro_function () {
 TH1F h1 ("hist1", "", 50, -5., 5.);
 TH1F* h2 = new TH1F
 ("hist2", "", 50, -5., 5.);

 TRandom3 r; r.SetSeed ();

 for (int i=0 ; i<1e5 ; i++) {
 h1.Fill (r.Gaus());
 h2->Fill (r.Gaus());
 }

//TCanvas can1 ("c1", "", 640, 480);

 h1.Draw();

//can1.Update();
//cin.ignore();

 return 0;
}

After execution, in an interactive session:

○ h1 (object) not present (also via hist1)
○ one cannot call h2
○ possible to call hist2
Additional commands needed to capture graphics

Name the same
as filename

http://root.cern.ch/working-macros
https://www.fuw.edu.pl/~kpias/ctnp/macro_noname.C
https://www.fuw.edu.pl/~kpias/ctnp/macro_function.C

32

MACROS cont.

● Input arguments of function:

$ root -b "macro_inputarg.C(12.34)"

● Calling from session:

root[0] .x macro_inputarg.C(-12.)

► A macro can contain more functions.

► The starting function (equivalent of main)
 MUST have the same name as a filename

► A macro can be loaded first and run later:

root[0] .L macro_inputarg.C
root[1] macro_inputarg (123) ;
Hello world! 123

● One can compile the macro in the session. But the code must contain #include< … >

root[0] .L macro_inputarg.C+

root[1] macro_inputarg (-123.45);

double macro_inputarg (double x = 0)
{
 cout << "Hello world! " << x << endl;
 return x;
}

Will create file macro_inputarg_C.so

Double_t W (Double_t x) {
 return 3*pow(x,2) - 1.5*x + 4.;
}

int macro_giveW (double x) {
 cout << "W(x) = " << W(x) << endl;
 return 0;
}

No space between .C and (...)

This way you can quickly check the integrity of C++ code.

http://root.cern.ch/working-macros
https://www.fuw.edu.pl/~kpias/ctnp/macro_inputarg.C
https://www.fuw.edu.pl/~kpias/ctnp/macro_giveW.C

33

MACROS cont. Some goodies:

 You can include some macro A.C into yours, and further use its functions by simply:

 #include "A.C"

 You can also achieve this, also interactively, by:

 gROOT->LoadMacro ("A.C");

 ... and then execute a given function by:

 gROOT->ProcessLine (" myFunction() ")

 You can also execute the whole macro (while sitting inside your macro)

 gROOT->Macro ("A.C")

 Also, you can execute a Linux command:

root[0] gSystem->Exec ("date")
Tue, Nov 5, 09:55:01 CET

 and if a Linux command prints something out, you can retrieve it with:

root[5] TString datenow = gSystem->GetFromPipe ("date")

http://root.cern.ch/working-macros

34

TLegend Legend for a plot

 Each plot can be accompanied with a legend (one or more).
 An object of TLegend class needs to be linked with the plotted: functions, histograms or graphs.
 We decide, what inscription and symbol we assign (line, marker, rectangle, point with uncertainty).

int macro_TLegend () {
 TH1F* h = new TH1F ("h", "Example", 200, -14, 10);
 h->FillRandom ("gaus", 30000);
 h->SetFillColor (18);
 h->Draw ();

 TF1* f= new TF1("f", "1000*abs(sin(x)/x)",-14,14);
 f->SetLineColor (kBlue);
 f->Draw ("same");

 Int_t i = 0;
 Double_t x[50], y[50], ex[50], ey[50];
 for (Double_t xval = -9; xval <= 9; xval++, i++){
 x[i] = xval;
 y[i] = 1000 * sin ((xval + 9)/10) ;
 ex[i] = 0.3;
 ey[i] = (xval+9) * 3 ;
 }
 TGraphErrors* gr = new TGraphErrors (i,x,y,ex,ey);
 gr->SetName ("gr");
 gr->SetMarkerStyle (21);
 gr->SetMarkerColor (kRed);
 gr->Draw ("P");

 TLegend* leg = new TLegend (0.1, 0.6, 0.48, 0.9);
 leg->SetHeader ("The Legend Title");
 leg->AddEntry (h ,"Histogram filled rand", "f");
 leg->AddEntry ("f" ,"abs(#frac{sin(x)}{x})", "l");
 leg->AddEntry ("gr","Graph with errors" , "lep");
 leg->AddEntry ((TObject*)0, "Just some text", "");
 leg->Draw ();
 return 0;
}

This macro draws histogram, function and TGraph.
Next, it creates the legend for them
and modifies the symbols’ attributes in the legend.

Creating legend within certain canvas area
Legend’s title

Entries corresponding to objects.
Options: f = filled box, l = line

 p = marker e = error bar

In case if text only
Legend must be displayed by command

https://root.cern/doc/master/classTLegend.html
https://www.fuw.edu.pl/~kpias/ctnp/macro_TLegend.C

35

Good plot in ROOT. This macro is a proposition of the way of creating a readable and clear plot.

int macro_GoodPlotExample () {
 gStyle->SetOptStat (0);
 gStyle->SetLegendBorderSize (0);
 gStyle->SetLegendTextSize (0.055);
 gStyle->SetLabelSize (0.055, "XY");
 gStyle->SetNdivisions (505 , "XY");
 gStyle->SetTextFont (42);

{… creation of histogram, curve and TGraphErrors …}

 h1->GetXaxis()->SetTitle ("Position (#mum)");
 h1->GetXaxis()->CenterTitle (true);
 h1->GetXaxis()->SetTitleOffset (1.25);
 h1->GetXaxis()->SetTitleSize(0.055);
{… same for Y axis …}

 TCanvas* c1 = new TCanvas ("c1", "", 800, 600);
 c1->SetGrid (0, 0);
 c1->SetTopMargin (0.05);
 c1->SetBottomMargin (0.15);
 c1->SetRightMargin (0.04);
 c1->SetLeftMargin (0.16);

 h1->Draw ();
 f1->Draw ("same");
 gr->Draw ("P");

