

 (\boxtimes)

Zakład Fizyki Jądrowej Uniwersytet Warszawski

Narzędzia Komputerowe z Fizyki Jądrowej

Mikroskopowe modele transportu (zarys)

Krzysztof Piasecki

- 1. Rodzaj kinematyki i adekwatne stopnie swobody
- 2. Energia jądra atomowego i materii jądrowej
- 3. Równanie transportu BUU ze zderzeniami
- 4. Rodzina QMD. Oddziaływania między nukleonami
- 5. Podsumowanie cech modeli i informacje dodatkowe
- 6. Charakterystyka wybranych modeli transportu: GiBUU, UrQMD, SMASH, PHSD, RQMD.RMF

Symulacja QMD zderzenia Au+Au przy energii kinetycznej wiązki T_B = 15 MeV/nukleon (15A MeV)

[www.fuw.edu.pl/~kpias/rhic/QMD_Tb.015_b08_010.mpg]

- Symulacja PHSD zderzenia Au+Au przy energii kinetycznej wiązki T_B = 10 GeV/nukleon (10A GeV)
 - [theory.gsi.de/~ebratkov/phsd-project/PHSD/documents/movie_AuAu_10AGeV.mp4]

 (\boxtimes)

Jak podstawowe parametry zmieniają się z energią wiązki?

T _{beam} / nukleon	γ	β	λ _{de Broglie'a} [fm]
5 MeV	1.005	0.10	13
50 MeV	1.05	0.3	4
500 MeV	1.5	0.75	1
5 GeV	6	0.99	0.2
50 GeV	55	0.9998	0.02
500 GeV	530	0.999998	0.002

Obszar pola średniego: nukleon "widzi" jądro jako całość

Opis hadron-hadron Produkcja hadronów w kanałach hh

Procesy kwarkowo-gluonowe

• Jak to wyliczyć?

$$T_{wiqzki} = m_N c^2 (\gamma - 1) \qquad \longrightarrow \qquad \gamma = 1 + \frac{T}{m_N c^2} \qquad \lambda_{de Broglie (N)} = \frac{h}{p_N} = \frac{\hbar c \cdot 2\pi}{m_N c^2 \cdot \gamma \beta}$$
$$\beta = \sqrt{1 - \gamma^{-2}}$$

- Z rosnącą energią wiązki narasta istotność kinematyki relatywistycznej (np. dla $T_{\text{beam}} = 500 \cdot \text{A MeV}$, współczynnik $\gamma = 1,5$).
- Z energią wiązki zmienia się też długość fali de Broglie'a, a więc i adekwatne dla skali obiekty (tzw. stopnie swobody) :

Przy <u>niskich energiach</u> oddziaływanie wybranego nukleonu z jądrem opisuje się przez **potencjał**, pochodzący od całego jądra (tzw. *Pole średnie / Mean field*).

Przy <u>wyższych energiach</u> ($T_{beam} \gtrsim 100 \cdot A \text{ MeV}$) pojawiają się zderzenia nukleon-nukleon (NN). Zderzenia te mogą prowadzić do produkcji nowych hadronów (h) , np.:

mezony π , K, ϕ , J/ ψ , D ... bariony N, Δ , Λ , Σ , Ξ ...

Hadrony te poruszają się dalej w materii jądrowej – i mogą zderzać się z innymi hadronami. Zachodzą zderzenia dwuciałowe $(h_1h_2 \rightarrow h_3h_4)$, trójciałowe $(h_1h_2 \rightarrow h_3h_4h_5)$, ... Prawdopodobieństwa tych procesów są opisywane przez **zależności przekrojów czynnych od energii**.

Przy <u>energiach ultrarelatywistycznych</u> ($T_{beam} \geq 5 \cdot A \text{ GeV}$) pojawiają się procesy kwarkowo-gluonowe.

Ramy modelu powinny być adekwatne do energii wiązki.

- Oddziaływanie proton-neutron (p-n) może prowadzić do powstania *deuteronu* (d). Oddziaływanie d-n może utworzyć *tryton*, a deuteron-proton: ³*He*. Itd... Są to tzw *lekkie cząstki naładowane* (*Light Charged Particles, LCP, klastry*).
- Przy $T_{\text{beam}} \sim 2 \cdot \text{A GeV}$, aż ¼ protonów jest związana w LCP. Deuterony śladowo widoczne nawet w LHC.

Zwykle, jeśli w modelach występują LCP, to są one składane z neutronów i protonów już po symulacji.
 Pełny opis produkcji i dynamiki LCP jest dotąd nieobecny. Próby: *PHQMD* (*w trakcie rozwoju*).

Jeśli opis LCP jest istotny, trzeba rozważyć moc predykcyjną modeli-kandydatów.

Modele transportu na przestrzeni dekad

Modeli jest wiele (na schemacie – niektóre pomięte), ale szereg z nich dziedziczy po sobie główne zasady działania. Opiszemy dwie gałęzie: rodzina modeli **BUU** i **QMD**.

Energia w jądrze atomowym (szkic poglądowy)

Jądro jako całość:

$$\int \frac{1}{\sqrt{1-c^2}} = \int \frac{1}{\sqrt{1-c^2}} m_{N,i}c^2 - B_j$$

$$\int \frac{1}{\sqrt{1-c^2}} = m_N c^2 - \frac{B_{jqdra}}{A}$$

$$\approx 8 \text{ MeV}$$

Zakaz Pauliego \rightarrow nukleony muszą się poruszać, $\overline{p}_i \neq \overline{0}$.

$$E_J = \sum_i e_i$$

$$e_i = \sqrt{\left(m_{N,i}c^2\right)^2 + \left(\vec{p}_ic\right)^2} + \frac{U_i}{A}$$

W rzeczywistości wzory są bardziej złożone.

- Dochodzi oddziaływanie coulombowskie (ϕ , $\overline{\text{A}})$.
- ② W ramach QCD z oddziaływaniami silnymi, dochodzą tzw. potencjały skalarne i wektorowe, które m.in. zmieniają masę nukleonu w materii.

 $e_i = \sqrt{(m_{N,i}c^2 - V_s)^2 + (\vec{p}_i c - \vec{V}_w)^2} + V_{W,0}$

(nie na pamięć :))

Realne jądro atomowe: zbiór nukleonów oddziałujących silnie, słabo i kulombowsko, o skończonej N i V. Nukleony z ∞ wpadają do studni potencjału (energia wiązania $E_{_{\rm B}}$), w której nabierają energii kinetycznej (ruch Fermiego). W modelu kroplowym:

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} \pm \delta(A,Z)$$

Dla przeciętnego jądra atomowego: $E_{\rm p}/A \approx 8$ MeV.

