
1

Final state of collision: statistical models

Introduction to Thermal-FIST and Therminator2

Krzysztof Piasecki

krzysztof.piasecki@fuw.edu.pl

2

Statistical approach to heavy-ion collisions

•• Key assumption of statistical models: thermodynamic equilibrium occured at (or before) the freeze-out.

❍ Chemical equilibrium : multiplicities of all the particles evolved to mutual equilibrium

❍ Thermal equilibrium : phase space distributions (p, E, ...) evolved to their equilibrium forms
 (e.g. Fermi-Dirac or Bose-Einstein statistics, or Boltzmann statistics as simplification)
 Angular isotropy (θ , ϕ) .

No time evolution considered. The system is at freeze-out.

Within pure variants of statistical models, the whole motion of a system is a thermal motion.
Sometimes hybrid approaches: energy is shared between thermal and collective motion

 (Siemens-Rasmussen model, Blast-Wave model, etc.)

"Pure thermal" scenario within Grand-Canonical approach and assuming that hadron’s mass is fixed:
For a hadron of given type, its multiplicity (≡ yield) is assumed to have this form:

0 10 20 t [fm/c]

•• Sketch of a heavy-ion collision (IQMD simulation of Au+Au @ 1.5A GeV)

••

••

N i = gi ⋅ V ⋅ ∫ d3 p

(2π)3
1

e(E i − μi) / kT ± 1

μi = bi μB + qi μQ + si μS

where: V = volume, T = temperature,
 gi = degeneracy factor (spin, isospin)

and the chemical potential:

3

Grand Canonical Ensemble Canonical Ensemble Microcanonical Ensemble

System is in contact with reservoir,
with which it exchanges energy and
particles.
Form of Equilibrium:
In the system N, E = const on average
(may fluctuate a bit)

System is in contact with reservoir
with which it exchanges energy only

Form of Equilibrium:
E = const on average
N = const always

System is fully isolated.

Form of Equilibrium:
N = const always.
E = const always.

Thermodynamical ensembles

•• A system of colliding nuclei is in principle isolated (in vacuum).
However, the microcanonical calculations are very CPU-consuming, so are performed very rarely.

Rule of thumb: GCE approach is for larger-sized systems. The smaller volume lower yields CE or even MCE.

Often, leading yields are large but strangeness yields are small.
 Combined approach: GCE for bulk, CE for strangeness.

4

Several codes were developed that intend to fit the predictions of the thermal model to the experiment.
Among them: Thermus and Thermal-Fist .

Input to calculation:

▻ Set of particle yields from a given experiment (A+A @ TBeam, given centrality)
▻ Data base of hadrons, including mass, width, isospin etc.

What these models do:

▻ fit temperatures, chemical potentials etc. to find the best agreement between theo and exp yields.

Output:

▻ found temperature, chemical potential, possibly volume etc. + list of predicted yields of hadrons

Caution:

❍ For particles with mass distribution:
this distribution may or may not be modelled (Breit-Wigner + its extensions). 2B checked!

❍ Most particles decay. An experimental yield may or may not include the feed-downs. 2B checked!

Within model: non-zero yield of decayable particle does not contradict equilibrium.
It means: decay rate is balanced with production rate.
To compare model and experimental yields (the latter: with feeddowns from decays),
the model yield is calculated with those feed-downs.

Statistical approach to heavy-ion collisions

••

••

••

••

http://www.phy.uct.ac.za/phy/people/academic/wheaton/research
https://linkinghub.elsevier.com/retrieve/pii/S0010465519302139

5

preliminary
FOPI / KaoS

Statistical approach to heavy-ion collisions

•• Despite strong assumptions, these models fit well
to particle yields all throughout GeV – TeV energies:

Al+Al @ 1.9A GeV, Thermus 2.1

A
.

A
n
d
r
o
n
i
c

e
t

a
l
.
,

N
a
t
u
r
e

5
6
1
,

3
2
1

(
2
0
1
8
)

•• As a result, they point to the region on T – μB phase diagram
reached by the colliding system(s) in the final stage:

J
.

C
l
e
y
m
a
n
s
,

E
P
J

W
e
b

o
f

C
o
n
f
e
r
e
n
c
e
s

9
5
,

0
3
0
0
4

(
2
0
1
5
)

6

Thermal-FIST : overview

•• Thermal-FIST : statistical model package for yields of particles emitted from Heavy-Ion collisions.
Author: Volodymyr Vovchenko.
All can be managed through a nice graphical GUI, but can be included into your C++ code as a library.

