

Computer Tools for Nuclear Physics

Initial state of collision within Glauber model

Krzysztof Piasecki

Basics of Glauber Model

- Glauber model: Relativistic Heavy-Ion collision
 - made of sum of independent NN collisions
 - density profile is diffused

Simplest density model: Fermi distribution

Cross section for NN collision is not constant.

Glauber Model: optical approach

Introductory paper: M. Miller et al. Ann.Rev.Nucl.Part.Sci. 57, 205 (2007)
 Talk: J. Wilkinson Glauber modelling in hi-ener nucl. coll.

• $3D \rightarrow 2D$. Thickness function T_A [fm⁻²]:

$$T_A(\vec{s}) = \int \rho_T(\sqrt{\vec{s}^2 + z^2}) dz \qquad \int \rho_T d^3 r = 1$$

(chance of finding 1 nucleon per 1 fm^2 of \perp area)

• Overlap function T_{AB}:

$$T_{AB}(\vec{b}) = \int d^2 s \ T_A(\vec{s}) \ T_B(\vec{s} - \vec{b})$$

(chance that at fixed *b*, a nucleon from A meets a nucleon of B) [fm⁻²]

Glauber Model: optical approach

• We set up two nuclei at the parameter *b*. Nucleons move forward and "try to collide", with success or failure. Average probability of *single* NN collision is : $T_{AB}(b) \cdot \sigma_{NN}$.

Number of NN collisions = number of "successes" in $A \cdot B$ attempts \leftrightarrow follows the binomial distribution:

$$P(n,b) = {\binom{AB}{n}} \left[T_{AB} \sigma_{NN,inel} \right]^n \left[1 - T_{AB} \sigma_{NN,inel} \right]^{AB-n}$$

• Total cross section for nucleus-nucleus (AA) collision. The AA collision occurs if at least 1 NN collision is done:

• Number of *"*binary" NN collisions:

$$N_{coll}(b) = \sum_{n=1}^{AB} nP(n,b) = ... = AB \cdot T_{AB}(b)\sigma_{NN,inel}$$

• Number of participant nucleons:

$$N_{part}(b) = A \int T_A(\vec{s}) \left\{ 1 - \left[1 - T_B(\vec{s} - \vec{b}) \sigma_{NN,inel} \right]^B \right\} d^2 s + B \int T_B(\vec{s} - \vec{b}) \left\{ 1 - \left[1 - T_A(\vec{s}) - \sigma_{NN,inel} \right]^A \right\} d^2 s$$

Inelastic NN cross sections

30

20

10

2

s [GeV]

σ_{inel} [mb]

① $\sigma(pp)$ is different from $\sigma(pn)$ and $\sigma(np)$ ② Assumption: isospin symmetry [$\sigma_{nn} = \sigma_{pp}$]

$$\sigma_{\scriptscriptstyle NN} = \frac{Z_{\scriptscriptstyle p} Z_{\scriptscriptstyle t} \sigma_{\scriptscriptstyle pp} + N_{\scriptscriptstyle p} N_{\scriptscriptstyle t} \sigma_{\scriptscriptstyle nn} + (Z_{\scriptscriptstyle p} N_{\scriptscriptstyle t} + N_{\scriptscriptstyle p} Z_{\scriptscriptstyle t}) \sigma_{\scriptscriptstyle np}}{A_{\scriptscriptstyle p} A_{\scriptscriptstyle t}}$$

- 3 Experimentally, $\sigma(pn)$ is not the same as $\sigma(np)$
- (4) $\sigma(np)$ at low \sqrt{s} and $\sigma(pn)$ at higher \sqrt{s} are rare

I

 σ (pn)

3

[3, 4] contribute to systematic errors

2.5

s [GeV]

30

20

10

2

σ_{inel} [mb]

Glauber Model: optical approach

• "Overlap": optical Glauber model online [click here]. E.g. for ¹⁰⁸Ag + ¹⁰⁸Ag collision (let's assume $\sigma_{_{NN, inel.}}$ = 25 mb)

• TGlauberMC: ROOT-based simulator of initial conditions of AA collision within the Glauber MC approach. Authors: from PHOBOS @ RHIC

Homepage:	tglaubermc.hepforge.org
Download:	www.hepforge.org/downloads/tglaubermc
Prerequisites:	Root \geq 4
Main papers:	[No. 1 @ 2008] [No. 2 @ 2019] [No. 3 @ 2019]
User guide:	Best description in paper 2.
Applicability:	(authors:) $\sqrt{s_{ extsf{NN}}} \in$ [200 GeV 10 TeV] , but used also for $\sqrt{s_{ extsf{NN}}}$ = 2.5 GeV.