Materia jądrowa: abstrakcyjna materia złożona z nukleonów o nieskończonej N i V, ale skończonej ρ . Stopień związania zależy od: temperatury, gęstości, proporcji n/p.

$$E_B(\rho = \rho_0, T = 0) = a_V A \qquad \dots \qquad - a_A \frac{(N-Z)}{A}$$

($\rho_0 = 0.17 \text{ fm}^{-3}$, "gęstość normalna materii jądrowej")

Dla symetrycznej (N = Z) materii jądrowej w stanie normalnym: $E_{_{R}}/A \approx 16$ MeV.

Podczas zderzenia materia gęstnieje i rozrzedza się. Jak $E_{_{\rm R}}/A$ zależy od gęstości ρ ? Pewne są 2 punkty:

[1] dla $\rho = 0$ (nukleon swobodny), $E_{_{\rm B}}/A = 0$ MeV

- [2] dla $\rho = \rho_0$ (stabilne jądro), $E_{\rm B}/A = -16 \,{\rm MeV}$
- Można wyprowadzać modele oddziaływań, które odtwarzają obserwacje [1,2]. Można też wstawić do modelu transportu jakąś zależność funkcyjną, zgodną z [1, 2]. Miejscem testu są finalne rozkłady kinematyczne cząstek: czy/kiedy model zgodzi się z eksperymentem?

Równanie stanu (EoS), szkic

Równanie stanu materii jądrowej:

$$\epsilon \equiv \frac{E}{A}(\rho, T) = m_n c^2 + \epsilon_{Kin}(\rho, T=0) + u(\rho, T=0) + \epsilon_{Kin}(\rho, T=0) + c(\rho, T=0) + c(\rho, T=0) + c(\rho, T=0)$$

 Warto porównać wykres do dynamiki zderzenia jąder. Prześledźmy:

$$\rho_0 \rightarrow 3\rho_0 \rightarrow \rho_0$$

Wielkości termodynamiczne:

moduł sprężystości

ciśnienie

 $p = \dots = -\rho \frac{\partial \epsilon}{\partial \rho}\Big|_{T=0}$ $\kappa = \dots = +\rho \frac{\partial p}{\partial \rho}\Big|_{T=0}$

W stanie o gęstości normalnej ($\rho = \rho_0$) :

$$\kappa(\rho_0) = \dots = 9 \left. \frac{d^2 \epsilon}{d \rho^2} \right|_{\rho = \rho_0, T = 0}$$

(czyli: \sim krzywizna \in wokół $\rho = \rho_0$)

• W badaniach jądrowych:

moduł sprężystości

$$\alpha \equiv 9 \left. \frac{\partial p}{\partial \rho} \right|_{T=0}$$

Wysokie (niskie) K : "**hard**" ("**soft**") **EoS**

Typowo w publikacjach: "soft" : $\kappa \approx 200$ MeV, "hard": $\kappa \approx 380$ MeV Równanie transportu Bolzmanna–Ühlinga–Uhlenbecka. Przykładowe wprowadzenia:

B.Serot, J.Walecka, arXiv:nucl/th/9701058 rozdział 7A C.Hartnack et al., Eur. Phys. J. A 1, 151 (1998)

<u>Zarys (uproszczony</u>). rozważmy N cząstek poruszających się w przestrzeni fazowej.
 Ich rozkład opisuje funkcja f(r, p, t). Cząstki są w polu opisanym potencjałem U (średnie pole; cecha BUU).

$$N = \int d^{3}r \int d^{3}p \ f(\mathbf{r}, \mathbf{p}, t)$$

$$df \equiv \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial r_{i}} dr_{i} + \frac{\partial f}{\partial p_{i}} dp_{i}$$

$$\begin{cases} \frac{\partial f}{\partial r_{i}} \ dr_{i} = (\nabla_{r}f) \cdot dr_{i} \\ d\mathbf{r} = \mathbf{v} dt \\ d\mathbf{p} = -\nabla_{r}U dt \end{cases}$$

Potencjał U średniego pola:

• Gdyby *N* = *const*, to byłoby:

$$\frac{df}{dt} = 0$$

 $U(\vec{p}) = \delta \frac{8}{\rho_0 (2\pi)^3} \int d^3 p' \frac{f(\mathbf{r}, \mathbf{p}')}{1 + \left(\frac{\mathbf{p} - \mathbf{p}'}{\Lambda}\right)^2}$

(Człon potencjału zależny od pędu, przykładowa parametryzacja)

• ... ale są jeszcze **zderzenia**. Rozważmy proces dwuciałowy (1,2) \rightarrow (3,4). Prawdopodobieństwo zderzenia opisuje przekrój czynny σ (lub d σ /d Ω). Do zderzenia dochodzi, gdy:

$$d < \sqrt{\frac{\sigma_{NN}}{\pi}}$$

• Zderzenie generuje jednostkową stratę w komórce pędów $p_1 i p_2$ na rzecz $p_3 i p_4$.

Ale trzeba uwzględnić zakaz Pauliego (pędy p₃ i p₄ nie zawsze są dostępne).
 Uwzględnia się to probabilistycznie:

 $f(\mathbf{r},\mathbf{p},t)$ to zarazem prawdopodobieństwo obsadzenia pędu p. $1 - f(\mathbf{r},\mathbf{p},t)$ to prawdopodobieństwo, że komórka pędu p jest wolna.

