Nuclear Physics Division University of Warsaw

Computer Tools for Nuclear Physics

Microscopic Transport Models (outline)

Krzysztof Piasecki

- 1. Choice of kinematics. Adequate degrees of freedom.
- 2. Energy of nucleus and nuclear matter
- 3. BUU transport equation. Cascade approach.
- 4. QMD family. Interactions between nucleons
- 5. Soft QCD (strings): LUND model within PYTHIA
- 6. Summary of model properties and additional info
- 7. Interlude: parsing text files, managing processes on Linux
- 8. Characteristics of selected transport models:GiBUU, UrQMD, SMASH, PHSD, JAM2/RQMD

 (\boxtimes)

- QMD simulation of Au+Au collision at beam kinetic energy T_{Beam} = 15 MeV/nucleon (15A MeV)
 - [www.fuw.edu.pl/~kpias/rhic/QMD_Tb.015_b08_010.mpg]

- PHSD simulation of Au+Au collision at beam kinetic energy T_{Beam} = 10 GeV/nucleon (10A GeV)
 - [theory.gsi.de/~ebratkov/phsd-project/PHSD/documents/movie_AuAu_10AGeV.mp4]

 (\bowtie)

• Which basic parameters change with beam energy?

T_{Beam} / nucleon	γ	β	λ _{de Broglie} [fm]
5 MeV	1.005	0.10	13
50 MeV	1.05	0.3	4
500 MeV	1.5	0.75	1
5 GeV	6	0.99	0.2
50 GeV	55	0.9998	0.02
500 GeV	530	0.999998	0.002

Mean field sector Nucleon "sees" nucleus as a whole

Hadron-hadron sector Hadron production in hh channels

Quark-gluon sector

• How to calculate it?

$$T_{Beam} = m_N c^2 (\gamma - 1) \qquad \longrightarrow \qquad \gamma = 1 + \frac{T}{m_N c^2} \qquad \lambda_{de Broglie (N)} = \frac{h}{p_N} = \frac{\hbar c \cdot 2\pi}{m_N c^2 \cdot \gamma \beta}$$
$$\beta = \sqrt{1 - \gamma^{-2}}$$

- With increasing beam energy the **relativistic kinematics** becomes more and more relevant (e.g. for $T_{\text{Beam}} = 500 \cdot \text{A MeV}$, coefficient $\gamma = 1,5$).
- Increase of beam energy causes contraction of de Broglie wavelength, and therefore also the objects (so-called degrees of freedom) should be adequate to the scale :

At <u>low energies</u> the interaction of selected nucleon with nucleus is described by the **potential**, generated by the whole nucleus (so-called *Mean field*).

At <u>higher energies</u> ($T_{\text{Beam}} \gtrsim 100 \cdot \text{A MeV}$) the nucleon-nucleon collisions (NN) appear. These collisions may lead to production of new hadrons (h) , e.g.:

mesons π , K, ϕ , J/ ψ , D... baryons N, Δ , Λ , Σ , Ξ ...

These hadrons move further within the nuclear matter – and can collide with other hadrons. The occuring process can be **two-body** $(h_1h_2 \rightarrow h_3h_4)$, **three-body** $(h_1h_2 \rightarrow h_3h_4h_5)$, ... Probabilities of these processes are quantified by **energy-dependent cross sections**.

At <u>ultrarelativistic energies</u> ($T_{\text{Beam}} \geq 5 \cdot \text{A GeV}$) the **quark-gluon** processes appear.

Selected model framework should be adequate to the beam energy.

- Proton-neutron (p-n) interaction may lead to the production of *deuteron* (d).
 Deuteron-neutron (d-n) interaction may create *triton* (t) and deuteron-proton (d-p) create ³He. Etc...
 These particles are called the *Light Charged Particles* (*LCP, clusters, small nuclear fragments*).
- At $T_{_{\text{Beam}}} \sim 2 \cdot \text{A GeV}$, as much as ¼ protons are bound in LCP. Trace amounts of deuterons are seen in LHC.

 Usually, if LCP appears in the models, they are assembled from p and n, already after the simulation. A consistent description of production and dynamics of LCP is currently being developed only within *PHQMD* ([*flagship paper*], [github site]).

If description of LCP is relevant, one should consider the predictive power of model-candidates.

Energy in nucleus (schematic view)

In ∞	Nucleus as a whole:	Nucleus as a sum of nucleons:
Nucleons are free, $\overline{p}_i = \overline{0}$.	In nucleus' own frame, $\overline{p}_{nucleus} = \overline{0}$.	Pauli \rightarrow nucleons exclusion must move, $\overline{p}_{i} \neq \overline{0}$.
$E_{System} = \sum_{i} m_{N,i} c^2$	$E_n = M_n c^2 = \sum_i m_{N,i} c^2 - B_J$	$E_{nucl.} = \sum_{i} e_{i}$
$\frac{E_{System}}{A} = m_N c^2$	$\frac{E_n}{A} = m_N c^2 - \frac{B_{nucleus}}{A} \approx 8 \text{MeV}$	$e_i = \sqrt{\left(m_{N,i}c^2\right)^2 + \left(\vec{p}_ic\right)^2} + \frac{U_i}{A}$
In reality the formulae are mor	o complex	

In reality the formulae are more complex.

- Coulomb interaction must be added (φ , \overline{A}). \bigcirc
- $e_i = \sqrt{(m_{N,i}c^2 V_s)^2 + (\vec{p}_i c \vec{V}_w)^2} + V_{W,0}$ Within QCD with strong interactions, 2 so-called scalar and vector potentials appear, which e.g. change mass of nucleon inside nuclear matter.

(not by heart :))

 Real atomic nucleus: system of nucleons with finite N and V that interacts strongly, weekly and by Coulomb. Nucleons from ∞ fall into the potential well, wherein the acquire kinetic energy (Fermi motion). Energy is decreased by binding energy E_R. In the liquid drop model:

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} \pm \delta(A,Z)$$

 $-a_A \frac{(N-Z)^2}{\Lambda}$

For average nucleus:

 $E_{\rm B}/A \approx 8$ MeV.

Nuclear matter: abstract matter built of nucleons, of infinite N and V, but finite ρ.
 Depth of binding depends on: temperature, density, n/p ratio.

$$E_B(\rho = \rho_0, T = 0) = a_V A \qquad \dots$$

($\rho_{_{0}}$ = 0.17 fm $^{\!\!-\!\!3}$, "normal density of nuclear matter")

For symmetric (N = Z) nuclear matter in normal state: $E_{_{B}}/A \approx 16$ MeV.

 During the collision the matter condenses and subsequently expands. How E_B/A depends on density ρ? Two points are fixed:

1	for $ ho$ = 0 (free nucleons) ,	$E_{\rm B}/A =$	0 MeV
2	for $\rho = \rho_0$ (stable nucleus) ,	$E_{\rm B}/A = -$	-16 MeV

One can derive models of interactions that aim to reproduce findings [①, ②].
 One can also insert into the model some functional dependence that agrees to [①, ②].
 The testing ground are the kinematic distributions of particles: if/when model agrees with experiments?

• Nuclear matter equation of state ("EoS") :

$$\epsilon \equiv \frac{E}{A}(\rho, T) = m_n c^2 + \epsilon_{Kin}(\rho, T=0) + u(\rho, T=0) + \epsilon_{Kin}(\rho, T>0)$$

• It's worth to compare the plot to the dynamics of the nuclear collision. Let's trace it:

$$\rho_0 \rightarrow 3\rho_0 \rightarrow \rho_0$$

• Thermodynamical quantities:

pressure $p = \dots$

Bulk modulus

$$p = \dots = -\rho \frac{\partial \rho}{\partial \rho}\Big|_{T=0}$$

$$\kappa = \dots = +\rho \frac{\partial p}{\partial \rho}\Big|_{T=0}$$

∂€

In the state of normal nuclear density (ρ = ρ₀):

$$\kappa(\rho_0) = \dots = 9 \left. \frac{d^2 \epsilon}{d \rho^2} \right|_{\rho = \rho_0, T = 0}$$
(or: ~curvature of ϵ at $\rho = \rho_0$)

• In nuclear studies:

Incompressibility modulus	$\kappa \equiv 9 \left. \frac{\partial p}{\partial \rho} \right _{T=0}$
	I = 0

■ High (low) **K** : "hard" ("soft") EoS

Usually in papers: "soft" : $\kappa \approx 200 \text{ MeV}$, "hard": $\kappa \approx 380 \text{ MeV}$

Many models were developed (more than shown above), but many of them inherit the main framework. We shall describe two branches: family of **BUU** and **QMD** models.