 TLegend* leg = new TLegend
 (0.21, 0.63, 0.5, 0.86, "", "nbNDC");
 leg->AddEntry (h1 , " Experiment" , "f");
 leg->AddEntry ("f1", " Model" , "l");
 leg->AddEntry ("gr", " Efficiency" , "lep");
 leg->Draw ();

 TLatex l;
 l.SetNDC (1);
 l.SetTextSize (0.055);
 l.SetTextFont (42);
 l.DrawLatex (0.82, 0.845, "(A)");
}

Use coordinates of TCanvas
Font size
Font style: Helvetica, precision: 2
Print the text

S
ty

le
 s

e
tt

in
g

s Do not plot stats
Legend: no frame
Legend: font size
Font size of axis values
Number of divisions of X and Y axis
Set font to Helvetica and precision 2

M
a

rg
in

s
Te

xt

o
ve

rla
y

L
e

g
e

n
d

A
xi

s
T

itl
e

https://www.fuw.edu.pl/~kpias/ctnp/macro_GoodPlotExample.C

36

MACROS : C++ functions used by TFn objects

Through “Inline Expression” : Through function with parameters:

Double_t W (Double_t x) {
 return pow(x,3) - 6.*pow(x,2)
 + x - 1.;
}

int macro_funcInline ()
{
 TCanvas c1 ("c1", "", 640, 480);
 TF1 f1 ("f1", "W(x)", -10., 10.);
 f1.Draw();
 c1.Update();
 cin.ignore();
 return 0;
}

Double_t myFun (Double_t *xarg,
 Double_t *par)
{
 Double_t x = xarg[0] , result = 0.;

 for (int deg = 0 ; deg <= 3 ; deg++)
 result += par[deg]
 * TMath::Power (x, deg);
 return result;
}

int macro_funcFunc ()
{
 TCanvas c1 ("c1", "", 640, 480);
 TF1 f1 ("myfun1", myFun, -3, 5, 4);
 f1.SetParameters (-1., 1., -6., 1.);
 f1.Draw();
 c1.Update();
 cin.ignore();
 return 0;
}

Notice:

in myFun we can encode anything
e.g. if/else blocks or calls to other functions

http://root.cern.ch/working-macros
https://www.fuw.edu.pl/~kpias/ctnp/macro_funcInline.C
https://www.fuw.edu.pl/~kpias/ctnp/macro_funcFunc.C

37

Fitting of function to data points

Please download the test data: wget www.fuw.edu.pl/~kpias/ctnp/dataPoints.txt

Exemplary result of (successful) fit:

void macro_FitTGraphErrors () {
 TCanvas* c1 = new TCanvas ("c1");
 TGraphErrors gr ("dataPoints.txt");
 gr.SetTitle ();
 gr.Draw("AP");

 TF1 fun ("fun", myFun , -3, 5, 4);
 fun.SetParameters (-1. , 1. , -6. , 1.);
 gr.Fit (&fun);

 c1->Update();
 cin.ignore();
}

Graph with
experimental data

Model function
(with parameters - !)

Fit command.
MINUIT package
(from CERN)

χ2 Status of fit (✓)

Status of
covariance matrix
(✓)

Found values
of parameters

Values Uncertainties

http://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#fitting-histograms
https://www.fuw.edu.pl/~kpias/ctnp/macro_FitTGraphErrors.C

38

 Fitting of function to data points cont.

 Setting up the initial parameters:

 fun1.SetParameter (index, value) ;
 fun1.SetParameters (value, value, … , value);
 fun1.FixParameter (index, value) ;

 fun1.SetParLimits (index, min, max) ;
 gr.Fit (&fun , "");

 Getting the values of found parameters:

 fun1.GetParameter (index) ;
 fun1.GetParError (index) ;
 fun1.GetChisquare ();
 fun1.GetNDF ();

 Usage of built-in (predefined) functions [full list here]

 gr.Fit ("pol3"); polN f(x) = p0 + p1*x + p2*x2 + …
expo f(x) = exp (p0+p1*x)
gaus f(x) = p0*exp (-0.5*((x-p1)/p2)ˆ2)
gausn (Normal Distribution)
crystalball (Crystal Ball function for “Gaussian with low tail”)
breitwigner (Breit-Wigner distribution of particle’s mass)
landau (Landau distribution of energy losses)
chebN (Chebyshev polynomial of degree N)

CautionCaution: for a predefined function, if we narrow down the range of parameters (or fix some value(s)),
 we have to add "B" into the option of Fit method.

Set parameter’s value
Set all the parameters
Fix a given parameter

Set the fitting range

Get parameter’s value
Get parameter’s error
Get χ2 value
Get number of d.o.f.

http://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#fitting-histograms
https://root.cern/doc/master/classTFormula.html#FormulaFuncs
https://root.cern/doc/v634/group__PdfFunc.html#ga8f46b655fa77cceb930ddb11e4e12196
https://root.cern/doc/v634/group__PdfFunc.html#ga674162ea051bf687243264996d046f73
https://root.cern/doc/master/namespaceTMath.html#a656690875991a17d35e8a514f37f35d9
https://root.cern/doc/v634/namespaceROOT_1_1Math_1_1Chebyshev.html

39

 Fitting of function to data points cont.

 The Fit method works also for histograms, including 2, 3 – dimensional ones. Full form of method:

TFitResultPtr Fit(TF1* f1, Option_t* option = "",
 Option_t* goption = "",

Double_t xmin = 0, Double_t xmax = 0)

 Fitting options (selection of more practical ones; for details see this link)

only for histograms (THdf) :

I (Integral) Average the function over each bin (for strongly changing functions)
L (LogLikelihood) Use the Log Likelihood method (instead of χ2).