$$I_{coll} = \sum_{\substack{kanaly\\reakcji}} \int \frac{d^3 p_2 \ d^3 p_3 \ d^3 p_4}{(2\pi)^6} \ \frac{d \sigma_{12 \rightarrow 34}}{d \Omega'} \cdot \left[(1-f_1)(1-f_2)f_3f_4 - f_1f_2(1-f_3)(1-f_4) \right] \cdot \underbrace{\delta(p_1 + p_2 - p_3 - p_4)}_{Zyski} \\ I_{coll} = \sum_{\substack{kanaly\\reakcji}} \int \frac{d^3 p_2 \ d^3 p_3 \ d^3 p_4}{(2\pi)^6} \ \frac{d \sigma_{12 \rightarrow 34}}{d \Omega'} \cdot \left[(1-f_1)(1-f_2)f_3f_4 - f_1f_2(1-f_3)(1-f_4) \right] \cdot \underbrace{\delta(p_1 + p_2 - p_3 - p_4)}_{Zasada} \\ I_{coll} = \sum_{\substack{kanaly\\reakcji}} \int \frac{d^3 p_2 \ d^3 p_3 \ d^3 p_4}{(2\pi)^6} \ \frac{d \sigma_{12 \rightarrow 34}}{d \Omega'} \cdot \left[(1-f_1)(1-f_2)f_3f_4 - f_1f_2(1-f_3)(1-f_4) \right] \cdot \underbrace{\delta(p_1 + p_2 - p_3 - p_4)}_{Zasada} \\ I_{coll} = \sum_{\substack{kanaly\\reakcji}} \int \frac{d^3 p_2 \ d^3 p_3 \ d^3 p_4}{(2\pi)^6} \ \frac{d \sigma_{12 \rightarrow 34}}{d \Omega'} \cdot \left[(1-f_1)(1-f_2)f_3f_4 - f_1f_2(1-f_3)(1-f_4) \right] \cdot \underbrace{\delta(p_1 + p_2 - p_3 - p_4)}_{Zasada} \\ I_{coll} = \sum_{\substack{kanaly\\reakcji}} \int \frac{d^3 p_2 \ d^3 p_3 \ d^3 p_4}{(2\pi)^6} \ \frac{d \sigma_{12 \rightarrow 34}}{d \Omega'} \cdot \left[(1-f_1)(1-f_2)f_3f_4 - f_1f_2(1-f_3)(1-f_4) \right] \cdot \underbrace{\delta(p_1 + p_2 - p_3 - p_4)}_{Zasada} \\ I_{coll} = \sum_{\substack{kanaly\\reakcji}} \int \frac{d^3 p_2 \ d^3 p_3 \ d^3 p_4}{(2\pi)^6} \ \frac{d \sigma_{12 \rightarrow 34}}{d \Omega'} \cdot \left[(1-f_1)(1-f_2)f_3f_4 - f_1f_2(1-f_3)(1-f_4) \right] \cdot \underbrace{\delta(p_1 + p_2 - p_3 - p_4)}_{Zasada} \\ I_{coll} = \sum_{\substack{kanaly\\reakcji}} \int \frac{d \sigma_{12} \ d \sigma_{12}}{(2\pi)^6} \ \frac{d \sigma_{12} \ d \sigma_{12}}{d \Omega'} \cdot \left[(1-f_1)(1-f_2)f_3f_4 - f_1f_2(1-f_3)(1-f_4) \right] \cdot \underbrace{\delta(p_1 + p_2 - p_3 - p_4)}_{Zasada} \\ I_{coll} = \sum_{\substack{kanaly\\reakcji}} \int \frac{d \sigma_{12} \ d \sigma_{12}}{(2\pi)^6} \ \frac{d \sigma_{12} \ d \sigma_{12}}{d \sigma_{12}} \cdot \left[(1-f_1)(1-f_2)f_3f_4 - f_1f_2(1-f_3)(1-f_4) \right] \cdot \underbrace{\delta(p_1 + p_2 - p_3 - p_4)}_{Zasada} \\ I_{coll} = \sum_{\substack{kanaly\\reakcji}} \int \frac{d \sigma_{12} \ d \sigma_{12}}{d \sigma_{12}} \ \frac{d \sigma_{12} \ d \sigma_{12}}{d \sigma_{12}} \cdot \left[(1-f_1)(1-f_2)f_3f_4 - f_1f_2(1-f_3)(1-f_4) \right] \cdot \underbrace{\delta(p_1 + p_2 - p_3 - p_4)}_{Zasada} \\ I_{coll} = \sum_{\substack{kanaly\\reakcji}} \int \frac{d \sigma_{12} \ d \sigma_{12}}{d \sigma_{12}} \cdot \left[(1-f_1)(1-f_2)f_3f_4 - f_1f_2(1-f_3)(1-f_4) \right] \cdot \underbrace{\delta(p_1 + p_2 - p_3 - p_4)}_{Zasada} \\ I_{coll} = \sum_{\substack{kanaly\\reakcji}} \int \frac{d \sigma_{12} \ d \sigma_{12}}{d \sigma_{12}} \cdot \left[(1-f_1)(1-f_2)f_3f_4 - f_1f_2(1-f_3)(1-f_4) \right] \cdot \underbrace{\delta(p_1 + p_4)}_{Zasada} \\ I_{$$

• Równanie **BUU** (Boltzmann-Uehling-Uhlenbeck) w skrócie:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = I_{col}$$

W każdym zderzeniu przygotowuje się rozkład *f* (*r*, *p*, *t*) *w stanie początkowym*:

$$f(\mathbf{r}, \mathbf{p}, t) = \sum_{i=1}^{A_{pocisk} + A_{tarcza}} \delta(\mathbf{r} - \mathbf{r}_i) \ \delta(\mathbf{p} - \mathbf{p}_i)$$

Inicjalizacja położeń

Bazowo: rozkład Woodsa-Saxona z parametrami na podst. doświadczalnego rozkładu ładunków

TABLE I. This table summarizes the specific parameters used in the Woods–Saxon initialization for some nuclei.

Nucleus	Α	<i>r</i> ⁰ [fm]	<i>d</i> [fm]
U	238	6.86	0.556
Pb	208	6.67	0.54
Au	197	6.38	0.535
Cu	63	4.20641	0.597

• Inicjalizacja pędów

Bazowo: dla nukleonów w odległości r od środka, p losowane z jednorodnej sfery, tj: $p \in [0, p_{\text{Fermi}}(r)]$

$$p_{\text{Fermi}}(\vec{r}) = \hbar \left[\frac{3}{2} \pi^2 \rho(\vec{r})
ight]^{1/3}$$

Typowo, w środku jądra pęd Fermiego ≈ 270 MeV/c .

3

Ruchem danej cząstki steruje hamiltonian 1-ciałowy :

Wariant nierelatywistyczny: $H = \frac{p^2}{2m} + U$ (w uproszczeniu:
bez pól EM i silnych)Wariant relatywistyczny: $H = \sqrt{p^2 + m^2} + U$)

• *W kolejnych krokach czasowych* (*n*) położenie i pęd *i*-tej cząstki ewoluuje zgodnie z: (wariant nierelat.)

$$\dot{\boldsymbol{r}}_{i} = \nabla_{\boldsymbol{p}_{i}} H$$

$$\dot{\boldsymbol{p}}_{i} = -\nabla_{\boldsymbol{r}_{i}} H$$

$$\boldsymbol{p}_{i}(n+1) = \boldsymbol{r}_{i}(n) + \frac{\boldsymbol{p}_{i}(n+\frac{1}{2})}{m} \cdot \Delta t + \nabla_{\boldsymbol{p}_{i}} U_{i} \cdot \Delta t$$

$$\boldsymbol{p}_{i}(n+\frac{1}{2}) = \boldsymbol{p}_{i}(n-\frac{1}{2}) - \nabla_{\boldsymbol{r}_{i}} U_{i}(n) \cdot \Delta t$$

 \oplus zderzenia: jeśli $d < d_{\min}$ i brak zakazu Pauliego \rightarrow to $\delta(p_1)$ i $\delta(p_2)$ przechodzą w $\delta(p_3)$ i $\delta(p_4)$

 <u>Uwaga</u>: W BUU jedyne oddziaływanie typu potencjałowego (ciągłe) – to średnie pole. Brak potencjałowego oddziaływania nukleon–nukleon (oprócz zderzeń).

 \rightarrow BUU zwykle nic nie wie o łączeniu się sąsiednich nukleonów w *LCP* (d, t, ³He, ...).