Bolzmann – Ühling – Uhlenbeck transport equation. Exemplary introductions:

```
B.Serot, J.Walecka, arXiv:nucl/th/9701058 section 7A
C.Hartnack et al., Eur. Phys. J. A 1, 151 (1998)
```

<u>Outline</u>. We consider N particles moving in the phase space (x³, p³). Their distribution is described by the function f(r, p, t). Particles are in a field described by a potential U (mean field; it's the BUU's feature).

$$N = \int d^{3}r \int d^{3}p \ f(\mathbf{r}, \mathbf{p}, t)$$

$$df \equiv \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial r_{i}} dr_{i} + \frac{\partial f}{\partial p_{i}} dp_{i}$$

$$\begin{cases} \frac{\partial f}{\partial r_{i}} dr_{i} = (\nabla_{r}f) \cdot dr_{i} \\ dr = \mathbf{v}dt \\ d\mathbf{p} = -\nabla_{r}Udt \end{cases}$$

• Potential *U* of the mean field:

$$U = U(\rho) + U_{Coulomb} + U(\vec{p})$$

$$\downarrow$$

$$U(\rho) = \alpha \frac{\rho}{\rho_0} + \beta \left(\frac{\rho}{\rho_0}\right)^{\gamma}$$
(nuclear matter "equation of state", typical parameterization)

If *N* = const, we would have:

$$\frac{df}{dt} = 0$$

(momentum-dependent term of potential typical parameterization)

 $U(\vec{p}) = \delta \frac{8}{\rho_0 (2\pi)^3} \int d^3 p' \frac{f(r, p)}{1 + \left(\frac{p - p'}{\Lambda}\right)^2}$

• ... but there are also **collisions**. Let's consider a two-body process $(1,2) \rightarrow (3,4)$. Probability of collision is described by the cross section σ (more precisely, $d\sigma/d\Omega$). A collision occurs if:

$$d < \sqrt{\frac{\sigma_{NN}}{\pi}}$$

But one should account for the Pauli exclusion (momenta cells p₃ i p₄ are not always available).
 It is included probabilistically:

 $f(\mathbf{r},\mathbf{p},t)$ is a probability of occupation of momentum cell p. $1 - f(\mathbf{r},\mathbf{p},t)$ is a probability that momentum cell p is free.

• The **BUU** (Boltzmann-Ühling-Uhlenbeck) equation in short:

$$\frac{df}{dt} = I_{coll}$$

11

d

- Production of new particles is also realized through collisions.
 Each model has inside a set of reaction channels. Per channel it uses a parametrization of σ = f(energy).
 They are usually fits to the experimental databases. Some channels (like string production) are algorythmic.
- For channels experimentally (nearly) impossible to extract (e.g. N∆ → X), physics arguments are invoked like: detailed balance, isospin symmetry, strangeness balance etc.
- Flagship papers of specific models usually report the relevant formulae and figures of σ = f(energy).

A nice demonstrator is SMASH's web-based collection of its σ plots [here]. E.g. here you can see, how Smash assembles the total σ (pp) from subsequent channels in the model.

• For each collision a distribution (of center positions of nucleons) f(r, p, t) in the initial state is prepared:

$$f(\mathbf{r}, \mathbf{p}, t) = \sum_{i=1}^{A_{beam}+A_{target}} \delta(\mathbf{r}-\mathbf{r}_i) \ \delta(\mathbf{p}-\mathbf{p}_i)$$

Initialization of positions

Usually: Woods-Saxon distribution with parameters based on experimental charge distribution

TABLE I. This table summarizes the specific parameters used in the Woods–Saxon initialization for some nuclei.

Nucleus	Α	<i>r</i> ⁰ [fm]	<i>d</i> [fm]	
U	238	6.86	0.556	
Pb	208	6.67	0.54	
Au	197	6.38	0.535	
Cu	63	4.20641	0.597	

• Initialization of momenta

Usually: for nucleons away by r from the center, p is pulled randomly from unit sphere, i.e.: $p \in [0, p_{\text{Fermi}}(r)]$

$$p_{\text{Fermi}}(ec{r}) = \hbar \left[\left[\frac{3}{2} \pi^2 \
ho(ec{r})
ight]^{1/3}$$

Usually, Fermi momentum in the middle of a nucleus $~\approx~~$ 270 MeV/c .

Motion of a given particle is governed by the 1-body hamiltonian :

Case of non-relativistic potential: $H = \sqrt{p^2 + m^2} + U$ Case of relativistic potential: $H = \sqrt{(\vec{p} - \vec{V_v})^2 + (m - U_s)^2} + V_0$

• *In consecutive time steps* (*n*) position and momentum of i-th particle evolves due to:

(below, for simplicity, non-relativistic approximation)

$$\dot{\boldsymbol{r}}_{i} = \nabla_{\boldsymbol{p}_{i}} H$$

$$\dot{\boldsymbol{p}}_{i} = -\nabla_{\boldsymbol{r}_{i}} H$$

$$\boldsymbol{p}_{i}(n+\frac{1}{2}) = \boldsymbol{p}_{i}(n-\frac{1}{2}) - \nabla_{\boldsymbol{r}_{i}} U_{i}(n) \cdot \Delta t$$

 \oplus collisions: if $d < d_{\min}$ and no Pauli blocking \rightarrow then $\delta(p_1)$ and $\delta(p_2)$ changes into $\delta(p_3)$ and $\delta(p_4)$

• <u>Caution</u>: Within BUU the only field-type (continuous) interaction – is through the mean field. No single nucleon–nucleon interactions (except for collisions).

 \rightarrow BUU usually knows nothing about adjacent nucleons coalescing into LCPs (d, t, ³He, ...).

- **Cascade** is a collective name for various simulation codes (mode in them) that share following features:
 - Sharp sphere **potential** well (constant inside target nucleus). As $\overline{F} = -\nabla V \Rightarrow$ no force applied to tracked hadrons when inside nucleus
 - Potential has an edge (around nucleus' skin)
 ⇒ nucleons are reflected back or tunnelled through
 - *Caution*: the initial positioning is usually not done according to the uniform sphere, but to Woods-Saxon or modified oscillator distribution.
 - Overall nucleon density stays constant (not for high-energy Heavy-Ion collisions)
 - Particles follow straight lines.
 They can do binary collisions, but Pauli exclusion is checked.
- Where can these models be useful?

[Credit: S. Sharma, Ph.D., Jagiellonian Univ., 2015]

4

• In **QMD** models the objects are the particle wave packets:

 $\Psi = \prod_{i} \psi_{i} \sim \prod_{i} \exp \left[-\frac{(\boldsymbol{x}_{i} - \boldsymbol{r}_{i}(t))^{2}}{L}\right] \cdot \exp \left[i \boldsymbol{x}_{i} \boldsymbol{p}_{i}(t)\right]$

e.g. C.Hartnack et al. Eur. Phys. J. A 1, 151 (1998) arxiv.org/abs/nucl-th/9811015

Parameter *L* describes the packet size. It is found such that Ψ describes the density drop at the nucleus' skin.

An *i*-th particle moves in the potential ⊕ collides with neighbours.
 However, the potential is built from a sum of potentials from '*j*-th' particles surrounding the '*i*-th' one.