For histograms and graphs (TGraph_____) :

M (iMprove) Obtain the more precise fit results
E (Error) Obtain uncertainties more exactly with help of Minuit’s MINOS package.
B (Bound) For predefined functions: if range of parameter values is limited
R (Range) Fit in range, in which the function is defined
0 Do not plot the fitted function
V (Verbose) Verbose mode
Q (Quiet) Quiet mode

 In case of fitting the 2 (3) – dimensional function to the 2 (3) – dimensional function:
 ○ The fitting range should be specified in the constructor of the TFn object
 ○ Add "R" to the fitting options of the Fit method.
 ○ If you specify xmin and/or xmax in arguments of Fit method, these values work only for X axis

Fitting options
Drawing options
Range on X axis

http://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#fitting-histograms
http://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#fitting-histograms

40

void macro_FitErrorMatrix () {
 TCanvas* c1 = new TCanvas ("c1");
 TGraphErrors* gr = new TGraphErrors("dataPoints.txt");
 gr->SetTitle ();
 gr->Draw("AP");

 TF1* fun = new TF1 ("fun", myFun , -3, 5, 4);
 fun->SetParameters (-1. , 1. , -6. , 1.);

 TFitResultPtr fitRes = gr->Fit (&fun , "S");
 TMatrixDSym cov = fitRes->GetCovarianceMatrix();

 for (int r = 0; r < cov.GetNrows () ; r++) {
 for (int c = 0; c < cov.GetNcols() ; c++)
 cout << setw(16) << cov[r][c] ;

 cout << endl;
 }

 c1->Update();
 cin.ignore();
}

 Fitting of function to data points cont.

 Extraction of covariance matrix (goal: linear correlations between fitted parameters)

TFitResultPtr
stores the fit results

TMatrixDsym
symmetric matrix of
double elements

GetCovariance...
returns the covariance
matrix

 To access the fit status inside the code (string)

 #include "TMinuit.h"
 string myFitStatus = gMinuit->fCstatu ;

At the beginning of the code
Getting the status (string)

https://www.fuw.edu.pl/~kpias/ctnp/macro_FitErrorMatrix.C
http://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#fitting-histograms

41

TTree Trees (data bases)

Eg. experiment measuring particles in detectors: i-th particle with {N
i
 T

i
 E

i
} from a detector (detectors)

Eg. experiment measuring tracks of particles in drift chambers : set of p
x
, p

y
, p

z
, ΔE

i
 from a chamber

Possible data structures for an event behind ROOT tools:

Event 0

Event 1

Event N

A simple data scheme

Det (int) , Time (float) , Energy (float)

Det (int) , Time (float) , Energy (float)

Det (int) , Time (float) , Energy (float)

Event

Event Branch: Object { Det (int) , Time (float) , Energy (float) }

(easier)

(more advanced)

Let’s first look at variant 1.

Branch: Det (int)

Branch: Time (float)

Branch: Energy (float)

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html

42

TTree Simplest way to create a tree from data in a text file

➀ Download data. They are in 3 columns (int, float, float)
 wget www.fuw.edu.pl/~kpias/ctnp/MyExpData.txt

➁ Let’s open the TTree object and fill the database with data using the ReadFile method:

11 16.832 10.8703
11 20.4335 8.65938
 7 0.634218 8.03354
 1 21.3472 19.6014
...

Declaration of tree

ReadFile fills the tree
from txt file

Print displays stats

Scan prints out data

Draw : en-time plot
We set up filter on det

Write saves tree in file

int TTree_ReadFile ()
{
 TFile f ("simplest_tree.root", "RECREATE");

 TTree t ("mytree" , "Tree of data for my analysis");

 t.ReadFile ("MyExpData.txt", "det/I:energy/F:time/F");

 t.Print ();

 t.Scan ("det:energy:time");

 t.Draw ("energy:time" , "det >= 7");

 t.Write ();

 return 0;
}

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
http://www.fuw.edu.pl/~kpias/ctnp/MyExpData.txt
https://root.cern.ch/doc/master/classTTree.html#a9c8da1fbc68221b31c21e55bddf72ce7
https://www.fuw.edu.pl/~kpias/ctnp/TTree_ReadFile.C

43

TTree cont. Now we’ll design the tree by ourselves.

 Scheme “1 branch = 1 variable”

 Define the branch:

 t.Branch ("Name" ,
 &variable,
 "variable/F");

 Encoding the variable size:

 F : float , 4 bytes
 D : double , 8 bytes
 I : signed integer , 4 bytes
 i : unsigned integer, 4 bytes
 C : c-string
 B : signed integer , 1 byte
 b : unsigned integer, 1 byte
 S : signed integer , 2 bytes
 s : unsigned integer, 2 bytes
 L : signed integer , 8 bytes
 l : unsigned integer, 8 bytes
 O : bool , 1 bit

 Making an entry in the tree: t.Fill ()
 Writing the tree in a file: t.Write ()

int TTree_simple () {
 Int_t det;
 Float_t energy , time;

 TFile f ("simple.root", "RECREATE");
 TTree t ("tree", "My tree");
 t.Branch ("Det" , &det , "det/I");
 t.Branch ("En" , &energy, "energy/F");
 t.Branch ("Time", &time , "time/F");

 TRandom3 r; r.SetSeed ();
 for (int i = 0; i < 100; i++) {
 det = r.Integer (24);
 time = r.Rndm() * 20.;
 energy = r.Rndm() * 30.;
 t.Fill ();
 }
 t.Write ();
 return 0;
}

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://www.fuw.edu.pl/~kpias/ctnp/TTree_simple.C

44

TTree cont.

 Inspection of the tree in an interactive session

root -l simple.root
root[0] tree->Print ()
**
*Tree :tree : My tree *
*Entries : 100 : Total = 3169 bytes File Size = 1701 *
* : : Tree compression factor = 1.21 *
**
*Br 0 :Det : det/I *
*Entries : 100 : Total Size= 936 bytes File Size = 230 *
*Baskets : 1 : Basket Size= 32000 bytes Compression= 2.04 *
..
*Br 1 :En : energy/F *
*Entries : 100 : Total Size= 943 bytes File Size = 469 *
*Baskets : 1 : Basket Size= 32000 bytes Compression= 1.00 *
..
*Br 2 :Time : time/F *
*Entries : 100 : Total Size= 941 bytes File Size = 471 *
*Baskets : 1 : Basket Size= 32000 bytes Compression= 1.00 *
..

root[1] tree->Show (10)
======> EVENT:10
 det = 10
 energy = 3.10897
 Time = 5.81155

root[2] tree->Scan ()
**
* Row * Det.Det.d * En.En.ene * Time.Time *
**
* 0 * 1 * 2.7607548 * 2.8281364 *
* 1 * 12 * 13.696406 * 2.2420666 *
* 2 * 12 * 21.884300 * 11.228475 *
* 3 * 11 * 10.673481 * 10.060612 *
* 4 * 17 * 16.964376 * 18.435609 *
* 5 * 5 * 9.2536840 * 7.2596163 *

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html

45

TTree cont.