W modelach QMD obiektami są pakiety falowe nukleonów:

 $\Psi = \prod_{i} \psi_{i} \sim \prod_{i} \exp \left[-\frac{(\boldsymbol{x}_{i} - \boldsymbol{r}_{i}(t))^{2}}{L}\right] \cdot \exp \left[i \boldsymbol{x}_{i} \boldsymbol{p}_{i}(t)\right]$

np. C.Hartnack et al. Eur. Phys. J. A 1, 151 (1998) arxiv.org/abs/nucl-th/9811015

Parametr L opisuje rozmiar paczki. Wyznacza się go tak, by Ψ opisywała zanik gęstości na brzegu jądra.

• Cząstka 'i' porusza się w potencjale \oplus się zderza. Potencjał budowany jest jednak z sumy potencjałów od cząstek 'j' otaczających cząstkę 'i'. Hamiltonian kwantowy: $\langle H \rangle = \langle T \rangle + \langle V \rangle = \sum_{i} T_{i} + \sum_{i} \sum_{j>i} \int \psi_{i}^{*} \psi_{j}^{*} V^{ij}(x_{1}, x_{2}) \psi_{i} \psi_{j} dx_{1} dx_{2}$ Równania ruchu: $\begin{pmatrix} \dot{r}_{i} = \frac{p_{i}}{m} + \nabla_{p_{i}} \sum_{j} \langle V_{ij} \rangle \\ \dot{p}_{i} = -\nabla_{r_{i}} \sum_{j \neq i} \langle V_{ij} \rangle \end{pmatrix}$ (numerycznie śledzi się centroidy paczek falowych) • Oddziaływania N_{i} - N_{j} : $V_{ij} = V_{ij}^{Skyrme} + V_{ij}^{Yukawa} + V_{ij}^{pedowe} + V_{ij}^{Coulomb} + V_{ij}^{Asymetrii pn}$

$$= \begin{bmatrix} t_1 + t_2 \ \rho^{\gamma-1}(\mathbf{x}_i) \end{bmatrix} \cdot \delta(\mathbf{x}_i - \mathbf{x}_j) + t_3 \frac{\exp \left\{ -|\mathbf{x}_i - \mathbf{x}_j|/\mu \right\}}{|\mathbf{x}_i - \mathbf{x}_j|/\mu} + t_4 \ln^2 \left(1 + t_5 (\mathbf{p}_i - \mathbf{p}_j)^2 \right) \cdot \delta(\mathbf{x}_i - \mathbf{x}_j) + \frac{Z_i Z_j e^2}{\{\mathbf{x}_i - \mathbf{x}_j\}} + t_6 \frac{1}{\rho_0} T_i^3 T_j^3 \cdot \delta(\mathbf{x}_i - \mathbf{x}_j)$$

• Z *referatu* Ch. Hartnacka i J. Aichelena (2015), autorów IQMD:

Definition of the potentials

$$\begin{split} V^{ij} &= G^{ij} + V^{ij}_{\text{Coul}} \\ &= V^{ij}_{\text{Skyrme}} + V^{ij}_{\text{Yuk}} V^{ij}_{\text{mdi}} + V^{ij}_{\text{Coul}} + V^{ij}_{\text{sym}} \\ &= t_1 \delta(\vec{x}_i - \vec{x}_j) + t_2 \delta(\vec{x}_i - \vec{x}_j) \rho^{\gamma - 1}(\vec{x}_i) + t_3 \frac{\exp\{-|\vec{x}_i - \vec{x}_j|/\mu\}}{|\vec{x}_i - \vec{x}_j|/\mu} + t_4 \ln^2(1 + t_5(\vec{p}_i - \vec{p}_j)^2) \delta(\vec{x}_i - \vec{x}_j) + \frac{Z_i Z_j e^2}{|\vec{x}_i - \vec{x}_j|} + t_6 \frac{1}{\varrho_0} T_3^i T_3^j \delta(\vec{r}_i - \vec{r}_j) \end{split}$$

Bethe Weizsaecker – mass formula:

Volume term+Surface term+Coulomb term+symmetry term(nucl. eos)(+pairing term not included)(asy- eos)

• **Zderzenie**. Zachodzi, gdy środki pakietów 2 nukleonów zbliżą się bardziej niż:

$$d < \sqrt{\frac{\sigma_{NN}}{\pi}}$$

Zakaz Pauliego uwzględniany.

 Wybierając komponenty V_{ij}: V^{Skyrme} + V^{Yukawa} + V^{Pędowe}, można poprzez odpowiednią konwolucję "odtworzyć" równanie stanu materii jądrowej.

$$U(\rho) = \alpha \frac{\rho_{\text{int}}}{\rho_0} + \beta \left(\frac{\rho_{\text{int}}}{\rho_0}\right)^{\gamma} + U^{P \notin down}$$

$$U^{Pedowe} = \delta \cdot \ln^2 (\epsilon \cdot (\Delta p)^2 + 1)$$

 Δp : pęd cząstki względem $\langle p \rangle$ ośrodka

Można tak dobrać parametry V_{ij}, aby symulacja opisywała dane równanie stanu, (w tym "wytworzyć" scenariusze hard/soft)

	α (MeV)	$\beta ~({\rm MeV})$	γ	δ (MeV)
\mathbf{S}	-356	303	1.17	
\mathbf{SM}	-390	320	1.14	1.57
Η	-124	71	2.00	
HM	-130	59	2.09	1.57

• Wariant Isospin-QMD (IQMD) :

- Osobne traktowanie n, p, Δ, π
- Możliwe oddziaływanie proton-neutron
- można opisać asymetryczną (n \neq p) część energii wiązania

IQMD dostarcza ram do opisu łączenia nukleonów w LCP (klastry).

Z uwagi na skracanie się $\lambda_{de Broglie}$ z *E* wiązki, zwiększając energię – z obszaru hadronowego przechodzimy do obszaru kwarków i gluonów (QG). Modele transportu starają się opisywać obie te dynamiki.

Niektóre modele proponują całościowo dodanie wstępnego etapu zderzenia jako fazy QGP, przechodząc do **opisu hydronamicznego**, po którym następuje **hadronizacja** (płyn QG \rightarrow gaz hadronów).

Zarazem większość modeli już na etapie hadronowym włącza uwzględnianie stopni swobody QG, gdy w indywidualnym zderzeniu hadron-hadron \sqrt{s} przekroczy wartość progową.