Quantum hamiltonian:

$$\langle H \rangle = \langle T \rangle + \langle V \rangle = \sum_{i} T_{i} + \sum_{i} \sum_{j > i} \int \psi_{i}^{*} \psi_{j}^{*} V^{ij}(x_{1}, x_{2}) \psi_{i} \psi_{j} dx_{1} dx_{2}$$

$$\begin{cases}
\dot{r}_{i} = \frac{p_{i}}{m} + \nabla_{p_{i}} \sum_{j} \langle V_{ij} \rangle \\
\dot{p}_{i} = -\nabla_{r_{i}} \sum_{j \neq i} \langle V_{ij} \rangle
\end{cases}$$
(in fact, the simulation traces the centroids of wave packets)

• $N_i - N_j$ interactions: $V_{ij} = V_{ij}^{Skyrme} + V_{ij}^{Yukawa} + V_{ij}^{p-dependent} + V_{ij}^{Coulomb} + V_{ij}^{p-n}$ assymetry

$$= \begin{bmatrix} t_1 + t_2 \ \rho^{\gamma - 1}(\mathbf{x}_i) \end{bmatrix} \cdot \delta(\mathbf{x}_i - \mathbf{x}_j) + t_3 \frac{\exp \left\{ -|\mathbf{x}_i - \mathbf{x}_j|/\mu \right\}}{|\mathbf{x}_i - \mathbf{x}_j|/\mu} + t_4 \ln^2 \left(1 + t_5 (\mathbf{p}_i - \mathbf{p}_j)^2 \right) \cdot \delta(\mathbf{x}_i - \mathbf{x}_j) + \frac{Z_i Z_j e^2}{\{\mathbf{x}_i - \mathbf{x}_j\}} + t_6 \frac{1}{\rho_0} T_i^3 T_j^3 \cdot \delta(\mathbf{x}_i - \mathbf{x}_j)$$

• From the *talk* of Ch. Hartnack and J. Aichelin (2015), the authors of IQMD:

Definition of the potentials

$$\begin{split} V^{ij} &= G^{ij} + V^{ij}_{\text{Coul}} \\ &= V^{ij}_{\text{Skyrme}} + V^{ij}_{\text{Yuk}} V^{ij}_{\text{mdi}} + V^{ij}_{\text{Coul}} + V^{ij}_{\text{sym}} \\ &= t_1 \delta(\vec{x}_i - \vec{x}_j) + t_2 \delta(\vec{x}_i - \vec{x}_j) \rho^{\gamma - 1}(\vec{x}_i) + t_3 \frac{\exp\{-|\vec{x}_i - \vec{x}_j|/\mu\}}{|\vec{x}_i - \vec{x}_j|/\mu} + t_4 \ln^2(1 + t_5(\vec{p}_i - \vec{p}_j)^2) \delta(\vec{x}_i - \vec{x}_j) + \frac{Z_i Z_j e^2}{|\vec{x}_i - \vec{x}_j|} + t_6 \frac{1}{\varrho_0} T_3^i T_3^j \delta(\vec{r}_i - \vec{r}_j) \end{split}$$

Bethe Weizsaecker – mass formula:

Volume term+Surface term+Coulomb term+symmetry term(nucl. eos)(+pairing term not included)(asy- eos)

• Hadron-hadron collision. Occurs if the centroids between 2 hadrons approach closer than:

$$l < \sqrt{\frac{\sigma_{hh}}{\pi}}$$

For fermions, Pauli exclusion is accounted for.

• By selecting components V_{ij} : $V^{\text{Skyrme}} + V^{\text{Yukawa}} + V^{\text{p-dependent}}$, through the respective convolution one can "reproduce" the equation of state of nuclear matter.

$$U(\rho) = \alpha \frac{\rho_{\text{int}}}{\rho_0} + \beta \left(\frac{\rho_{\text{int}}}{\rho_0}\right)^{\gamma} + U^{\text{p-dependent}}$$

$$U^{p-dependent} = \delta \cdot \ln^2 (\epsilon \cdot (\Delta p)^2 + 1)$$

 Δp : particle momentum w.r.t $\langle p \rangle$ of medium

One can choose the V_{μ} parameters so that
the simulation reproduces given Equation of State,
(including "recreation" of the hard/soft scenarios)

	α (MeV)	$\beta ~({ m MeV})$	γ	$\delta ~({ m MeV})$
S	-356	303	1.17	
SM	-390	320	1.14	1.57
Η	-124	71	2.00	
HM	-130	59	2.09	1.57

- The Isospin-QMD (IQMD) variant :
- Separate treatment of n, p, Δ, π
- Possible proton-neutron interactions
- ▷ one can describe the asymmetric (n \neq p) part of EoS

IQMD provides the framework for description of binding of nucleons into LCPs (clusters).

• **Fact**: each scalar product of two four-vectors is invariant with respect to Lorentz Transform.

$$p_{\mu}p^{\mu} = E^{2} - \vec{p}^{2} = const \qquad \rightarrow \text{ quite obvious, as:} \qquad E^{2} - \vec{p}^{2} = m^{2}$$

$$\left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} \vec{p}_{i}\right)^{2} = \text{ invariant} \equiv \underbrace{ss}_{i}^{2}$$
at the same time:
$$\left\{\begin{array}{c}\sum_{i} E_{i} = const\\\sum_{i} \vec{p}_{i} = const\end{array}\right. \qquad \text{"s" is not only invariant.}$$
It also is the integral of motion
$$[= const(t)].$$

Centre of mass frame (CM) : su

such frame that

$$\sum_{i} \vec{p}_{i,CM} = \vec{0}$$

$$s \equiv \left(\sum_{i} E_{i,CM}\right)^{2} - \left(\sum_{i} \vec{p}_{i,CM}\right)^{2} = \left(\sum_{i} E_{i,CM}\right)^{2}$$

$$\sqrt{s} = \sum_{i} E_{i,CM}$$

 \sqrt{s} is called the "available energy". It amounts to the sum of energy of the system in the CM frame.

Due to shortening of $\lambda_{de Broglie}$ with beam *E*, with increasing energy we move from the **hadronic sector** to that dominated by **quarks and gluons** (QG). Transport models aim to describe the QG sector too.

Some models propose the insertion of the QGP phase as the initial stage of collision, by transitioning to the hydronamical description, after which the hadronization occurs (QG fluid \rightarrow hadron gas).

In addition, most of models also at the hadronic stage switch on the QG degrees of freedom. It is possible if in the individual hadron-hadron collision the \sqrt{s} crosses the threshold value.

 Description of QG channels: so-called "strings". Between 2 quarks a segment is created ("string") with homogeneous energy distribution. This string is divided into portions, which generate hadrons.

Soft QCD region ("strings")

• The **QCD potential**: attractive strong interaction of qq .

- In HI Coll. modelling, strings appear in the context of each hadron-hadron collision, if \sqrt{s} exceeds some threshold (a few GeV). But where and how?
- Always between selected quarks. Two options:
- Momentum-exchange: two quarks collide and exchange momenta. It creates elongation in each hadron (thus, a string).
- Color-exchange:

1 quark from h_1 feels 2 quarks from h_2 (1st string). The remainder interacts likewise (2nd string).

Lines of QCD field are compressed to "tubes" (unlike lines of EM field).

Region between two quarks contains energy with (approximately) flat density distribution.

A model object – thin line connecting quarks with linear *E* distribution – is called "**string**".

H.Schmidt, J.Schukraft, J.Phys.G 19, 1705 (1993)

Soft QCD region ("strings")

[B. Andersson et al, Phys. Rep. 97, 31 (1983)]

Consider a pair of q, \overline{q} quarks, for simplicity – massless ones and moving only in Z dimension.

How do they move? (= How the string evolves?)

Hamiltonian:

$$H = |p_1| + |p_2| + \kappa |x_1 - x_2|$$

• At some moment it becomes energetically favourable to break the string ("string fragmentation"), grab energy from a strip around the breakpoint, and produce from it a new qq pair.

A sketch shows two such **pair production vertices (1, 2)**. But partners move away.

However, right quark from vertex "2" gets bound with left quark from vertex "1". A new hadron is born (hadronization). (Time duration of hadron formation process is debated).

Models assume the **first crossing** to be the creation point of a new hadron.