- Installing TGlauberMC on your account of NPD's training computer:
 - \$ mkdir tglaubermc ; cd tglaubermc
 - \$ cp -p ~kpiasecki/soft/TGlauberMC/tglaubermc_install.sh .
 - \$./tglaubermc_install.sh
- Each time you open a new Terminal, do cd tglaubermc and then:
 - \$../tglaubermc_start.sh (note: dot at the beginning)

Now if you just launch Root in this directory, you have all the TGlauberMC functions connected.

• Currently implemented nuclei: p d t ^{3,4}He C O Al Si S Ar Ca Ni Cu Xe W Au Pb U

Basic form of parametrization of nuclear shape:

 $\rho(r) = \rho_0 \cdot \frac{1 + w \left(\frac{r}{R}\right)^2}{1 + \exp\left[\frac{r - r_0}{a}\right]}$

Shape deformation is an option for Al, Si, Cu, Xe, Au, U :

$$p(r) = \rho_0 \cdot \frac{1}{1 + \exp\left[\frac{r - R\left(1 + \beta_2 Y_{20} + \beta_4 Y_{40}\right)}{a}\right]}$$

Possible nuclei and profiles can be checked or updated in the TGlauNucleus::Lookup method.

 First, b parameter is pulled randomly from ∠ distribution. Centers of nuclei are defined as [-b/2, 0, 0] and [b/2, 0, 0] within frame as shown on this Figure.

Positions of nucleons are pulled from shape distributions. A minimum distance between N-N centroids is required $(d_{\min} = 0.4 \text{ fm by default}).$

• Deformed nuclei are rotated randomly by ϕ and ϑ .

Nucleons are 'traversing' head-on ('eikonal' approximation) and undergo collisions independently.

 A single NN collisions is counted if the distance d between centroids is less than:

 $d < \sqrt{\frac{\sigma_{NN}}{\pi}}$

J.Adamczewski-Musch et al., Eur. Phys. A 54, 85 (2018)

Code offers a few classes and macros. Class TGlauNucleon represents a single nucleon: position, type (p/n), origin (nucleus A/B), No. of collisions,... Class TGlauberMC is the main simulation manager.

```
    root[1] TGlauberMC gmc ("Pb","Pb",30.)
    root[2] gmc.NextEvent ( 5. )
    root[3] gmc.Draw ()
```


• Btw. you can apply range of *b* pars:

```
gmc.SetBmin ( 4. );
gmc.SetBmax ( 7. );
```

Initialize Pb+Pb collision with $\sigma_{NN} = 30 \text{ mb}$ Simulate 1 collision at b = 5 fm. For -1 , random b. Visualize of the collision (wounded/participants)

Get (inelastic) collision cross section based on this event: root[4] gmc.GetTotXSect () 12.57

Getting No. of participants and collisions: root[5] cout << gmc.GetNpart() <<'\t'<< gmc.GetNcoll() << endl; 370 786

Get array of nucleons: root[6] gmc.GetNucleons ()

Simulate e.g. 1000 collisions at once.
root[7] gmc.Run (1000)

Retrieve event-wise ntuple (can be saved in Root file)
root[8] TNtuple* ntu = gmc.GetNtuple ()

• Macro runAndSaveNtuple simulates and stores the resulting event-wise ntuple in file:

root [0] runAndSaveNtuple (100, "Ni", "Ni", 25.) simulate 100 Ni+Ni collisions with $\sigma_{NN} = 25 \text{ mb}$

• Variables available in the ntuple include:

Npart	No. of participants	AreaA	Area defined by "and" of participants
Ncoll	No. of collisions	AreaO	Area defined by "or" of participants
Nhard	No. of hard-core collisions	MeanX	$\langle x angle$ of wounded nucleons
В	Impact parameter	MeanY	$\langle y angle$ of wounded nucleons
BNN	Average NN impact parameter	MeanX2	$\langle x^2 \rangle$ of wounded nucleons
Ncollpp	No. of pp collisions	MeanY2	$\langle y^2 \rangle$ of wounded nucleons
Ncollpn	No. of pn collisions	MeanXY	$\langle xy \rangle$ of wounded nucleons
Ncollnn	No. of nn collisions	MeanXSystem	$\langle x \rangle$ of all nucleons
VarX	Variance of X of wounded nucleons	MeanYSystem	$\langle \mathbf{v} \rangle$ of all nucleons
VarY	Variance of Y of wounded nucleons	MoanYA	$\langle \mathbf{y} \rangle$ of nucleons in nucleus A
VarXY	Covar. between X and Y of wounded nucleons	MeanXA	$\langle x \rangle$ of nucleons in nucleus A
NpartA	No. of wounded nucleons in nucleus A	Meania	(y) of nucleons in nucleus A
NpartB	No. of wounded nucleons in nucleus B	MeanXB	(x) of nucleons in nucleus B
NpartO	No. of singly-wounded nucleons	MeanYB	$\langle y \rangle$ of nucleons in nucleus B
Nparto	Area defined by width of participants	PhiA	ϕ angle nucleus A (applied if deformed)
Areaw	Area defined by width of participants	ThetaA	9 angle nucleus A (applied if deformed
PsiN	Event plane angle of n-th harmonic	PhiB	ϕ angle nucleus B (applied if deformed)
EccN	Participant eccentricity for n-th harmonic		Q angle nucleus D (applied if deformed)
		тпетав	J angle nucleus B (applied li deformed

• **Caution**: PsiN and EccN are constructed from weighted positions of wounded nucleons.

Geometry of wounded nucleons

• Centroids of nuclei are initially fixed to the XZ plane (see Fig. on p. 8).

Ideally:

- area occupied by wounded nucleons looks like a vertical almond (~ellipse)
- angle ψ between the longer axis and X axis: $\psi_{\text{EP}} = 90^{\circ}$
- \blacktriangleright shape has given eccentricity ϵ

However, in an event, positions of nucleons are pulled randomly.

- shape deviates from an "ideal" almond
- angle ψ_{EP} differs from 90°.

A de-facto plane is called "event plane" or "participant plane"

• shape has given eccentricity ε (deviated from ideal ε)

 ψ_{EP} is found from positions (x_i, y_i) by: $\psi_{\text{EP}} \equiv atan\left(\frac{\sum y_i}{\sum x_i}\right)$

 $\boldsymbol{\epsilon}$ is also found from wounded nucleons:

$$\varepsilon \equiv \frac{\sqrt{\langle r^2 \cos(2\varphi) \rangle^2 + \langle r^2 \sin(2\varphi) \rangle}}{\langle r^2 \rangle}$$

For more refined analyses of shape and fluctuations, ψ and ϵ of higher harmonics is available.

$$\varepsilon_{n} \equiv \frac{\sqrt{\langle r^{n}\cos(n\varphi) \rangle^{2} + \langle r^{n}\sin(n\varphi)}}{\langle r^{n} \rangle}$$
$$\psi_{n} \equiv \frac{1}{n} \operatorname{atan} \left(\frac{\sum r^{n}\cos(n\varphi)}{\sum r^{n}\sin(n\varphi)} \right)$$

[[]Source: M. Stefaniak]

• Simulation: Au+Au, $\sigma_{NN} = 23.7 \text{ mb}$.

- Let's focus on gmc.GetNucleons (). It returns the address to the array of TGlauNucleon objects.
- What does a single TGlauNucleon object contain?
 - position: You can SetXYZ and GetX/Y/Z, but also RotateXYZ (_3D) it. Also it knows if it IsInNucleusA/B.
 - **type**: IsProton, IsNeutron, Get/SetType. Also energy, but it has no effect.
 - collision status: if it IsWounded and how badly: GetNcoll. Alternatively, if it IsSpectator. You can also "make" it Collide or heal fully: Reset.

• Looping over nucleons in an event.

Glauber Model vs experimental data

- Obtained A_{part} distribution is not yet a place of comparison with experiment:
 - 1. usually only charged particles are measured (protons)
 - 2. detector acceptance is limited \rightarrow will measure only part of particles
 - 3. even if particle gets inside: setup has some inefficiency of track measurement (efficiency $\equiv \epsilon$).
- N_{part} distribution from TGlauberMC simulation has to be projected to N_{ch} measured particles, Accounting for fluctuations. Each participant is associated with "P of creating registered particle".
- One usually applies the negative binomial distribution, NBD with mean μ and width parameter k:

$$P_{\mu,k}(n) = \frac{\Gamma(n+k)}{\Gamma(n+1) \Gamma(k)} \cdot \frac{(\mu/k)^n}{(\mu/k+1)^{n+k}}$$

Example for Au+Au @ 1.2A GeV (HADES):

- Plot shows the distrib. of multiplicity of charged particles.
 - Glauber MC
 - Experiment,
 "minimum bias"
 - Experiment
 "central trigger"

Good agreement between model and experiment.

Experimentally one defines the "centrality classes" on this plot.

Ь