 Plotting the histogram of a variable (variables, combination of variables, etc)

root[0] tree->Draw ("energy")

root[1] tree->Draw ("sqrt(energy)")

root[2] tree->Draw ("time:energy", "", "colz")

root[3] tree->Draw ("time:Entry$")

 Plotting the histogram of a variable with some filters (cuts) required

root[4] tree->Draw ("time", "det>14 && det<23")

 Projection of variables from a tree to a histogram

root[5] tree->Project (
Long64_t Project(const char* hname, const char* varexp, const char* selection
= "", Option_t* option = "", Long64_t nentries = 1000000000, Long64_t
firstentry = 0)

root[5] TH1F henergy ("henergy", "", 15, 0., 30.);
root[6] tree->Project ("henergy", "energy", "det<=10");
root[7] henergy.Draw ();

Caution: while projecting onto 2D histograms, an order in the varexp string is “first Y : then X”

 Cuts (TCut)

root[8] TCut cut1 ("det<=10") , cut2 = "det>=20" ;
root[9] henergy.Reset ();
root[10] tree->Project ("henergy", "energy", cut1 || cut2);
root[11] tree->Draw ("energy", cut1 && "Entry$ <= 50");

Example of function of variable

2-dimensional plot

Entry$ is a special keyword
 = entry number

One can combine
TCut with string

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
http://root.cern.ch/doc/master/classTCut.html

46

 Graphical cut performed on TH2 (TCutG)

$ wget www.fuw.edu.pl/~kpias/ctnp/auau_1.23AGeV_8dsts.root
$ root -l auau_1.23AGeV_8dsts.root

root[1] wars_tree->Draw ("dEdxToF:totmom", "totmom<1500 && dEdxToF<15.");

 From the menue of the TCanvas: View  Toolbar , then .
 By clicking mouse – mark the vertices of the polygon. Double click to finish.
③ A pointer to the TCutG object is available in the session: TCutG* CUTG .

root[2] wars_tree->Draw ("dEdxToF:totmom", "totmom<1500 && dEdxToF<15. && CUTG")
root[3] CUTG->Draw ("same")

By using the IsInside method we can examine if the pair of coordinates lies inside the contour, e.g.:

root[4] CUTG->IsInside (500, 7)

The cut object can be renamed, as well as stored in a root file:

root[5] CUTG->SetName ("mycutg");
root[6] TFile f ("mycutg.root" , "recreate"); mycutg->Write();

However, if we want to get it from a file and use as a tree selection, we first have to assign variables to axes:

$ nice root -l auau_1.23AGeV_8dsts.root
root[0] TFile filecut ("mycutg.root");
root[1] TCutG* cg1 = (TCutG*) filecut.Get ("mycutg");
root[2] cg1->SetVarX ("totmom"); cg1->SetVarY ("dEdxToF");
root[3] _file0->cd();
root[4] wars_tree->Draw ("dEdxToF:totmom","totmom<1500 && dEdxToF<15. && mycutg");

TTree cont.

https://root.cern.ch/doc/master/classTCutG.html
http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html

47

TTree cont. TTree cont.

 Trick for drawing from TTree into user-defined histogram

By default, for drawing ROOT creates a temporary histogram named htemp with predefined structure.
A trick to override these defaults is:

root[5] wars_tree->Draw ("X >> histName(nBins, Xmin, Xmax)")

which can be nicely generalized to 2-Dim :

root[5] wars_tree->Draw ("Y:X >> histName(nBinsX,Xmin,Xmax,nBinsY,Ymin,Ymax)")

 Quick TTree manipulation in ROOT macro, including functions on variables:

double mtm (double pt, double m) {
 return sqrt (pt*pt + m*m) - m;
}

int ttree_project_fun () {
 TFile* fin = new TFile ("auau_1.23AGeV_8dsts.root");
 TTree* tin = (TTree*) fin->Get ("wars_tree");
 TCut cSelectProtons ("mass>650 && mass<1200");

 tin->Draw (" mtm (pt,mass) " , cSelectProtons);

 return 0;
}

► if you need to draw a more complicated expression based on variables,
you can create a function as above – and use it in the Draw formula string.

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://www.fuw.edu.pl/~kpias/ctnp/ttree_project_fun.C

48

 Getting the TTree from the ROOT file + readout of data from TTree:

 Connect to the tree:

 TTree* t = (TTree*) f.Get ("tree");

 Connect the variables to the branches:

 t->SetBranchAddress ("name",&variable);

③ Get the number of entries:

 t->GetEntries();

④ Read the full event into the variables:

 t->GetEntry (i);

int TTree_simple_read () {
 Int_t det;
 Float_t energy , time;

 TFile f ("simple.root");
 TTree* t = (TTree*) f.Get ("tree");

 t->SetBranchAddress ("Det" , &det);
 t->SetBranchAddress ("En" , &energy);
 t->SetBranchAddress ("Time", &time);

 for (int i=0; i<t->GetEntries(); i++)
 {
 t->GetEntry (i);
 cout << setw(5) << det
 << setw(12) << time
 << setw(12) << energy << endl;
 }
 return 0;
}

 Status of branches

One can define, which branches should be analysed, and which ones – not. Before the event loop, one should issue:

TTree::SetBranchStatus ("branch", status); status: (0) / 1 = (in)active
 "branch" = "*" : (de)activation concerns all the branches

Notice: Deactivation of unnecessary branches shortens the analysis time (important for large data files!)

https://www.fuw.edu.pl/~kpias/ctnp/TTree_simple_read.C

49

 Creating new TTree from the old one

 Impose a cut on an original tree  create a resultant tree.