- Overall picture: many hadrons created from fragmentation of string

 T.Sjöstrand, Pythia talk
- Quantum-mechanically the pair creation is considered as tunneling through the hole after broken string.
 The concept is also generalized to massive quarks. A probability for each quark is derived:

$$P_q \sim \exp\left(-\frac{\pi m_{\perp q}^2}{\kappa}\right) = \exp\left(-\frac{\pi p_{\perp q}^2}{\kappa}\right) \exp\left(-\frac{\pi m_q^2}{\kappa}\right)$$

- ▷ Production of quark flavours is in proportion: $u\overline{u} : s\overline{s} : c\overline{c} \approx 1 : 0.3 : 10^{-11}$
- P_T spectrum is Gaussian for each quark, and the same for each quark flavour.
- During formation of a new hadron from a pair of quarks, the hadron's p_T is a sum of constituents.
- A popular implementation of the model is made by **PYTHIA** generator for elementary collisions. [Homepage] [Interactive Manual] [Tutorial] [Manual Writeup].

PYTHIA is called by GiBUU, SMASH and JAM2/RQMD models. UrQMD and PHSD have their own string fragmentation approaches.

Property	GiBUU	IQMD	UrQMD	JAM2/RQMD	SMASH	PHSD
Relativistic Potential	optionally	n,p : no K : yes	yes	yes	yes	yes
Potential = Mean field	yes	n,p : no K : yes	no	optionally	yes	yes
Potential = sum of nucleon pots.	no	yes	yes	optionally	no	no
Electromagnetic potential	yes	yes	yes for baryons no for π	optionally	optionally	no
Momentum- dependent potential	yes	yes no		optionally	optionally	yes
Creation of LCP (clusters)	at end of simulation	at end of simulation	at end of no no		at end of simulation	no
modifications of hadron mass in the medium	yes	yes	no	baryons: yes K, π: no	no	yes
Soft QCD region described by "strings"	Pythia	no	Own approach	Pythia	Pythia	Own approach

• For fixed-target collisions, in order to heat up the system (in CM), we provide T_{Beam} energy (in Lab). Let's consider the nucleon-nucleon (NN) collision at the fixed target. How to translate $T_{\text{Beam}} \rightarrow \sqrt{S}$?

 \sqrt{s} is commonly used in the collisions of two opposing beams. Why so?

Momenta sum up to $\overline{0}$. We obtain:

$$\sqrt{s} = \sum_{i} E_{i,CM} = 2 \cdot (m_N + T_{Beam})$$

Nb. in the collider mode it's easier to inject much energy to the system of colliding nuclei:

$$\sqrt{s} \sim T_{Bear}$$

Consider process with initially 2 particles with 4-momenta p_1 , p_2 and finally also 2, with 4-momenta p_3 , p_4 .

Energy + momentum conservation \equiv 4-momentum conservation.

$$p_1 + p_2 = p_3 + p_4$$

So it's worth introducing the "available energy":

 $s \equiv (p_1 + p_2)^2 = (p_3 + p_4)^2$

If a process is the fusion of particles into a resonance, then its mass $m = \sqrt{s}$. We say a reaction is in the "s channel".

But the 4-momentum conservation law can be rearranged:

$$p_1 - p_3 = p_4 - p_2$$

and it's worth introducing here "4-momentum transfer":

$$t \equiv (p_1 - p_3)^2 = (p_4 - p_2)^2$$

If a process involves an exchange of a virtual particle, then its squared 4-momentum equals to t. A reaction is "in t channel"

Example:

Process $\pi^-\Lambda \rightarrow K^-N$ is a "t-channel reaction". Process $\pi^- \Lambda \rightarrow \Sigma^{*-} \rightarrow K^- N$ is a "s-channel reaction". • Simple tools in Bash for previewing text data:

```
cat [file]
head -[No. of lines] [file]
tail -[No. of lines] [file]
less [file]
wc -l [file]
```

```
cat mydata.txt | wc -l
grep [phrase] [file]
```

- : To display file contents
- : To display first lines of file
- : To display last lines of file
- : File reader (handy hotkeys: gG/q)
- : To count the number of lines
- : The | (*pipe*) symbol redirects an output $A \rightarrow input B$
- : To search for a (line with) phrase in a file

• Examples:

```
less /etc/os-release
grep PRETTY_NAME /etc/os-release
ln -s ~kpiasecki/soft/test/data.txt .
head -100 data.txt | wc -l
grep "# event" data.txt | grep out | wc -l
```

• Comment:

Shells like Bash offer many text-based tools that e.g. sort, format, replace phrases etc. They allow for manipulation using variables, conditional instructions, loops – including loops over files and directories. One can write "scripts" (codes) and execute them.

Many tutorials on Bash and extensive forums are available on the web. You can find a nice cheat-sheet here. The introduction to Bash within UW Faculty of Physics is e.g. here and here.

Running long processes on Linux:

Assume you want to run MySimuApp, placed in your directory. You suspect that it would run a long time.

Instead of: ./MySimuApp

type in this way: nohup nice ./MySimuApp 1>myLogFile.out 2>&1 &

- nice ... is the priority manager. <u>Important</u> that all the users run longer codes through nice: the machine resources will be distributed in a just manner.
- ▷ 1>myLogFile.out will redirect any message from being printed on the screen \rightarrow to your Log file 2>&1 will redirect any error message to that file.
- ▷ ... & will allow you to continue using your terminal during the code's running
- nohup ... will completely detach your process from the terminal.
 Without this, if your terminal is killed, also your process stops immediately.

• [Linux] How to check if your process runs? How to stop it?

0	for dynamic list of running processes:	top or htop
Ο	for listing of these process:	ps -u yourLoginforest
Ο	to fish the number of your process (PID):	ps -u yourLoginforest grep MySimuApp
О	to kill the process identified by given PID (No.):	kill -9 PID
0	to kill the graphical window :	xkill ← then mouse-click on that window

Important: if you think your simulation goes wrong, *kill it* before rerunning.

- **awk**: a simple, yet powerful tool to **process text files**.
 - ▷ It parses a file **line by line**.
 - ▷ Commands via: **one-liner** or **script-like**.
 - ▷ You can define variables and perform arithmetics + logics on them. Also, awk has special variables.
 - ▷ You can do **if**'s , **loops** (while/for).

• General structure of awk code:

condition { action }

Actions can be done during initialization, per every line of file, per every line that passes a given filter or after the last line processed: Filter without action will print the whole lir	BEGIN { action } { action } filter { action } END { action } filter
awk as one-liner command :	<pre>awk 'filter {command}' filename.txt</pre>
awk invoking script with commands:	awk -f mycode.awk filename.txt
Nomenclature: each line = "record" . Wit	hin line, each word = "field"

Some special variables that awk offers per each line: NR = current line number NF = No. of fields in current line \$1,\$2,... = contents of 1^{st} , 2^{nd} , ...th field in a line

Many tutorials on the web, e.g.:
 by AGH [1, 2, 3].
 by Baeldung [here]
 by Bruce Barnett [here].

▷ part of FUW's NWP subject [here]

awk (cont). Download an examplary transport output: wget www.fuw.edu.pl/~kpias/ctnp/smash.out

```
#!OSCAR2013 particle_lists t x y z mass p0 px py pz pdg ID charge
# Units: fm fm fm fm GeV GeV GeV GeV GeV none none e
# SMASH-2.1.1
# event 0 out 123
40 0.687568 1.38769 23.1843 0.938 1.21816871 0.0609451595 -0.164364771 0.757205986 2112 0 0
40 19.5657 -1.19493 5.98978 0.938 1.15461879 0.627001274 -0.0742496884 0.233788244 2112 1 0
...
and try these one-liners:
awk 'NF==12 && $10==2112' smash.out : Take lines with 12 words and neutrons. Print lines.
awk 'NR>4 && NR<8 {print $5}' smash.out : Take lines 5-7. Print 5<sup>th</sup> field only (masses)
```

awk 'NF == 12 && \$10 == 211' smash.out > pions.dat : Take lines with π^+ . Save them in a new file.

 You can use variables right away (without declaration). They are automatically initialized to empty string / zero. Let's try it within our first awk script. Type e.g.: nano mystat.awk

```
NF == 12 {
   Num_of_Particles++
   Total_Px += $7
}
END {
   print Num_of_Particles" "Total_Px
}
   ... and run it: awk -f mystat.awk data.txt
```

 Now, let's insert this into the 1st line of the script: and allow this file to be runnable: → We can now run it directly from prompt: • If conditional statements. You can use the C-like syntax.