 Opis kanałów QG: tzw. "struny". Między 2 kwarkami powstaje odcinek ("struna") z jednorodnym rozkładem energii. Struna zostaje rozkawałkowana na porcje, z których powstają się hadrony. • Charakterystyka głównych cech wybranych, "aktualnych na rynku" modeli transportu

Cechy	GiBUU	IQMD	UrQMD	RQMD.RMF	SMASH	PHSD
Kinematyka relatywistyczna	opcjonalnie	n,p : nie K : tak	tak	tak	tak	tak
Potencjał = średnie pole	tak	n,p : nie K : tak	nie	Opcjonalnie	tak	tak
Potencjał = suma pot. nukleonów	nie	tak	tak	Opcjonalnie	nie	nie
Potencjał elektromagnetyczny	tak	tak	tak dla barionów nie dla π	Opcjonalnie	nie	nie
Potencjał zależny od pędu	tak	tak	nie	tak	nie	tak
Tworzenie LCP (klastrów)	na końcu symulacji	na końcu symulacji	nie	na końcu symulacji	na końcu symulacji	nie
Zmiany mas hadronów w ośrodku jądrowym	tak	tak	nie	Bariony: tak K, π: nie	nie	tak
Faza kwark/gluon opisana "strunami"	tak	nie	tak	tak	tak	tak

• <u>Fakt</u>: każdy iloczyn skalarny dwóch czterowektorów jest niezmiennikiem Transformacji Lorentza.

$$p_{\mu}p^{\mu} = E^2 - \vec{p}^2 = const \rightarrow akurat jasne, bo: E^2 - \vec{p}^2 = m^2$$

 $\left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} \vec{p}_{i}\right)^{2} = \text{niezmiennik} \equiv \underbrace{s}_{s}^{*}$ a jednocześnie: $\left(\begin{array}{c}\sum_{i} E_{i} = const\\\sum_{i} \vec{p}_{i} = const\end{array}\right)^{*} \text{ Jest nie tylko niezmiennikiem.}$ Jest też całką ruchu [= const(t)].

• Układ środka masy (CM) :

 $\sqrt{s} = \sum_{i,CM} E_{i,CM}$

$$\sum_{i} \vec{p}_{i,CM} = \vec{0}$$

$$s \equiv \left(\sum_{i} E_{i,CM}\right)^{2} - \left(\sum_{i} \vec{p}_{i,CM}\right)^{2} = \left(\sum_{i} E_{i,CM}\right)^{2}$$

 \sqrt{s} nazywamy **"energią dostępną"**. Jest to faktycznie suma energii układu ciał w układzie CM.

• W zderzeniach na stacjonarnej tarczy, aby podgrzać układ (w CM), dostarczamy energii T_{beam} (w Lab). Rozważmy zderzenie nukleon-nukleon (NN) na stacjonarnej tarczy. Jak przeliczyć $T_{\text{Beam}} \rightarrow \sqrt{s}$?

 \sqrt{s} jest powszechnie używana w zderzeniu wiązek przeciwbieżnych. Dlaczego?

(5)

Pędy sumują się do $\overline{0}$. Otrzymujemy:

$$\sqrt{s} = \sum_{i} E_{i,CM} = 2 \cdot (m_N + T_{Beam})$$

Nb. widać, że w collider'ze łatwiej wprowadzić dużo energii do układu zderzających się jąder:

$$\sqrt{s} \sim T_{Beam}$$

• Mamy proces, w którym na wejściu są 2 cząstki o 4-pędach p_1 i p_2 , a na wyjściu też 2, o 4-pędach p_3 , p_4 .

Zachowanie Energii i Pędu \equiv Zachowanie czteropędu.

$$p_1 + p_2 = p_3 + p_4$$

Stąd warto wprowadzić "energię dostępną":

 $s \equiv (p_1 + p_2)^2 = (p_3 + p_4)^2$

Gdy proces polega na złączeniu się cząstek w rezonans, to jego masa $m = \sqrt{s}$. Mówimy, że reakcja jest "w kanale s".

Ale zasadę zachowania czteropędu można przepisać:

$$p_1 - p_3 = p_4 - p_2$$

i warto tu wprowadzić "przekaz czteropędu":

$$t \equiv (p_1 - p_3)^2 = (p_4 - p_2)^2$$

Gdy proces przebiega przez wymianę cząstki wirtualnej, to jej kwadrat 4-pędu wynosi *t*. Reakcja jest **"w kanale t**".

• Przykład: Proces $\pi^-\Lambda \to K^-N$ jest reakcją w kanale "t". Proces $\pi^-\Lambda \to \Sigma^{*-} \to K^-N$ jest reakcją w kanale "s". Proste narzędzia w Bash'u do przeglądania danych tekstowych:

```
cat [plik]
head -[ile linii] [plik]
tail -[ile linii] [plik]
less [plik]
wc -l [plik]
```

```
cat mydata.txt | wc -l
grep [fraza] [plik]
```

```
cat myfile | awk 'NF==8 && $5=="Z" '
cat myfile | awk 'NF==8 {print $3}'
```

- : Wyświetlenie treści pliku
- : Wyświetlenie pierwszych linii pliku
- : Wyświetlenie ostatnich linii pliku
- : Czytacz pliku (ciekawe opcje: gG/q)
- : Zliczanie linii pliku
- : Znak | (*pipe*) przekierowuje wyjście A \rightarrow wejście B
- : Wyszukanie w pliku linii z daną frazą
- : Akceptuje tylko linie z 8 słowami, gdzie 5. słowo to Z
- : Akceptuje tylko linie 8 słów, wypisując tylko 3. słowo

• Przykład:

```
grep "# event" EventOutput.Real.oscar | wc -l
cat particle lists.oscar | awk 'NF == 12 && $10 == 321' > mykaons.dat
```

• Komentarz:

Powłoki typu Bash posiadają wiele innych narzędzi tekstowych, m. in. sortujące, pozycjonujące, podmieniające frazy. Możliwa jest manipulacja na zmiennych, instrukcje warunkowe, pętle – w tym pętle po nazwach plików i ścieżek. Można pisać skrypty.

Istnieje wiele przewodników po Bash'u i obszerne fora w internecie. Ciekawa ściągawka tu. Na stronach naszego Wydziału wprowadzenie do Bash'a jest np. tu.

Model GiBUU

GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project

• Strona domowa:

gibuu.hepforge.org

Download. gibuu.hepforge.org/trac/wiki/download Instrukcje ściągania: Prerekwizyty: gibuu.hepforge.org/trac/wiki/tools Download: gibuu.hepforge.org/downloads gibuu.hepforge.org/trac/wiki/compiling Instalacja. Instrukcje kompilacji: Jak włączyć: gibuu.hepforge.org/trac/wiki/running gibuu.hepforge.org/trac/wiki/tutorial Pomoce. **Tutorial**: gibuu.hepforge.org/trac/wiki/Talks Prezentacje: gibuu.hepforge.org/trac/wiki/MovieMain Animacje: Tabela kodów PID: gibuu.hepforge.org/trac/wiki/ParticleIDs

Główne publikacje:

O. Buss *et al.* "Transport-theoretical description of Nuclear Reactions", Physics Reports 512, 1 (2012), arXiv: 1106.1344

• Na komputerze neutronx:

```
mkdir gibuu ; cd gibuu
cp -r /home/kpiasecki/soft/gibuu/nkfj/* .
```

Przeglądamy plik wejściowy (por nast. strona), np.:

```
less 001_CaCa1.91_test.job
```