 TTree* NewTree = tree_original->CopyTree (" {some cut} ");

int TTree_cut_and_branch () {
 TFile fin ("simple.root");
 TTree* tree_in = (TTree*) fin.Get ("tree");

 TFile fout_cut ("simple_cut.root", "RECREATE");
 TTree* tree_cut = tree_in->CopyTree ("det < 10") ;
 tree_cut->Write();
 fout_cut.Close();

 tree_in->SetBranchStatus ("*", 0);
 tree_in->SetBranchStatus ("Time", 1);
 TFile fout_bran ("simple_bran.root", "RECREATE");
 TTree* tree_bran = tree_in->CloneTree();
 tree_bran->Write();
 fout_bran.Close();
}

 Select some branches from an original tree  create a resultant tree.

 tree_original->SetBranchStatus ("*", 0);
 tree_original->SetBranchStatus ("{selected branch}", 1);
 TTree* NewTree = tree_original->CloneTree();

 Caution: here, the new tree is connected to the old one.
 The solution above works e.g. if we just need to store the new tree in a file.

https://www.fuw.edu.pl/~kpias/ctnp/TTree_cut_and_branch.C

50

 Adding a Friend tree to your tree

If you have T1 and T2 trees with the same No. of entries, you can analyse them together “as one tree”.
The tool for that is T1.AddFriend (T2) .

You will not merge trees in a file (or memory), but effectively you can Draw, Scan, Project them together.

int TTree_AddFriend () {
 TFile* fin = new TFile ("simple_branch.root");

 TTree* t1 = fin->Get<TTree> ("tree_time"),
 * t2 = fin->Get<TTree> ("tree_energy");

 t1->AddFriend (t2) ;

 t1->Draw ("time:energy");
 return 0;

 }

https://www.fuw.edu.pl/~kpias/ctnp/TTree_AddFriend.C

51

TNtuple (TNtupleD) Simple trees composed of only floats (doubles)

Event 0

Even simpler data scheme (case of floats) :

▹ Variables are defined
 in the constructor.

▹ For every variable
 a branch is made.

▹ Filling is done by
 giving variable values

▹ Direct filling up to
 15 variables:

 Fill (var1, var2, …)

▹ … or via array:

 Fill (Float_t* x)

Time (float)
Energy (float)

dEdx (float)

Event 1

Time (float)
Energy (float)

Event N

Time (float)
Energy (float)

dEdx (float)

int TNtuple_example () {
 Float_t energy , time, dEdx;

 TFile f ("tntuple.root", "RECREATE");
 TNtuple n ("tntuple", "My ntuple", "Time:En:dEdx");

 TRandom3 r; r.SetSeed ();
 for (int i=0; i<100; i++) {
 time = r.Rndm() * 20.;
 energy = r.Rndm() * 30.;
 dEdx = r.Rndm() * 0.5;
 n.Fill (time, energy, dEdx);
 }
 n.Write();
 return 0;
}

dEdx (float)

http://root.cern.ch/doc/master/classTNtuple.html
http://root.cern.ch/doc/master/classTNtupleD.html
https://www.fuw.edu.pl/~kpias/ctnp/TNtuple_example.C

52

 TChain. Object being effectively a batch of consecutive TTree objects in specified files.
 Let’s assume that every input file has a TTree called “T”.

 Create the TChain: TChain myChain ("T");

 Add subsequent files: myChain.Add ("file1.root");
myChain.Add ("file2.root");
myChain.Add ("file3.root");

③ Since now we use the myChain object, as if it was the common input tree.

 The hadd executable, runnable from prompt :

 > hadd data_merged.root data_1.root data_2.root
 (or: data_*.root)

 CautionCaution: the maximum size of resulting file is set to 100 GB.
 For bigger data there is a TFileMerger class. One can use this macro.

 ● Merging data from ROOT files with the same structure

 If we need to analyse a series of files with TTree that has the same structure, we can of course
 make a loop: open i-th file, connect the tree and branches, analyse data, and close that file.
 However, if we store the resulting histograms in a common output file,
 one often has to switch back and forth the gDirectory.

 There is an alternative: merging the input data.

https://root.cern.ch/how/how-use-chains-lists-files
https://root.cern.ch/how/how-merge-histogram-files
https://root.cern.ch/doc/master/classTFileMerger.html
https://www.fuw.edu.pl/~kpias/ctnp/ttree_merger.C

53

TTree cont. Handling the TVectorN {N = 2, 3} / TLorentzVector object in an event:

 Storage:

int TTree_TVector_read () {

 TVector3 v3;
 TVector3* pv3 = &v3;

 TLorentzVector vL;
 TLorentzVector* pvL = &vL;

 TFile f ("TTree_TVector.root");

 TTree* ttree = (TTree*) f.Get ("ttree");
 ttree->SetBranchAddress ("v3", &pv3);
 ttree->SetBranchAddress ("vL", &pvL);

 for (int evt=0; evt < ttree->GetEntries(); evt++)
 {
 ttree->GetEvent (evt);

 cout << "[" << evt << "]: ["
 << fixed << setprecision (3) <<
 << v3[0] <<" : "<< v3[1] << " : "
 << v3[2] << "]" << "\t";

 cout << "[" << vL[0] << " : " << vL[1]
 << " : " << vL[2] << " : " << vL[3]
 << "]\n";
 }
 f.Close();

 return 0;
}

 Readout:

int TTree_TVector () {

 TVector3 v3;
 TVector3* pv3 = &v3;

 TLorentzVector vL;
 TLorentzVector* pvL = &vL;

 TFile file ("TTree_TVector.root", "recreate");

 TTree* ttree = new TTree ("ttree", "ttree");
 ttree->Branch ("v3", "TVector3" , &pv3);
 ttree->Branch ("vL", "TLorentzVector", &pvL);

 TRandom3 r; r.SetSeed (0);

 for (int evt = 0; evt < 100; evt++)
 {
 v3.SetXYZ (r.Rndm(), r.Rndm(), r.Rndm());
 vL.SetXYZT (r.Rndm(), r.Rndm(),
 r.Rndm(), r.Rndm());
 ttree->Fill();
 }
 ttree->Write();

 file.Close();
 return 0;
}

Notice: Methods of TVector3 and TLorentzVector classes work. E.g.: tree->Draw ("v3.Mag()")