Imagine we want to select π^{+} , calculate their $\langle pz \rangle$ and print just this number. Let's encode it in the awk script, under the name AvgPz.awk:

```
NF == 12 {
    if ($10 == 211) {
        NPiPlus++
        Pz_total += $9
    }
}
END {
    Average = Pz_total / NPiPlus
    print Average
}
```

Now, let's run it: awk -f AvgPz.awk data.txt

• If you really have to, you can do the same in the one-liner:

```
awk 'NF == 12 { if ($10 == 211) { npi++ ; pztot += $9 } } END { avg = pztot/npi;
print avg }' data.txt
```

... btw. awk offers much more, including arrays, for loops, functions, analytic math functions, ... It can be also embedded in a bash script.

GiBUU Model

GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project

• Home page:

gibuu.hepforge.org

Download	Download instructions: Prerequisites: Download:	gibuu.hepforge.org/trac/wiki/download gibuu.hepforge.org/trac/wiki/tools gibuu.hepforge.org/downloads
Installation	Compilation instructions:	gibuu.hepforge.org/trac/wiki/compiling
How to run:		gibuu.hepforge.org/trac/wiki/running
Help	Tutorial: Presentations: Animations:	gibuu.hepforge.org/trac/wiki/tutorial gibuu.hepforge.org/trac/wiki/Talks gibuu.hepforge.org/trac/wiki/MovieMain
Table of PID codes:		gibuu.hepforge.org/trac/wiki/ParticleIDs

Main papers:

O. Buss *et al.* "Transport-theoretical description of Nuclear Reactions", Physics Reports 512, 1 (2012), arXiv: 1106.1344

On the NPD FUW's training computer:

```
mkdir gibuu ; cd gibuu
cp -r /home/kpiasecki/soft/gibuu/ctnp/* .
```

Let's inspect the input file (c.f. next page), e.g.

```
less 001_AlAl2.0_test.job
```

Rich collection of input options (*please consider them thoughtfully*):

http://gibuu.hepforge.org/Documentation/

Rich collection of demonstrative input files in this folder:

/home/kpiasecki/soft/gibuu/testRun/jobCards/

Let's run the simulation (here: in the background. Log goes into file: caca 1.91 test.log)

nohup ./GiBUU.x <001_AlAl2.0_test.job 1>alal_2.0_test.log 2>&1 &

Many output files. Among them – file with events containing particles (see next page):

less EventOutput.Real.oscar

Input file 001_AlAl2.0_test.job :

```
! file: ./inputOutput/input.f90
&input
      eventtype = 1
      numEnsembles =
                          100
      num runs sameEnergy = 5
      numTimeSteps = 160
      time max
                       = 40.0
      printParticleVectorTime = T
      timeForOutput
                          = 0.
      timeSequence
                          = 20.
      path_To_Input = '{...}/buuinput'
      version = 2023
\{\ldots\}
```

```
! file: ./init/initHeavyIon.f90
&heavyIon
     impact parameter
                        = -6.
                        = 0
     impact profile
     distance
                       = 10.
     coulomb
                       = F
     ekin lab Target = 0.00
     ekin lab Projectile = 2.0
     adjustGridFlag
                        = T
     cmsFlag
                        = T
! file: ./density/nucleus.f90
&projectile
      projectile Z= 13, projectile A= 27
! file: ./density/nucleus.f90
&target
      target Z= 13, target A= 27
{....}
```

• **Output file** EventOutput.Real.oscar :