Quick start guide: [here]

Papers: V. Vovchenko, H. Stoecker, Comput. Phys. Commun. 244, 295 (2019) [here] [arXiv]

Sources: [GitHub] (see depencies, including Qt5)

To run @ NPD’s training computer:

① mkdir tfist; cd tfist
② cp -r ~kpiasecki/soft/Thermal-FIST/ctnp/* .
 nice ./QtThermalFIST &

https://github.com/vlvovch/Thermal-FIST/blob/master/docs/quickstart.md
https://doi.org/10.1016/j.cpc.2019.06.024
https://arxiv.org/abs/1901.05249
https://github.com/vlvovch/Thermal-FIST

7

•• List of possible particles. Check if it suits you.

Click [Thermal fits] pad.

Click [Load data from file]
to load the set of exp yields.

•• Ensemble: choose Grand-Canonical, Canonical,
”Strangeness-Canonical” (mixed)

Statistics:
Boltzmann = model approximation.
Quantum (full equations)
for: all particles / mesons only / pions only
 (more exact more approximated)

Resonance widths:
– Zero-width [all masses are fixed at centroids]
– Const Breit-Wigner [mass = Breit-Wigner, but Γ = const]
– eBW [mass = Breit-Wigner, and Γ = f(mass)]

Conservation laws:
For given colliding nuclei (A,Z) the Q/B ratio must be conserved.
Make sure to type in this ratio.

Fit parameters: propose starting values and fitting range.
☑ = parameter will be fitted
□ = parameter is fixed

Click [Perform fit] and wait ...

Thermal-FIST : preparation for fitting

8

Thermal-FIST : preparation for fitting

•• Example: yields from Al+Al @ 1.9A GeV.

Proposition of initial settings:

You should get the following results: ••

Click [Write to file] to get the file
 with the list of yields
 according to the model.

••

9

Therminator2 : overview

•• Program to generate distributions of particles emitted from ultra-relativistic heavy-ion collisions,
at the final (freeze-out) stage. It makes following assumptions:
❍ particles are in thermodynamical equilibrium (in their local frame)
❍ but their thermal motion is superimposed on the collective expansion of a system as a whole.

Superposition
as seen in CM (Global Frame)

Thermal motion in local frames
(Bose-Einstein / Fermi-Dirac)

vFlow

⊕ =

vFlow

YMin
YMax

R
v⃗ Flow ,⊥

T,
μB,
…

At higher energies (UrHIC, Ultra-relativistic Heavy-Ion Collisions)
the experimental spectra agree more with the picture of
cylindrically-expanding zone, parametrized by:

 R (max. radius) , ΔY (longitudinal) rapidity range , vFlow, .

vFlow, is not constant, but often an onion-like expansion is assumed:

This ansatz is called: Blast-Wave model (Ref. , [arXiv]).

••

β⃗Flow ,⊥ (ρ) = βFlow ,Surf ⋅(ρR)
2

êρ

In CM, local frames expand,
depending on their placement

A picture above of radial expansion (angular isotropy) is valid for TBeam ~ 1 ... few A GeV.

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.48.2462
https://arxiv.org/abs/nucl-th/9307020

10

Therminator2 : overview

•• All these models assume that the freeze-out occurs at the same tLocal (moment of time in Local frame).
But the Local Global Lorentz transformation imposes that for different space points,
the freeze-out occurs at different tGlobal (moments of time in Global frame).
A curve in Global space-time, describing the freeze-out points, is called the freeze-out hypersurface σ.

 Within Therminator2 you can select one of the predefined hypersurfaces or model it yourself.

••

What Therminator2 does and what does not:
 It’s not a fitter of thermal parameters to a set of particle yields.
 You give T, μB, ..., type of collective expansion + its parameters.

The code generates events with particles from this model.