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://root.cern.ch/doc/master/classTVector2.html
https://root.cern.ch/doc/master/classTVector3.html
https://root.cern.ch/doc/master/classTLorentzVector.html
https://www.fuw.edu.pl/~kpias/ctnp/TTree_TVector_read.C
https://www.fuw.edu.pl/~kpias/ctnp/TTree_TVector.C

54

TTree cont. Events with variable number of particles (the simplest way)

 Storage:

int TTree_EventManyParticles () {
 Int_t Npart;
 Int_t det[500];
 Float_t energy[500] , time[500];

 TFile f ("manyparticles.root", "RECREATE");
 TTree t ("tree", "My tree");
 t.Branch ("Npart", &Npart, "Npart/I");
 t.Branch ("Det" , det , "det[Npart]/I");
 t.Branch ("Time" , time , "time[Npart]/F");
 t.Branch ("En" , energy, "energy[Npart]/F");

 TRandom3 r; r.SetSeed ();
 for (int ievt=0; ievt < 100 ; ievt++)
 {
 Npart = r.Integer(6);
 cout << "Event " << ievt
 << " has " << Npart << " particles.\n";
 for (int ipart=0; ipart<Npart; ipart++)
 {
 det [ipart] = r.Integer (24);
 time [ipart] = r.Rndm() * 20.;
 energy[ipart] = r.Rndm() * 30.;
 cout << setw(10) << det [ipart]
 << setw(12) << time [ipart]
 << setw(12) << energy[ipart] << endl;
 }
 t.Fill ();
 }
 t.Write();
 return 0;
}

 Readout:

int TTree_EventManyParticles_read () {
 Int_t Npart;
 Int_t det[500];
 Float_t energy[500] , time[500];

 TFile f ("manyparticles.root", "READ");
 TTree* t = (TTree*) f.Get ("tree");
 t->SetBranchAddress ("Npart", &Npart);
 t->SetBranchAddress ("Det" , det);
 t->SetBranchAddress ("Time" , time);
 t->SetBranchAddress ("En" , energy);

 cout << "* This tree has "
 << t->GetEntries() << " entries.\n\n";

 for (int ievt=0; ievt<t->GetEntries(); ievt++)
 {
 t->GetEntry (ievt);
 cout << "* Event " << ievt
 << " has " << Npart << " particles:\n";

 for (int ipart=0; ipart<Npart; ipart++)
 {
 cout << setw(10) << det [ipart]
 << setw(12) << time [ipart]
 << setw(12) << energy[ipart] << endl;
 }
 }
 return 0;
}

Drawback: it’s necessary to predefine the dimension limit (here: 500). Dynamic memory allocation does not work.

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://www.fuw.edu.pl/~kpias/ctnp/TTree_EventManyParticles.C
https://www.fuw.edu.pl/~kpias/ctnp/TTree_EventManyParticles_read.C

55

TTree cont. Trees with user-defined objects

 The implementation recipes changed throughout ROOT versions.
 Method suggested for ROOT 5,6 : via ACLiC mechanism. Below – demonstrator code for a minimal object.

1. Create a header file myClass.h

#ifndef __myClass__
#define __myClass__
#include "TObject.h"

class myClass : public TObject {
 public:
 Int_t det; // det
 Double_t ToF; // ToF
 Double_t Energy; // Energy

 myClass() { det = 0;
 ToF = 0.; Energy = 0.; }

 // Declarations of our other methods

 ClassDef (myClass,1) // My simple class
};
#endif

  Class must inherit after TObject.
  It must contain the () constructor.
  ClassDef and ClassImp are the preprocessor macros, which paste here the additional builtin methods,

 e.g. enabling the storage of object in a TTree (::Streamer) or creating the documentation.

#include <iostream.h>
#include <myClass.h>

ClassImp(myClass)

// Implementations of our other methods

2. Create the class source code myClass.cxx :

Event Branch: Object { Det (int) , Time (float) , Energy (float) }

without
semicolon

without
semicolon

http://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
http://root.cern.ch/root/html/guides/users-guide/AddingaClass.html#adding-a-class-with-aclic
https://www.fuw.edu.pl/~kpias/ctnp/myClass.h
https://www.fuw.edu.pl/~kpias/ctnp/myClass.cxx

56

#ifdef __CINT__
#else
#include "myClass.h"
#endif

int TTree_myObject ()
{
 if (!TClass::GetDict("myClass"))
 gROOT->ProcessLine (".L myClass.cxx+");

 TRandom3 r; r.SetSeed ();
 myClass* myObj = new myClass ();

 TFile f ("myobjs.root", "recreate");
 TTree* t = new TTree ("tree", "My Tree");
 t->Branch ("myObj", &myObj, 8000, 0);

 for (int evt = 0; evt < 100; evt++) {
 myObj->det = r.Integer (24) ;
 myObj->ToF = r.Rndm() * 20. ;
 myObj->Energy = r.Rndm() * 30. ;
 t->Fill();
 }
 t->Write();
 t->Print();
 f.Close();
 return 0;
}

Enables
both ROOT
5/6 versions

TTree cont. Trees with user-defined objects

3. Encoding the TTree, which for every event
 stores 1 object of myClass class.

#include "myClass.h"

int TTree_myObject_read ()
{
 myClass* myObj = new myClass ;

 TFile f ("myobjs.root");
 TTree* t = (TTree*) f.Get ("tree");
 t->SetBranchAddress ("myObj", &myObj);

 cout << "This tree has "
 << t->GetEntries() << " events.\n";
 for (int evt=0; evt < t->GetEntries(); evt++)
 {
 t->GetEntry (evt);

 cout << "[Event " << evt << "] : ["
 << setw(4) << myObj->det
 << setw(12) << myObj->ToF
 << setw(12) << myObj->Energy
 << "]\n";
 }
 f.Close();

 return 0;
}

4. Encoding the readout of such a TTree.

The .L command will create 2 files on the current path:
– myClass_cxx.so (compiled object – shared library)
– myClass_cxx.d (“dependencies”; information for ROOT)

https://www.fuw.edu.pl/~kpias/nkfj/TTree_myObject.C
http://root.cern.ch/root/html/guides/users-guide/AddingaClass.html#adding-a-class-with-aclic
https://www.fuw.edu.pl/~kpias/nkfj/TTree_myObject_read.C

57

TTree cont. Collection (array) of objects (of the same class) stored in a TTree event

Event Branch: Collection of objects

Event

Object

Event

Branch: Collection of objects

Object

Object

Object

Object

 In order to encode such a structure, we’ll use the object of TClonesArray class.