							(
OSCAR2013 pa	rticle lists	t x y z mass	p0 px py pz p	dg ID			Table o	of PID codes		
Units: fm fm	fm fm GeV Ge	eV GeV GeV GeV	none none							
File generat	ed by GiBUU	(https://gibuu	.hepforge.org	·)					\sum	
event 1 o	ut 80		1 9 9						-Ý	
0.00000E+0	7.183791E+0	3.961299E+0	2.780585E+1	9.227111E-1	1.225751E+0	2.703973E-2	-9.247542E-2	8.011161E-1	2212	100000
0.00000E+0	5.118310E+0	-7.210583E-1	2.525251E+1	7.657091E-1	1.101021E+0	-5.729713E-3	-1.723748E-2	7.909611E-1	2112	100001
0.00000E+0	2.584306E+0	-1.719659E-1	2.539883E+1	7.726719E-1	1.088114E+0	-1.631816E-1	-5.991384E-2	7.461942E-1	2112	100002
0.000000E+0	2.133399E+0	3.397612E-1	2.692126E+1	7.944067E-1	1.045015E+0	-2.850862E-2	-9.578418E-2	6.717517E-1	2112	100003
0.00000E+0	6.169842E+0	-1.890743E+0	2.453204E+1	8.264268E-1	1.030645E+0	-6.987948E-2	1.303097E-1	5.971482E-1	2112	100004
•••••••••	0.100012200	1.0000710270	2,1002012.1	0.0010000 1	1.0000102.0	0.00,0101 1	1.000007.2 1	0.0/110000 1	0110	200001
·· 0 000000E+0	-7 235081E+0	1 162180E+0	-2 613539E+1	7 677036E-1	1 057389E+0	3 919098E-2	1 860452E-1	-7 017274E-1	2212	103239
event 1 e	nd 0	1.102100110	2.0100000111	1.0110301 1	1.00/00010	5.5150501 2	1.0001021 1	/.01/2/10 1	2212	100200
event 2 o	114 80									
	3 4563935+0	6 5671660-1	2 607133⊽⊥1	7 6493900-1	9 792901F-1	_6 201200E_3	1 2005/60-2	1 2002/55-1	2212	100040
0.00000E+0	5.4J0J0JE+0	1 406407E 1	2.0071556+1	7.040300E-1	1 12011/ELO	-0.201200E-J	4.009J40E-2	4.29024JE-1	2212	100040
0.00000E+0	5.700370E+0	1.42049/E-1	2.0J/000E+1	0 625010E 1	1 227220ELO	-1.239000E-1	9.0J1192E-2	0.133004E-1	2112	100041
0.00000E+0	0.1003236+0	-3.290/59E+U	2.000213E+1	0.030919E-1	1.22/330E+0	9.303502E-2	-4.100008E-2	0.00008/E-1	2112	100042
	OSCAR2013 pa Units: fm fm File generat event 1 o 0.000000E+0 0.000000E+0 0.000000E+0 0.000000E+0 event 1 e event 2 o 0.000000E+0 0.000000E+0 0.000000E+0	OSCAR2013 particle_lists Units: fm fm fm fm GeV Ge File generated by GiBUU event 1 out 80 0.000000E+0 7.183791E+0 0.000000E+0 2.584306E+0 0.000000E+0 2.133399E+0 0.000000E+0 6.169842E+0 0.000000E+0 -7.235081E+0 event 1 end 0 event 2 out 80 0.000000E+0 3.456383E+0 0.000000E+0 5.786570E+0 0.000000E+0 6.166525E+0	OSCAR2013 particle_lists t x y z mass Units: fm fm fm fm GeV GeV GeV GeV GeV File generated by GiBUU (https://gibuu event 1 out 80 0.000000E+0 7.183791E+0 3.961299E+0 0.000000E+0 5.118310E+0 -7.210583E-1 0.000000E+0 2.584306E+0 -1.719659E-1 0.000000E+0 2.133399E+0 3.397612E-1 0.000000E+0 6.169842E+0 -1.890743E+0 0.000000E+0 -7.235081E+0 1.162180E+0 event 1 end 0 event 2 out 80 0.000000E+0 3.456383E+0 6.567166E-1 0.000000E+0 5.786570E+0 1.426497E-1 0.000000E+0 6.166525E+0 -3.298759E+0	OSCAR2013 particle_lists t x y z mass p0 px py pz p Units: fm fm fm fm GeV GeV GeV GeV GeV none none File generated by GiBUU (https://gibuu.hepforge.org event 1 out 80 0.00000E+0 7.183791E+0 3.961299E+0 2.780585E+1 0.00000E+0 5.118310E+0 -7.210583E-1 2.525251E+1 0.00000E+0 2.584306E+0 -1.719659E-1 2.539883E+1 0.00000E+0 2.133399E+0 3.397612E-1 2.692126E+1 0.000000E+0 6.169842E+0 -1.890743E+0 2.453204E+1 0.000000E+0 -7.235081E+0 1.162180E+0 -2.613539E+1 event 1 end 0 event 2 out 80 0.000000E+0 3.456383E+0 6.567166E-1 2.607133E+1 0.00000E+0 5.786570E+0 1.426497E-1 2.657666E+1 0.00000E+0 6.166525E+0 -3.298759E+0 2.666215E+1	OSCAR2013 particle_lists t x y z mass p0 px py pz pdg ID Units: fm fm fm fm GeV GeV GeV GeV GeV none none File generated by GiBUU (https://gibuu.hepforge.org) event 1 out 80 0.00000E+0 7.183791E+0 3.961299E+0 2.780585E+1 9.227111E-1 0.00000E+0 5.118310E+0 -7.210583E-1 2.525251E+1 7.657091E-1 0.00000E+0 2.584306E+0 -1.719659E-1 2.539883E+1 7.726719E-1 0.00000E+0 2.133399E+0 3.397612E-1 2.692126E+1 7.944067E-1 0.000000E+0 6.169842E+0 -1.890743E+0 2.453204E+1 8.264268E-1 0.000000E+0 -7.235081E+0 1.162180E+0 -2.613539E+1 7.677036E-1 event 1 end 0 event 2 out 80 0.000000E+0 3.456383E+0 6.567166E-1 2.607133E+1 7.648380E-1 0.00000E+0 5.786570E+0 1.426497E-1 2.657666E+1 7.663178E-1 0.00000E+0 6.166525E+0 -3.298759E+0 2.666215E+1 8.635919E-1	OSCAR2013 particle_lists t x y z mass p0 px py pz pdg ID Units: fm fm fm fm GeV GeV GeV GeV GeV none none File generated by GiBUU (https://gibuu.hepforge.org) event 1 out 80 0.00000E+0 7.183791E+0 3.961299E+0 2.780585E+1 9.227111E-1 0.00000E+0 5.118310E+0 -7.210583E-1 2.525251E+1 7.657091E-1 0.00000E+0 2.584306E+0 -1.719659E-1 2.539883E+1 7.726719E-1 0.000000E+0 2.133399E+0 3.397612E-1 2.692126E+1 7.944067E-1 0.000000E+0 6.169842E+0 -1.890743E+0 2.453204E+1 8.264268E-1 0.000000E+0 -7.235081E+0 1.162180E+0 -2.613539E+1 7.677036E-1 event 1 end 0 event 2 out 80 0.000000E+0 3.456383E+0 6.567166E-1 2.607133E+1 7.648380E-1 0.000000E+0 5.786570E+0 1.426497E-1 2.657666E+1 7.663178E-1 0.000000E+0 6.166525E+0 -3.298759E+0 2.666215E+1 8.635919E-1	OSCAR2013 particle_lists t x y z mass p0 px py pz pdg ID Units: fm fm fm fm GeV GeV GeV GeV GeV none none File generated by GiBUU (https://gibuu.hepforge.org) event 1 out 80 0.000000E+0 7.183791E+0 3.961299E+0 2.780585E+1 9.227111E-1 0.00000E+0 5.118310E+0 -7.210583E-1 2.52251E+1 7.657091E-1 0.00000E+0 2.584306E+0 -1.719659E-1 2.539883E+1 7.726719E-1 0.00000E+0 2.133399E+0 3.397612E-1 2.692126E+1 7.944067E-1 0.000000E+0 6.169842E+0 -1.890743E+0 2.453204E+1 8.264268E-1 0.000000E+0 -7.235081E+0 1.162180E+0 -2.613539E+1 7.677036E-1 1.057389E+0 3.919098E-2 event 1 end 0 event 2 out 80 0.000000E+0 5.786570E+0 1.426497E-1 2.657666E+1 7.663178E-1 0.000000E+0 6.166525E+0 -3.298759E+0 2.666215E+1 8.635919E-1 0.227330E+0 9.365502E-2	OSCAR2013 particle_lists t x y z mass p0 px py pz pdg ID Units: fm fm fm fm GeV GeV GeV GeV GeV GeV none none File generated by GiBUU (https://gibuu.hepforge.org) event 1 out 80 0.000000E+0 7.183791E+0 3.961299E+0 2.780585E+1 9.227111E-1 0.000000E+0 5.118310E+0 -7.210583E-1 2.525251E+1 7.657091E-1 0.000000E+0 2.584306E+0 -1.719659E-1 2.539883E+1 7.726719E-1 0.000000E+0 2.133399E+0 3.397612E-1 2.692126E+1 7.944067E-1 0.000000E+0 6.169842E+0 -1.890743E+0 2.453204E+1 8.264268E-1 0.000000E+0 -7.235081E+0 1.162180E+0 -2.613539E+1 7.677036E-1 0.000000E+0 3.456383E+0 6.567166E-1 2.607133E+1 7.648380E-1 0.000000E+0 5.786570E+0 1.426497E-1 2.657666E+1 7.663178E-1 0.000000E+0 6.166525E+0 -3.298759E+0 2.666215E+1 8.635919E-1	OSCAR2013 particle_lists t x y z mass p0 px py p2 pdg ID Units: fm fm fm GeV GeV GeV GeV GeV rone none File generated by GiBUU (https://gibuu.hepforge.org) event 1 out 80 0.000000E+0 7.18379IE+0 3.961299E+0 2.780585E+1 9.227111E-1 0.00000E+0 5.118310E+0 -7.210583E-1 2.52525IE+1 7.65709IE-1 0.00000E+0 2.584306E+0 -1.719659E-1 2.539883E+1 7.726719E-1 0.00000E+0 2.133399E+0 3.397612E-1 2.692126E+1 7.944067E-1 0.00000E+0 6.169842E+0 -1.890743E+0 2.453204E+1 8.264268E-1 0.00000E+0 -7.235081E+0 1.162180E+0 -2.613539E+1 7.677036E-1 0.00000E+0 -7.235081E+0 1.162180E+0 -2.613539E+1 7.648380E-1 event 1 end 0 0.00000E+0 5.786570E+0 1.426497E-1 2.65766EE+1 7.663178E-1 0.000000E+0 6.166525E+0 -3.298759E+0 2.666215E+1 8.635919E-1 0.200000E+0 6.16668E-2 8.660087E-1 0.200000E+0 6.166555E+0 -3.298759E+0 2.666215E+1 8.635919E-1 0.20000E+0 6.166555E+0 -3.298759E+0 2.666215E+1 8.635919E-1 0.2000E+0 6.166555E+0 -3.298759E+0 2.666	OSCAR2013 particle_lists t x y z mass p0 px py pz pdg ID Units: fm fm fm fm GeV GeV GeV GeV GeV onen none File generated by GiBUU (https://gibuu.hepforge.org) event 1 out 80 0.000000E+0 7.183791E+0 3.961299E+0 2.780585E+1 9.227111E-1 0.000000E+0 2.584306E+0 -1.719659E-1 2.525251E+1 7.657091E-1 0.000000E+0 2.133399E+0 3.397612E-1 2.692126E+1 7.944067E-1 0.000000E+0 4.169842E+0 -1.890743E+0 2.453204E+1 8.264268E-1 0.000000E+0 -7.235081E+0 1.162180E+0 -2.613539E+1 7.677036E-1 event 1 end 0 event 2 out 80 0.00000E+0 5.786570E+0 1.426497E-1 2.657666E+1 7.663178E-1 0.00000E+0 5.786570E+0 1.426497E-1 2.657666E+1 7.663178E-1 0.00000E+0 6.166525E+0 -3.298759E+0 2.666215E+1 8.635919E-1

Simulating Many Accelerated Strongly-interacting Hadrons

A relativistic hadronic transport approach

Home page:	theory.gsi.de/~smash/userguide/current smash-transport.github.io
Download	github.com/smash-transport/smash
Installation	theory.gsi.de/~smash/userguide/current/md_README.html
How to run:	theory.gsi.de/~smash/userguide/current/page_smash_invocation.html
Help Tutorial: Presentations: Animations:	theory.gsi.de/~smash/userguide/current/ D. Oliinychenko (2020), A. Schäfer (2019) smash-transport.github.io/img/movie.mp4
Table of PDG codes:	github.com/smash-transport/smash/blob/master/input/particles.txt