Homepage: therminator2.ifj.edu.pl

Papers: [v1] A. Kisiel et al., Comput. Phys. Commun. 174, 669 (2006) [arXiv]
[v2] M. Chojnacki et al., Comput. Phys. Commun. 183, 846 (2012) [arXiv]

Installation: therminator2.ifj.edu.pl/install.html (requires ROOT)

Particles and their decays are taken from the PDG database.
Particle list file: share/particles.data . File with list of decays: share/decays.data

How to run @ NPD’s training computer:

① mkdir therminator2; cd therminator2
② cp -r ~kpiasecki/soft/therminator2/ctnp/* .
 . ./therminator2_start.sh each time you want to run
➃ less events.ini
⑤ less fomodel/blastwave.ini
⑥ nice ./therm2_events

••

••

••

••

http://therminator2.ifj.edu.pl/
https://www.sciencedirect.com/science/article/abs/pii/S0010465506000087
https://arxiv.org/abs/nucl-th/0504047
https://www.sciencedirect.com/science/article/abs/pii/S0010465511003808
https://arxiv.org/pdf/1102.0273.pdf
http://therminator2.ifj.edu.pl/install.html

11

Therminator2 : overview

•• Steps of program operation:

① Generation of average multiplicities of all the particle types. (about 15’)
Particle types and their decays are listed in: share/ particles.data decays.data
Average multiplicities are stored in: events/{model}/multiplicity_NNN.txt

② Generation of events. For each event:
▻ No. of particles of each type is pulled from Poisson distribution, with average obtained in ①

▻ Particles are generated with local momentum pulled from Fermi-Dirac / Bose-Einstein
thermal distribution ...

▻ … and dispatched on the freeze-out hypersurface.
Their 4-momenta are boosted to the CM frame, according to flow at given position.

▻ Unstable particles are decayed according to the decay law with given lifetime τ
(2-body and 3-body decays are implemented)
The decay products are positioned just after the parent particle traversed straight line for given time.
Any unstable product is again subject to decay law, etc.

▻ Particles are written into output files. Both the decayed and final ones.

Types of output files:
 fmultiplicity_NNN.txt : List of particle types with average yields
 event.txt : Text file with listing of events their particles
 eventNNN.root : Root file with TTree’s of: events, particles and model information.

 500 events are packed into 1 file. Next events are stored in further files.

••

12

•• Let’s look at events.ini input file. Here the basic settings of a simulation are defined.

[FreezeOut]
FreezeOutModel = fomodel/blastwave.ini

[Event]
Number of events to generate
default: 50000
NumberOfEvents = 10

Event output file format
available: root, root&text, text
default: root
EventFileType = root

[Primordial]
Distribution of primordial particles multiplicity
available: Poisson
default: Poisson
MultiplicityDistribution = Poisson

Number of samples used in determination of
primordial multiplicity and max. integrand value
default: 5000000
IntegrateSamples = 5000000

[Random]
Start each event with a new random seed taken
from current time (1)
or do a constant seed (0)
default: 1
Randomize = 1

Therminator2 : overview

[Directories]
Directory with SHARE input files
default: share/
ShareDir = share/

Directory with Freeze-Out Model
parameter files
default: fomodels/
FreezeOutDir = fomodel/

Directory with ROOT macro files *.C
default: macro/
MacroDir = macro/

Directory to write the events
default: events/
EventDir = events/

[Logging]
Log file
default: therminator.log
LogFile = therminator.log

13

•• Let’s look at blastwave.ini input file. Here you can define the Blast-Wave model parameters.

[Ranges]
Rapidity range
default: 4.0
RapPRange = 4.0

Spatial rapidity range
default: 8.0
RapSRange = 8.0

[Model_parameters]
proper time at freeze-out [fm]
default: 8.17
Tau = 8.17

maximum transverse radius [fm]
default: 8.21
RhoMax = 8.21

Transverse velocity [c]
default: 0.341
VelT = 0.341

Freeze-Out Temperature [MeV]
default: 165.6
Temperature = 165.6

Chemical potentials for Barion, Isospin (I_3),
 Strangeness and Charm [MeV]
default: 28.5, -0.9, 6.9, 0.0
MuB = 28.5
MuI = -0.9
MuS = 6.9
MuC = 0.0

[Subdirectory]
subdirectory to store events of this model
default: blastwave/
EventSubDir = blastwave/

N i = gi ⋅ V ⋅ ∫ d3 p

(2π)3
1

e(E i − μi) / kT ± 1

μi = bi μB + qi μQ + si μS

YMin
YMax

R
v⃗ Flow ,⊥

β⃗Flow ,⊥ (ρ) = βFlow , Surf ⋅(ρR)
2

êρ

Therminator2 : overview

ySpatial ,Z = atanh (zt)