 It is an array of objects of the same class. These objects must inherit after TObject .
 A created TClonesArray is given the default initial size: 1000 objects.
 Once we insert an element at higher position, the enlargement of dimension is done automatically.

 Nb. ROOT features several kinds of arrays for objects (so-called Collections).
 E.g., within TOrdCollection one can store objects of different classes (inheriting after TObject) .

 On the next slides: exemplary codes that save and read such a “structure” .

https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuideChapters/AddingaClass.pdf
http://root.cern.ch/doc/master/classTClonesArray.html
https://root.cern.ch/doc/master/classTObject.html
https://root.cern.ch/doc/master/classTOrdCollection.html

58

TTree cont.
Collection of objects of the same class

 Exemplary code to store the
 TCloneArrays in the TTree entries:

– Create the TClonesArray object,
 giving the name of class of elements.
 Creating also the pointer to TClassArray.

 If we don’t set the size, the default
 size will be 1000 elements.
 If we overfull, the array will resize.

– In branch’s definition we give the
 pointer to the pointer of TClassArray.

– Cleaning the array

– Creating a new object of myClass class
 will automatically store it in the array
 at a given position.

#ifdef __CINT__
#else
#include "myClass.h"
#endif

int TTree_TClonesArray ()
{
 if (!TClass::GetDict("myClass"))
 gROOT->ProcessLine (".L myClass.cxx+");

 TFile f ("clonesarray.root", "recreate");

 TClonesArray* myArrayPtr = new TClonesArray ("myClass");
 myClass* myObjectPtr;

 TTree* t = new TTree ("tree", "My Tree");
 t->Branch ("ObjClones", &myArrayPtr , 256000, 0);

 TRandom3 r; r.SetSeed();

 for (int evt=0; evt<100; evt++) {
 myArrayPtr->Clear();
 int Npart = rand() % 6;

 cout << "Event " << evt << " has "
 << Npart << " particles. \n";
 for (int iPart = 0; iPart < Npart; iPart++)
 {
 myObjectPtr = (myClass*)

myArrayPtr->ConstructedAt (iPart);
 myObjectPtr->det = r.Integer (24);
 myObjectPtr->ToF = r.Rndm();
 myObjectPtr->Energy = r.Rndm();
 }
 t->Fill();
 }
 t->Print(); t->Write();
 f.Close();
 return 0;
}

https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuideChapters/AddingaClass.pdf
https://www.fuw.edu.pl/~kpias/ctnp/TTree_TClonesArray.C

59

TTree cont. Collection of objects (of the same class) stored in a TTree event

 Exemplary code to read out the
 arrays of objects from TTree entries:

– Create 1x TClonesArray
 through pointer.

– We connect to a branch,
 giving the pointer to the pointer
 to the TClonesArray object.

– Clearing array before event readout
– If we get the event,
 the TClonesArray object
 is filled automatically.

– Iteration over array elements.

#include "myClass.h"

int TTree_TClonesArray_read ()
{
 TFile f ("clonesarray.root");

 TClonesArray* myArrayPtr = new TClonesArray ("myClass");

 TTree* t = (TTree*) f.Get ("tree");
 t->SetBranchAddress ("ObjClones", &myArrayPtr);

 myClass* myObjPtr;

 for (int evt = 0 ; evt < t->GetEntries() ; evt++)
 {
 myArrayPtr->Clear();
 t->GetEvent (evt);
 int Npart = myArrayPtr->GetEntries() ;

 cout << "\nEvent " << evt << " has "
 << Npart << " particles: \n";

 for (int iPart = 0; iPart < Npart; iPart++)
 {
 myObjPtr = (myClass*) myArrayPtr->At (iPart);

 cout << " [" << setw (2) << myObjPtr->det
 << ": " << setw (9) << myObjPtr->ToF
 << " , " << setw (9) << myObjPtr->Energy << "] \n";
 }
 }

 f.Close();
 return 0;
}

https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuideChapters/AddingaClass.pdf
https://www.fuw.edu.pl/~kpias/ctnp/TTree_TClonesArray_read.C

60

Finding the root of function

 ROOT contains numerical algorythms,
 borrowed from the GSL library.
 In script we’ll consider 2 of them.

 We start the root search by deciding
 if it’s enough that method uses only the
 function (e.g. bisection), or a derivative
 is needed (e.g.. Newton).

#include <Math/RootFinderAlgorithms.h>
#include <Math/RootFinder.h>
#include <Math/Functor.h>

using namespace ROOT::Math;

double myfunc (double x) {
 return 3*x - 10;
}

double myfunc_deriv (double x) {
 return 3 ;
}

void macro_RootFinder ()
{
 Functor1D f (&myfunc);
 RootFinder k (RootFinder::kGSL_BISECTION) ;
 k.SetFunction (f, 1, 10);
 k.Solve ();
 cout << "Root via bisection: " << k.Root()
 << endl;

 GradFunctor1D g (&myfunc , &myfunc_deriv);
 k.SetMethod (RootFinder::kGSL_NEWTON);
 k.SetFunction (g , 4.);
 k.Solve ();
 cout << "Root via Newton : " << k.Root ()
 << endl;
}

 We write function (+ derivative if needed)

 We put function (+derivative if needed)
 into a special object called “wrapper”.

 We create the RootFinder tool,
 and set the type of algorythm.
 Here we use: bisection and Newton.
 Full set of methods is available here.

 We link the tool and the functions

⑤ We evaluate the root finder.

⑥ A result is given by Root() method.

https://root.cern.ch/doc/master/group__NumAlgo.html
https://www.gnu.org/software/gsl/doc/html/interp.html?highlight=interpolation
https://www.fuw.edu.pl/~kpias/ctnp/macro_RootFinder.C
https://root.cern.ch/doc/master/classROOT_1_1Math_1_1RootFinder.html
https://root.cern.ch/doc/master/group__RootFinders.html

61

Interpolation between points

 Available tool:
 ROOT::Math::Interpolator,
 borrowed from the GSL library.