Bogaty zasób opcji wejściowych (należy działać z namysłem):

https://gibuu.hepforge.org/Documentation/

Bogaty zestaw demonstracyjnych plików wejściowych w katalogu:

/home/kpiasecki/soft/gibuu/testRun/jobCards/

Wykonujemy symulację (tu: w tle. Monity idą do pliku caca_1.91_test.log)

nohup ./GiBUU.x <001_CaCa1.91_test.job 1>caca_1.91_test.log 2>&1 &

Wiele plików wyjściowych. Wśród nich – plik z eventami zawierającymi cząstki (por nast. strona):

less EventOutput.Real.oscar

• Plik wejściowy 001_CaCa1.91_test.job :

```
! file: ./inputOutput/input.f90
&input
      eventtype = 1
      numEnsembles =
                             80
      num runs sameEnergy =
                          10
      delta T
                           0.25
                       =
      numTimeSteps
                       =
                           160
      printParticleVectorTime = T
      timeForOutput
                           = 0.
      timeSequence
                           = 20.
      path To Input = '{...}/buuinput'
{...}
```

```
! file: ./init/initHeavyIon.f90
&heavyIon
     impact parameter
                        = -7.
                        = 0
     impact profile
     distance
                        = 16.
     coulomb
                       = F
     ekin lab Target = 0.00
     ekin lab Projectile = 1.91
     adjustGridFlag
                        = T
     cmsFlag
                        = T
! file: ./density/nucleus.f90
&projectile
      projectile Z= 20, projectile A= 40
! file: ./density/nucleus.f90
&target
      target Z=20, target A=40
{....}
```

• Plik wyjściowy EventOutput.Real.oscar :

#!OSCAR2013 particle lists t x y z mass p0 px py pz pdg ID	Tabela kodów PDG
# Units: fm fm fm fm GeV GeV GeV GeV GeV none none	
<pre># File generated by GiBUU (https://gibuu.hepforge.org)</pre>	
# event 1 out 80	
0.000000E+0 7.183791E+0 3.961299E+0 2.780585E+1 9.22711	1E-1 (1.225751E+0 2.703973E-2 -9.247542E-2 8.011161E-1) 2212 100000
0.000000E+0 5.118310E+0 -7.210583E-1 2.525251E+1 7.65709	1E-1 1.101021E+0 -5.729713E-3 -1.723748E-2 7.909611E-1 2112 100003
0.000000E+0 2.584306E+0 -1.719659E-1 2.539883E+1 7.72671	9E-1 1.088114E+0 -1.631816E-1 -5.991384E-2 7.461942E-1 2112 100002
0.000000E+0 2.133399E+0 3.397612E-1 2.692126E+1 7.94406	7E-1 1.045015E+0 -2.850862E-2 -9.578418E-2 6.717517E-1 2112 100003
0.000000E+0 6.169842E+0 -1.890743E+0 2.453204E+1 8.26426	8E-1 1.030645E+0 -6.987948E-2 1.303097E-1 5.971482E-1 2112 100004
0.000000E+0 -7.235081E+0 1.162180E+0 -2.613539E+1 7.67703	6E-1 1.057389E+0 3.919098E-2 1.860452E-1 -7.017274E-1 2212 103239
# event 1 end _0_	
# event 2 out 80	
0.000000E+0 3.456383E+0 6.567166E-1 2.607133E+1 7.64838	0E-1 8.782891E-1 -6.281280E-3 4.809546E-2 4.290245E-1 2212 100040
0.000000E+0 5.786570E+0 1.426497E-1 2.657666E+1 7.66317	8E-1 1.130114E+0 -1.239606E-1 9.851192E-2 8.153864E-1 2112 100041
0.000000E+0 6.166525E+0 -3.298759E+0 2.666215E+1 8.63591	9E-1 1.227330E+0 9.365502E-2 -4.166068E-2 8.660087E-1 2112 100042

Simulating Many Accelerated Strongly-interacting Hadrons

A relativistic hadronic transport approach

Strona domov	va:	theory.gsi.de/~smash/userguide/current smash-transport.github.io			
Download		github.com/smash-transport/smash			
Instalacja		theory.gsi.de/~smash/userguide/2.0/md_README.html			
Jak włączyć:		theory.gsi.de/~smash/userguide/2.0/page_smash_invocation.html			
Pomoce.	Tutorial: Prezentacje: Animacje:	theory.gsi.de/~smash/userguide/current/ D. Oliinychenko (2020), A. Schäfer (2019) smash-transport.github.io/img/movie.mp4			
Tabela kodów PDG:		github.com/smash-transport/smash/blob/master/input/particles.txt			

• Główne publikacje:

J. Weil *et al.* "Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions" Physical Review C 94, 054905 (2016), arXiv: 1106.1344

H. Petersen *et al.* "SMASH – A new hadronic transport approach" Nuclear Physics A 982, 399 (2019), arXiv: 1808.06832

Na komputerze neutronx:

```
mkdir smash ; cd smash
cp -r /home/kpiasecki/soft/smash/nkfj/*
```

Przeglądamy plik wejściowy, np.:

less config.yaml

Bogaty zasób opcji wejściowych (należy działać z namysłem):

theory.gsi.de/~smash/userguide/2.0/input.html

Wykonujemy symulację (tu: w tle. Monity idą do pliku myrun.log)

nohup nice ./smash -i config.yaml -o outdir/ 1>myrun.log 2>&1 &

Plik z eventami zawierającymi cząstki znajduje się w katalogu outdir :

```
less outdir/particle lists.oscar
```

• Plik wejściowy config.yaml :

```
{...}
                                            Modi:
General:
                                                Collider:
                   Collider
    Modus:
                                                    Projectile:
    Time Step Mode: Fixed
                                                        Particles: {2212: 79, 2112: 118} #Gold197
    Delta Time:
                  0.1
                                                    Target:
   End Time:
                    50.0
                                                        Particles: {2212: 79, 2112: 118} #Gold197
    Randomseed:
                    -1
                                                    Impact:
    Nevents:
                    10
                                                        Sample: "quadratic"
                                                        Range: [0.0, 12.0]
Output:
    Output Interval: 20.0
                                                    E Kin: 1.20
    Particles:
                                                    Calculation Frame: "center of mass"
        Format:
                         ["Oscar2013"]
                                                    Fermi Motion: "on"
        Only Final:
                         false
                                                    Collisions Within Nucleus: True
```