Elementary cross sections:

theory.gsi.de/~smash/analysis_suite/SMASH-3.0rc/cross_sections/

• Main papers:

J. Weil *et al.* "Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions" Physical Review C 94, 054905 (2016), arXiv: 1106.1344

H. Petersen *et al.* "SMASH – A new hadronic transport approach" Nuclear Physics A 982, 399 (2019), arXiv: 1808.06832

• On the NPD FUW's training computer:

```
mkdir smash ; cd smash
cp -r /home/kpiasecki/soft/smash/ctnp/*
```

Let's inspect the input file, e.g. :

less config.yaml

Rich collection of input options (*please consider them thoughtfully*):

https://theory.gsi.de/~smash/userguide/current/doxypage_input.html

Let's run the simulation (here: in the background. Log goes into file: myrun.log)

nohup nice ./runSmash.sh 1>myrun.log 2>&1 &

File with events containing particles can be found in folder outdir :

```
less outdir/particle lists.oscar
```

Input file config.v	vaml:	Modi:
		Collider:
{}		Projectile:
General: Modus:	Collider	Particles: {2212: 28, 2112: 30} #58Ni
Time_Step_Mode:	Fixed	Particles: {2212: 28, 2112: 30} #58Ni
End_Time:	40.0	Impact: Sample: "guadratic"
Randomseed: Nevents:	-1 3	Range: [0.0, 10.0]
Ensembles:	10	E Kin: 1.50
Output:		Calculation_Frame: "center of mass"
Output_Interval	: 20.0	Collisions_Within_Nucleus: True
Format:	["Oscar2013"]	Potentials:
Extended: Only Final:	False "Yes"	Skyrme:

• **Output file** particle_lists.oscar :

#!	#!OSCAR2013 particle_lists t x y z mass p0 px py pz pdg ID charge											
#	# Units: fm fm fm fm GeV GeV GeV GeV Tev none none e											
#	SMASH-1	1.7				\backslash						
#	event 1	l in 394								· · · · · · · · · · · · · · · · · · ·		
-2	.22563	-3.64001	-1.32594	-3.67708	0.938	2.236845	-0.03016814	0.00476330	2.030443	2112	0 0	
-2	.22563	-5.40173	-3.32581	-2.98890	0.938	2.101389	0.05289568	-0.05137847	1.878977	2112	1 0	
-2	.22563	-0.84595	-2.10703	-5.13988	0.938	2.523251	0.22803293	0.04328960	2.330897	2112	2 0	
#	event 1	l out 394										
	0	-3.67003	-1.32120	-1.65681	0.938	2.236845	-0.03016814	0.00476330	2.030443	2112	0 0	
	0	-5.34571	-3.38022	-0.99825	0.938	2.101389	0.05289568	-0.05137847	1.878977	2112	1 0	

Table of PID codes

Ultrarelativistic Quantum Molecular Dynamics

•	Home page:		itp.uni-frankfurt.de/~bleicher/index.html?content=urqmd				
	Download		Home page \rightarrow contact with the authors of the code.				
	Help	Manual: Presentation:	For version 3.4: [Copy]. For version 4.0 [here] M. Bleicher (2018)				
	Installation + h	ow to run:	§4 in Manual				
	Table of PID co	des:	itp.uni-frankfurt.de/~bleicher/content_pages/particle_list.html				
•	Main papers:						
	S.A. Bass <i>et al.</i>	"Microscopic models for Progress in Particle and	or ultrarelativistic heavy ion collisions" Nuclear Physics 41, 225 (1998), arXiv: nucl-th/9803035				
	M. Bleicher <i>et d</i>	al. "Relativistic hadron-hadron Journal of Physics G: Nu	on collisions in the ultra-relativistic quantum molecular dynamics model" Iclear and Particle Physics 25, 1859 (1999), arXiv: hep-ph/9909407				

• On the NPD FUW's training computer:

mkdir urqmd ; cd urqmd
cp -r /home/kpiasecki/soft/urqmd-3.4/ctnp/* .

Let's inspect these input files :

```
less runqmd.bash
less inputfile_NiNi1.5
```

Rich collection of input options is in § 5 of Manual (*please consider them thoughtfully*):

[Manual]

Let's perform the simulation (here: in the background. Log goes into file: mysim.log)

nohup nice ./runqmd.bash 1>mysim.log 2>&1 &

We've got a collection of files with events:

- Extension f13 : info on particles at given time(s) [incl. positions + momenta of last interaction]
- Extension f14 : info on particles at given time(s) [basic / extended]
- Extension f15 : collision history file (binary interaction, decay of resonance, excitation of string)
- Extension f16 : info on decayed particles + surviving particles at last timestep

Let's take a look :

gedit test.fl4 &

Inp	ut file	input	file.	NiNi1.	5	:
-----	---------	-------	-------	--------	---	---

• Input file runqmd.bash :

pro 58 28		
tar 58 28	{ }	
nev 10	export	ftn09=inputfile_NiNi1.5
imp -10.	export	ftn13=test.f13
elb 1.5	export	ftn14=test.f14
tim 50 20	export	ftn15=test.f15
cto 18 1	export	ftn16=test.f16
eos O	export	ftn19=test.f19
	export	ftn20=test.f20
#f13	{ }	
#f14		
#f15		
#f16		
f19		
f20		

• **Output file** test.f14:

UQMD versi projectile: transformati impact_param equation_of_ event#	on: 30 (mass, chan on betas (NN meter_real/mm state: 0 1 random	0400 1000 r) 58 28 N,lab,pro) in/max(fm): E_lab(GeV/u seed: 16004	30400 outpu target: (m 0.0000000 6.28 0.00 1): 0.1500E+0 19089 (auto)	t_file 14 ass, char) 0.6665679 - 10.00 tota sqrt(s)(Ge total_tim	58 28 -0.6665679 al_cross_sect eV): 0.2517E+ ne(fm/c):	ion(mbarn): 0 p_lab(GeV 40 Delta(3141.59 /u): 0.2250E t)_0(fm/c):	20.00	0	2×	I ₃ (isos arge	pin)	
pvec: r0	rx 20	ry	rz	pO	px	ру	pz	m	ityp	213	ch	lclı	ncl	or
73	47 22	4	7 19	0	0					(
0.20000E+2	0.74819E+2	0.36667E+0	0.10799E+2	0.12222E+2	-0.81322E-2	0.91387E-1	0.80353E+0	0.92473E+0	1	1	1	0	0	0
0.20000E+2	0.34167E+2	0.27792E+0	0.59270E+2	0.11642E+2	0.18126E-1	-0.53284E-1	0.68819E+0	0.93800E+0	1	1	1	79	1	0
0.20000E+2	0.78149E+0	-0.30699E+2	0.10397E+2	0.13424E+2	0.88550E-1	0.91699E-2	0.97368E+0	0.92038E+0	1	1	1	0	0	0
{}										l				
119	40	C												
83	54 22	2 7	7 19	0	0									
0.40000E+2	0.74819E+1	0.36667E+0	0.24239E+2	0.12282E+1	-0.81322E-2	0.91318E-1	0.80353E+0	0.92437E+0	1	1	1	0	0	0

Table of PID codes

Parton-Hadron-String Dynamics Transport approach

• Home p	age:	theory.gsi.de/~ebratkov/phsd-project/PHSD/					
Downlo	ad [contact with authors]	theory.gsi.de/~ebratkov/phsd-project/PHSD/index4.html					
Installat	tion + how to run:	§ 1.2 of Manual.					
Help	Manual: Presentations: Animations:	[Copy] E. Bratkovskaya, Home page Au+Au @ 10A GeV , Au+Au @ 35A GeV , Pb+Pb @ 158A GeV					
Table of	PID codes:	Tables 1.1 i 1.2 in Manual					

Main papers:

 \odot PHSD:

W. Cassing, E.L. Bratkovskaya "Parton transport and hadronization from the dynamical quasiparticle point of view", Physical Review C 78, 034919 (2018), arXiv: 0808.0022