14

Therminator2 : overview

•• Exemplary contents of ascii output file:

THERMINATOR 2 text output
#<EVENT_ENTRY>eid fathereid pid fatherpid rootpid decayed mass e px py pz t x y z</EVENT_ENTRY>
#<EVENT_ID>0x65679F6</EVENT_ID>
#<NO_OF_PARTICLES>9684</NO_OF_PARTICLES>
0 -1 9001 9001 9001 0 2.350000e+00 5.423351e+00 5.105272e-01 8.400604e-01 -4.787891e+00
3.012708e+01 3.797786e+00 1.937673e+00 -2.789553e+01
1 -1 5218 5218 5218 1 2.250000e+00 5.035699e+00 1.177745e+00 -3.007674e-01 -4.337997e+00
2.272015e+01 2.773765e+00 -1.740429e+00 -1.985397e+01

Structure of the ROOT output file.

Variables in the ”events” TTree :

eventID (UInt_t) – unique ID of the event
entries (Uint_t) – No. of particle entries in this event

Variables in the ”particles” TTree characterising a single particle:

mass (Float_t) – mass
t, x, y, z (Float_t) – space-time coordinates of creation (in fm/c)
e,px,py,pz (Float_t) – energy and momentum coordinates (in GeV)
decayed (Int_t) – 1 if this particle decayed, 0 if survived.
pid (Int_t) – PDG identification number
fatherpid (Int_t) – parent’s PDG number
rootpid (Int_t) – root (primordial) particle’s PDG number
eid (Int_t) – particle’s sequence number in the event
fathereid (Int_t) – parent’s sequence number in the event (-1 = primordial particle)
eventid (Uint_t) – unique id of the event

••

15

Therminator2 : overview

A primordial particle has: fathereid == -1

Note: the particle TTree stores also the decayed particles (decayed == 1).

Different PIDs. A particle’s entry in tree has 3 pid codes: pid , fatherpid and rootpid.

A primordial particle has pid == fatherpid == rootpid.
A product of a primordial particle’s decay has fatherpid == rootpid.
A further product has 3 different PIDs.

Examples of plotting the spectra:

$ root -l event001.root
root[0] particles->Draw ("sqrt(px*px + py*py)", "pid == 2212") – pT spectrum of protons
root[1] particles->Draw ("0.5*log((e+pz)/(e-pz))", "pid == 3122") – rapidity spectrum of Λ

To draw (on the same plot) the rapidity spectrum of primordial pions and those from decays of other hadrons:

root[2] particles->Draw ("0.5*log((e+pz)/(e-pz))", "pid == 211 && fathereid>-1")
root[3] particles->Draw ("0.5*log((e+pz)/(e-pz))", "pid == 211 && fathereid==-1", "same")

You can merge the collection of tree files using TChain:

$ root -l
root[0] TChain t ("particles")
root[1] t.Add ("event000.root") ; t.Add ("event001.root")
root[2] particles->Draw ("mass", "fathereid == -1")

In macros/ directory you can find examples of full event file joining and plotting different distributions.

••

••

••

••

16

Therminator2 : overview

HOWTO start analysing output in Macro?

In Therminator2’s include path you can find the necessary classes.
Among them, the ParticleCoor.h header file includes the most important ParticleCoor class.
Its members just match the list of variables of each entry of the particles tree.

••

#include "/home/kpiasecki/soft/therminator2/build/include/ParticleCoor.h"

int partLoop ()
{
 ParticleCoor P;
 Float_t Pt, Y;

 TFile* fin = new TFile ("events/blastwave/event000.root");
 TTree* tin = (TTree*) fin->Get ("particles");
 tin->SetBranchAddress ("particle", &P);

 TH2F* hpty = new TH2F ("hpty", "", 20, -4., 4., 20, 0., 2.);

 for (int iev = 0; iev < tin->GetEntries() ; iev++) {
 tin->GetEvent (iev);
 if (! (P.pid == 321 && P.decayed == false)) continue;

 Pt = sqrt (P.px*P.px + P.py*P.py);
 Y = 0.5 * log((P.e + P.pz) / (P.e - P.pz));

 hpty->Fill (Y, Pt);
 }
 hpty->Draw ("colz");
 return 0;
}

https://www.fuw.edu.pl/~kpias/ctnp/thermal/partLoop.C

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16