 Algorithm steps:

 Store your data points in
 double* or vector<double> arrays

 Create the Interpolator object,
 giving the interpolation type:

 ○ kLINEAR
 ○ kPOLYNOMIAL
 ○ kCSPLINE
 ○ kCSPLINE_PERIODIC
 ○ kAKIMA
 ○ kAKIMA_PERIODIC

 Pass your data using SetData method

 Values of interpolation function are
available immediately via Eval method

void macro_interpolation ()
{
 float xmin = -3, xmax = 2.5;
 Int_t Ndata = 10;
 double xi[Ndata], yi[Ndata];

 TF1* funPoly = new TF1 ("fp",
 "[0]+[1]*x+[2]*x^2+[3]*x^3", xmin, xmax);
 funPoly->SetParameters (1, -1.5, 1, 1);

 for (int i = 0; i < Ndata; i++) {
 xi[i]= i * (xmax - xmin) / (Npts-1) + xmin;
 yi[i]= funPoly->Eval (xi[i]);
 }

 ROOT::Math::Interpolator inter (Ndata ,
 ROOT::Math::Interpolation::kPOLYNOMIAL);

 inter.SetData (Npts, xi, yi);

 int Nprobes = 100;
 double Xint[Nprobes], Yint[Nprobes];

 for (int i = 0; i < Nprobes; ++i) {
 Xint[i] = i*(xmax-xmin)/(Nprob-1) +xmin;
 Yint[i] = inter.Eval (Xprob[i]);
 }

 TGraph* gf = new TGraph (Npts, xi, yi);
 gf->Draw ("AP");

 TGraph* gi = new TGraph (Nprob, Xprob, Yinter);
 gi->Draw ("SAME L");
}

https://root.cern.ch/function-interpolation
https://root.cern.ch/root/html/ROOT__Math__Interpolator.html
https://www.gnu.org/software/gsl/doc/html/interp.html?highlight=interpolation
https://www.fuw.edu.pl/~kpias/ctnp/macro_interpolation.C

62

 Necessary steps

1. It should be a “decent”, compilable code.
E.g. should contain the main function.

2. In the code we have to include all the headers
corresponding to used ROOT objects, e.g.:

#include "TH1F.h"

3. If we use graphics, we should add the
TRint graphical interface. In order to do that,

◦ include the TRint.h header

◦ Declare the main function with the input arguments:

 int main (int argc, char* argv[])

◦ In the main function we create the TRint object

 TRint myRint ("myRint", &argc, argv);

4. Compilation with “typical” tools – via :

g++ code.C `root-config --cflags --libs`

In case of extra libraries, we add them at the end:
-lMathMore for Root::Math
-lSpectrum for TSpectrum , -lTMVA for TMVA

 Exemplary code in C++ : fit of TF1 to TGraph
We compile it as above.

Compilation of standalone C++ code with ROOT functionality

#include "TF1.h"
#include "TGraphErrors.h"
#include "TMath.h"

#include "TRint.h" // graphics interface
#include "TCanvas.h"

using namespace std;

Double_t myFun (Double_t* xarg, Double_t* par)
{
 Double_t x = xarg[0] , result = 0.;

 for (int st=0; st<=3; st++)
 result += par[st] * TMath::Power (x, st);

 return result;
}

int main (int argc, char* argv[])
{
 TRint myRint ("myRint", &argc, argv);
 TCanvas* can1 = new TCanvas ("can1",

"can1", 600, 400);

 TGraphErrors gr ("dataPoints.txt");
 gr.SetTitle ();

 TF1 fun ("fun", myFun , -3, 5, 4);
 fun.SetParameters (-1. , 1. , -6. , 1.);
 gr.Fit (&fun , "");
 gr.Draw ("AP");

 can1->Update();
 cin.ignore();
 return 0;
}

Cstandalone_fitTGraphErrors.C

https://root.cern.ch/doc/master/classTRint.html
https://www.fuw.edu.pl/~kpias/ctnp/Cstandalone_fitTGraphErrors.C

63

Within Linux, many applications are installed from
sources using make.
The aim of make is the compilation and, if needed,
linking of the package.

You can see the minimal make macro for the code
from previous page. It doesn’t perform linking,
but has options for linking to ROOT libraries ready.

Compilation through make

CC=g++
CFLAGS=`root-config --cflags --libs`
LDFLAGS=`root-config --glibs`

SOURCE=Cstandalone_fitTGraphErrors.C
TARGET=Cviamake_fitTGraphErrors

Cviamake_fitTGraphErrors: $(SOURCE)
 $(CC) -o $(TARGET) $(SOURCE) $(CFLAGS)

clean:
 rm -f ./*~ ./*.o ./Cviamake_fitTGraphErrors

makefile

Unification of code

Solutions are available for a common
code, which handles two variants
of launching:

➀ as a compilable code
 (eg. via g++ with ROOT flags)

➁ as a macro in interactive session.

One of solutions is the usage of
#if defined preprocessor commands.

The demonstrator code shows also,
– how to handle the input arguments
– where to place #include headers.

#if defined __CINT__ || defined __CLING__

int macro_cprogram_unifier (int InputValue = 123) {
 cout << "\n Hello, I am being interpretted." << endl;

#else

#include "TMath.h"
#include <iostream>
#include <iomanip>
using namespace std;

int main (int argc, char* argv[]) {
 cout << "\n Hello, I was compiled." << endl;
 int InputValue = (argc > 1) ? atoi (argv[1]) : 123;

#endif

 cout << "\n Okay, and this is the common portion of code.";
 cout << "\n TMath::Pi() = " << setprecision (18) << TMath::Pi();
 cout << "\n Input value (default: 123) = " << InputValue;
 cout << "\n\n";
 return 0;
}

https://www.fuw.edu.pl/~kpias/ctnp/makefile
https://www.fuw.edu.pl/~kpias/nkfj/macro_cprogram_unifier.C
https://www.fuw.edu.pl/~kpias/ctnp/macro_cprogram_unifier.C

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63