 \odot HSD:

W. Cassing, E.L. Bratkovskaya "Hadronic and electromagnetic probes of hot and dense nuclear matter" Physics Reports 308, 65 (1999), arXiv: 1808.06832

• On the NPD FUW's training computer:

```
mkdir phsd ; cd phsd
cp -r /home/kpiasecki/soft/phsd/ctnp/*
```

Let's inspect the input file, e.g. :

less inputPHSD

Rich collection of input options is in § 1.4 of Manual (*please consider them thoughtfully*) :

[Manual]

Let's run the simulation (here: in the background. Log goes into file: mysim.log)

nohup nice ./phsd 1>mysim.log 2>&1 &

We've got a collection of files with events. In between, the file phsd.dat with subsequent events containing particles :

less phsd.dat

PHSD Model

• Input file input PHSD :

1,	MASSTA: target mass
1,	MSTAPR: protons in target
58,	MASSPR: projectile mass
28,	MSPRPR: protons in projectile
1.9,	ELAB: (=4060000. Lab energy per nucleon LHC),=21300 RHIC,=13433049 (5 TeV) = 26120000 (7 TeV)
150,	BMIN: minimal impact parameter in fm ! no effect for p+A
150,	BMAX: maximal impact parameter in fm ! no effect for p+A
0.5,	DeltaB: impact parameter step in fm (used only if IBweight MC=0)
150,	NUM: optimized number of parallel ensambles ("events")
10,	ISUBS: number of subsequent runs
{ }	

• Output file phsd.dat :

	Table of	PII	D codes							
1										
	125	1	1 0.6	427918E	E+01 1					
	27 -0.204	536	E+00 0.41	8460E+C	0 0.317638E+00	0.675407E+00	0.318581E+00	0.446779E+00	0.137598E+00	0.671028E+00
	2212	1	-0.2556858	7E+00 -	-0.16134205E+00	-0.12625135E+01	0.16016214E+	01 1	51	
	2112	0	-0.2932405	2E+00	0.86835183E-01	-0.75108749E+00	0.12399625E+	01 1	0	
	2212	1	0.6190467	3E-01	0.12047570E+00	-0.11011121E+01	0.14528037E+	01 -1	0	
	2212	1	-0.2551631	3E+00	0.11847670E+00	-0.90409690E+00	0.13328092E+	01 -1	0	
	2212	1	0.4348593	8E-02	0.11743490E-01	-0.73762423E+00	0.11933526E+	01 -1	0	
	2212	1	-0.6957337	3E-01 -	-0.43003834E-02	-0.66405290E+00	0.11513771E+	01 -1	0	
()									
	1 11	0	0.3778111	6E-01	0.11493234E+00	-0.78976639E-01	0.19979531E+	00 2	20	
	129	1	2 0.6	4279118	3E+01 1					
/	39 0.840	226	E+00 0.29	5869E+C)0 -0.752309E+00) 0.163571E+00	-0.783561E+00	0.221714E+00	-0.245801E+00	0.586710E+00
(2212	1	-0.1448935	1E+00	0.92953674E-01	-0.11530347E+01	0.14963180E+	01 1	0	
\searrow	2212	1	-0.1014247	5E+00 -	-0.41412741E-01	-0.11190853E+01	0.14643080E+	01 1	0	
	2212	1	0.1476493	3E+00 -	-0.58835067E-01	-0.90158129E+00	0.13107077E+	01 1	0	
			p _x		$oldsymbol{ ho}_{_{ m Y}}$	pz	E			
	charg	e								

Naming. The model was first published in 1999 as JAM. It focused on the region of T_{Beam} ~ 10A GeV, so details of binding energy (EoS) were not so important.
 Since ~ 2019 the EoS has been carefully modelled and the code was named RQMD.RMF. In 2022 the code was ported to C++. The name is "JAM2" and "RQMD.RMF" is its variant.

Home pag	ge:	[GitLab] (Jam2)	[link] for old Jam1
Download	d & Installation	[GitLab] (Jam2)	
Help.	Short Manual (txt) For Jam1: old but explains a lot:	[GitLab] [Copy]	
Table of P	PID codes: [File	e 1], [File 2] (retrieved pages)	or Appendix A in old Manual

Main papers:

- ⊙ RQMD.RMF approach:
 - Y. Nara, "Sensitivity of the excitation functions of collective flow to relativistic scalar and vector meson interactions in the relativistic quantum molecular dynamics model RQMD.RMF" Physical Review C 100, 054902 (2019), arXiv: 1906.03537
- \odot JAM (1st paper):
 - Y. Nara et al. "Relativistic nuclear collisions at 10A GeV energies from p+Be to Au+Au with the hadronic cascade model" Physical Review C 64, 024901 (1999), arXiv: nucl-th/9904059

• On the NPD FUW's training computer:

```
mkdir jam2 ; cd jam2
cp -r /home/kpiasecki/soft/jam2/ctnp/*
```

Let's inspect the input file, e.g. :

```
less jam.inp
```

Collection of input options (*please consider them thoughtfully*):

```
[This short Manual]
```

(for Jam1, see § 4.6 of this Manual)

Let's run the simulation (here: in the background. Log goes into file mysim.log)

nohup nice ./runjam.sh 1>mysim.log 2>&1 &

We've got the file phase.dat.gz with subsequent events containing particles. Unzip & view:

```
gzip -d phase.dat.gz
less phase.dat
```

• Input file jam.inp :

Main:numberOfEvents = 10
Random:seed = 3668752

Cascade:TimeStepSize = 0.10 Cascade:TimeStep = 200

MeanField:mode=14
MeanField:potentialType = 3
MeanField:EoS= 32 # =31:NS1, =32:NS2 ...
MeanField:gaussWidth = 2.0

```
111:mayDecay = off ! pi0
221:mayDecay = off ! eta
...
Beams:beamA = 197Au
Beams:beamB = 197Au
Beams:eCM = 4.5
#Beams:beamA = 208Pb
#Beams:beamB = 208Pb
#Beams:eLab = 158
```

```
Beams:bmin = 4.6
Beams:bmax = 9.4
```

• **Output file** phase.dat :

Table of PID codes

#		200	0	0.821	L65 0.67	1.3	35698 2						
#			1	223	25	21 9.1	10 36	58 4	3				
1	2112	1	9.	.3960E-2	-7.4691E-2	4.6286E-3	-9.9425E-2	1.3700E+0	-7.8427E+0	3.5348E+0	-1.6458E+1	3.0200E+1	3.0200E+1
1	2112	1	9.	.3960E-2	-4.2849E-2	2.0180E-2	-8.9590E-2	1.3145E+0	-6.7592E+0	9.4156E+0	-1.7980E+1	3.0200E+1	3.0200E+1
1	2212	1	9.	.3960E-2	-1.1528E-2	2.2750E-2	-8.4282E-2	1.2676E+0	-7.5301E+0	5.3435E+0	-1.6708E+1	3.0200E+1	3.0200E+1
1	2112	5	9.	.3957E-2	3.0711E-2	2.4778E-2	-2.6403E-2	1.0527E+0	4.7449E+0	5.2862E+0	-4.7811E+0	3.0200E+1	3.0200E+1
{.	}								*				
1	111	8	(1.	.3498E-1)	1.4090E-1	-1.5388E-1	-1.4472E-1	2.8757E-1	2.5947E+0	-5.0680E+0	-8.0321E+0	3.0200E+1	3.0200E+1
#			2	227	78	62 7.3	12 85	152 12	4				
1	2212	1	9.	.3960E-1	-2.1659E-2	1.1828E-1	-5.13744E-1	1.0776E+0	-6.4530E+0	4.1473E+0	-9.0628E+0	3.0200E+1	3.0200E+1
1	2212	1	9.	.3960E-1	4.0508E-2	-1.0861E-1	-7.09055E-1	1.1827E+0	6.2874E-2	-6.4578E-1	-1.1831E+1	3.0200E+1	3.0200E+1
						1							
				¥		,		_					
			r	nass	ρ_{x}	$ ho_{_{ m Y}}$	$\boldsymbol{\rho}_{Z}$	E					