• Plik wyjściowy particle_lists.oscar :

```
#!OSCAR2013 particle_lists t x y z mass p0 px py pz pdg ID charge
# Units: fm fm fm fm GeV GeV GeV GeV GeV none none e
# SMASH-1.7
# event 1 in 394
-2.22563 -3.64001 -1.32594 -3.67708 0.938 2.236845 -0.03016814 0.00476330 2.030443 2112 0 0
-2.22563 -5.40173 -3.32581 -2.98890 0.938 2.101389 0.05289568 -0.05137847 1.878977 2112 1 0
-2.22563 -0.84595 -2.10703 -5.13988 0.938 2.523251 0.22803293 0.04328960 2.330897 2112 2 0
...
# event 1 out 394
0 -3.67003 -1.32120 -1.65681 0.938 2.236845 -0.03016814 0.00476330 2.030443 2112 0 0
0 -5.34571 -3.38022 -0.99825 0.938 2.101389 0.05289568 -0.05137847 1.878977 2112 1 0
```

Tabela kodów PID

Ultrarelativistic Quantum Molecular Dynamics

- Strona domowa: urqmd.org Download. Strona główna \rightarrow kontakt z autorami kodu. Instalacja + jak włączyć: urgmd.org/en/compiling-and-running-urgmd/ Pomoce. Manual: Kopia w sieci Prezentacja: M. Bleicher (2018) Tabela kodów PID: urqmd.org/en/particle-ids Główne publikacje: S.A. Bass *et al.* "Microscopic models for ultrarelativistic heavy ion collisions" Progress in Particle and Nuclear Physics 41, 225 (1998), arXiv: nucl-th/9803035
 - M. Bleicher et al. "Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model" Journal of Physics G: Nuclear and Particle Physics 25, 1859 (1999), arXiv: hep-ph/9909407

Na komputerze neutronx:

```
mkdir urqmd ; cd urqmd
cp -r /home/kpiasecki/soft/urqmd-3.4/nkfj/* .
```

Przeglądamy 2 pliki wejściowe, np.:

less inputfile_NiNi1.5
less runqmd.bash

Bogaty zasób opcji wejściowych w rozdz. 5 podręcznika (należy działać z namysłem):

Kopia w sieci

Wykonujemy symulację (tu: w tle. Monity idą do pliku mysim.log)

nohup nice ./runqmd.bash 1>mysim.log 2>&1 &

Otrzymaliśmy szereg plików z eventami. M.in. plik typu *f14* z kolejnymi stopklatkami kolejnych eventów, a w nich cząstki :

less test.f14

•	Plik we	jściowy	inputfile	.NiNi1.5	:
---	---------	---------	-----------	----------	---

• Plik wejściowy runqmd.bash :

pro 58 28	
tar 58 28	{ }
nev 10	<pre>export ftn09=inputfile_NiNi1.5</pre>
imp -10.	export ftn13=test.f13
elb 1.5	export ftn14=test.f14
tim 50 20	export ftn15=test.f15
cto 18 1	export ftn16=test.f16
	export ftn19=test.f19
f13	export ftn20=test.f20
# f 1 4	$\{\overline{\ldots}\}$
f15	
#f16	
f19	
f20	
1 • • • • }	

• Plik wyjściowy test.f14 :

								Г	ſabe	la k	odó	w PIC)
UQMD versi	on: 30	400 1000	30400 outpu	t_file 14									
projectile:	(mass, char	r) 58 28	target: (m	ass, char)	58 28								
transformati	on betas (NN	I,lab,pro)	0.000000	0.6665679 -	0.6665679								
<pre>impact_param</pre>	eter_real/mi	n/max(fm):	6.28 0.00	10.00 tota	l_cross_sect	ion(mbarn):	3141.59				ka alu	nak	
equation_of_	state: 0	E_lab(GeV/u): 0.1500E+0	sqrt(s)(Ge	eV): 0.2517E+	·0 p_lab(GeV	/u): 0.2250E	+0			ladu	пек	
event#	1 random	seed: 16004	19089 (auto)	total_tim	ne(fm/c):	40 Delta(t)_0(fm/c):	20.000	о		Î		
()			ſ	•					. Y		–		
pvec: r0	rx	ry	rz	p0	рх	ру	pz	m	ityp	213	ch la	ci nci	or
119	20	4	7 10	0	0				1				
/3	4/ 22	4	/ 19	0 10000000		0 012070 1	0 00252010	0.00472740		1	1		0
0.20000E+2	0.74819E+2 0.24167E+2	0.3000/E+0 0.27702E+0	0.10/99E+2	0.12222E+2 0.11642E+2	-U.81322E-2	0.9138/E-1	0.80353E+0	0.92473E+0		1) U 0. 1	0
0.20000E+2	0.3410/E+2 0.781/9F±0	-0.30699E+2	0.J9270E+2 0.10307E+2	0.110426+2	0.10120E-1 0.88550E-1	-0.JJ204E-1	0.00019E+0	0.93800E+0		1	1		0
J 1	0.70149510	-0.50099512	0.10397112	0.13424612	0.0000000-1	0.910996-2	0.97300E10	0.92030110				5 0	0
119	40)											
83	54 22	2. 7	7 19	0	0				_				
0.40000E+2	0.74819E+1	0.36667E+0	0.24239E+2	0.12282E+1	-0.81322E-2	0.91318E-1	0.80353E+0	0.92437E+0	1	1	1 (0 C	0
									/ _	N N			

Parton-Hadron-String Dynamics Transport approach

•	Strona domov	wa:	theory.gsi.de/~ebratkov/phsd-project/PHSD/					
	Download.	[kontakt z autorami]	theory.gsi.de/~ebratkov/phsd-project/PHSD/index4.html					
	Instalacja + ja	k włączyć:	§ 1.2 w Manualu. Sugerowany kompilator: Intel Fortran.					
	Pomoce.	Manual: Prezentacje: Animacje:	Kopia w sieci E. Bratkovskaya, Strona www Au+Au @ 10A GeV , Au+Au @ 35A GeV , Pb+Pb @ 158A GeV					
	Tabela kodów	PID:	Tabele 1.1 i 1.2 w Manualu					
•	Główne publi	kacje:						

⊙ PHSD:

W. Cassing, E.L. Bratkovskaya "Parton transport and hadronization from the dynamical quasiparticle point of view", Physical Review C 78, 034919 (2018), arXiv: 0808.0022

 \odot HSD:

W. Cassing, E.L. Bratkovskaya "Hadronic and electromagnetic probes of hot and dense nuclear matter" Physics Reports 308, 65 (1999), arXiv: 1808.06832

Na komputerze neutronx:

mkdir phsd ; cd phsd
cp -r /home/kpiasecki/soft/phsd/nkfj/* .

Przeglądamy plik wejściowy, np.:

```
less inputPHSD.NiNi1.9
```

Bogaty zasób opcji wejściowych w rozdz. 1.4 podręcznika (należy działać z namysłem) :

Kopia w sieci

Wykonujemy symulację (tu: w tle. Monity idą do pliku mysim.log)

nohup nice ./run_phsd.sh 1>mysim.log 2>&1 &

Otrzymaliśmy szereg plików z eventami. M.in. plik phsd.dat z kolejnymi eventami, a w nich cząstki :

less phsd.dat

• Plik wejściowy inputPHSD.NiNi1.9 :

58,	MASSTA: t	target mass
28,	MSTAPR: p	protons in target
58,	MASSPR: 1	projectile mass
28,	MSPRPR: 1	protons in projectile
1.91,	ELAB: (=	=4060000. Lab energy per nucleon LHC),=21300 RHIC,=13433049 (5 TeV) = 26120000 (7 TeV)
0.0,	BMIN: r	minimal impact parameter in fm ! no effect for p+A
7.0,	BMAX: r	maximal impact parameter in fm ! no effect for p+A
0.5,	DeltaB: :	impact parameter step in fm (used only if IBweight_MC=0)
150,	NUM:	optimized number of parallel ensambles ("events")
10,	ISUBS: n	number of subsequent runs
{ }		

• Plik wyjściowy phsd.dat :

	Tabela	a ko	dó	w PDG						
	.25	2045	1	1 (<u>0.6427918</u>	E+01 1		0 2105010,00	0 4467700.00	0 1275000.00	0 (710000+00
	27 -0.	2043	530	E+00 0.418460E+	00 0.317638E+00	0.675407E+00	0.318581E+00	0.446//9E+00	U.13/598E+00	0.0/10286+00
	2212		1	-0.25568587E+00	-0.16134205E+00	-0.12625135E+01	0.16016214E+0	1	51	
	2112		0	-0.29324052E+00	0.86835183E-01	-0.75108749E+00	0.12399625E+0	1 1	0	
	2212		1	0.61904673E-01	0.12047570E+00	-0.11011121E+01	0.14528037E+0	-1	0	
$\langle \rangle$	2212		1	-0.25516313E+00	0.11847670E+00	-0.90409690E+00	0.13328092E+0	-1	0	
	2212		1	0.43485938E-02	0.11743490E-01	-0.73762423E+00	0.11933526E+0	-1	0	
	2212		1	-0.69573373E-01	-0.43003834E-02	-0.66405290E+00	0.11513771E+0	-1	0	
(.)									
	111)	0	0.37781116E-01	0.11493234E+00	-0.78976639E-01	0.19979531E+0	2 2	20	
	.29		1	2 0.6427911	8E+01 1					
	39 0.	8402	226	E+00 0.295869E+	00 -0.752309E+00) 0.163571E+00 -	-0.783561E+00	0.221714E+00	-0.245801E+00	0.586710E+00
(2212		1	-0.14489351E+00	0.92953674E-01	-0.11530347E+01	0.14963180E+0	1	0	
$\langle \rangle$	2212		1	-0 10142475E+00	-0 41412741E -01	-0 11190853E+01	0 14643080E+0	1 1	0	
	2212		1	0 147649335+00	-0.58835067E-01	-0 901581295+00	0.131070775+0	1 1	0	
			Ļ	0.147049331100	-0.30035007E-01	-0.901301291100			0	
			Î	p _x	$p_{_{Y}}$	p_{7}	E			
					·					
	fad	une	K							

6

Strona domowa:			[Link] (strona odzyskana)					
Download.			Wersje 1.x (Fortran, stable) . Nowe wersje 2.x (C++, devel).					
Instalacja + jak włączyć:			[Link] (strona odzyskana) + pliki INSTALL oraz README					
Pomoce.	Manual: Ściągawka o pliku wejścia:	<mark>kop</mark> ia Plik RE	w sieci EADME					
Tabela kodów PDG:			[1], [Plik 2] (strony odzyskane) lub Appendix A w manua					

• Główne publikacje:

$\odot~$ RQMD.RMF:

Y. Nara, "Sensitivity of the excitation functions of collective flow to relativistic scalar and vector meson interactions in the relativistic quantum molecular dynamics model RQMD.RMF" Physical Review C 100, 054902 (2019), arXiv: 1906.03537

$\odot\,$ JAM:

Y. Nara et al. "Relativistic nuclear collisions at 10A GeV energies from p+Be to Au+Au with the hadronic cascade model" Physical Review C 64, 024901 (1999), arXiv: nucl-th/9904059

Na komputerze neutronx:

```
mkdir rqmd.rmf ; cd rqmd.rmf
cp -r /home/kpiasecki/soft/rqmd.rmf/nkfj/*
```

Przeglądamy plik wejściowy, np.:

```
less jam.cfg
```

Bogaty zasób opcji wejściowych w rozdz. 4.6 podręcznika (należy działać z namysłem) :

Kopia w sieci

Wykonujemy symulację (tu: w tle. Monity idą do pliku mysim.log)

```
nohup nice ./jamexe 1>mysim.log 2>&1 &
```

Otrzymaliśmy szereg plików z eventami. M.in. plik phase.dat z kolejnymi eventami, a w nich cząstki :

```
gzip -d phase.dat.gz
less phase.dat
```

• Plik wejściowy jam.cfg :

```
event=10
proj =108Ag
targ =108Ag
win=1.58gev
bmin=0.0
bmax = -10.
dt = 0.2
timestep = 150  # total number of time steps.
frame= nn
               # computational frame cm, nn, lab, collider
mstc(41)=0
                ! 1: force resonance decays after sim, 0: let them remain
mstc(42)=1
                                weak
                                      decays after sim, 1: let them remain
                  ! 0: force
{ . . . . }
```

• Plik wyjściowy phase.dat :

Tabela kodów PDG

#		200	0 0.821	.65 0.67	1.3	35698 2						
#			1 223	25	21 9.3	10 36	58 43	3				
1	2112	1	9.3960E-2	-7.4691E-2	4.6286E-3	-9.9425E-2	1.3700E+0	-7.8427E+0	3.5348E+0	-1.6458E+1	3.0200E+1	3.0200E+1
1	2112	1	9.3960E-2	-4.2849E-2	2.0180E-2	-8.9590E-2	1.3145E+0	-6.7592E+0	9.4156E+0	-1.7980E+1	3.0200E+1	3.0200E+1
1	2212	1	9.3960E-2	-1.1528E-2	2.2750E-2	-8.4282E-2	1.2676E+0	-7.5301E+0	5.3435E+0	-1.6708E+1	3.0200E+1	3.0200E+1
1	2112	5	9.3957E-2	3.0711E-2	2.4778E-2	-2.6403E-2	1.0527E+0	4.7449E+0	5.2862E+0	-4.7811E+0	3.0200E+1	3.0200E+1
{ .	}											
1	111	8	(1.3498E-1)	1.4090E-1	-1.5388E-1	-1.4472E-1	2.8757E-1	2.5947E+0	-5.0680E+0	-8.0321E+0	3.0200E+1	3.0200E+1
#			2 227	78	62 7.3	12 85	152 124	4				
1	2212	1	9.3960E-1	-2.1659E-2	1.1828E-1	-5.13744E-1	1.0776E+0	-6.4530E+0	4.1473E+0	-9.0628E+0	3.0200E+1	3.0200E+1
1	2212	1	9.3960E-1	4.0508E-2	-1.0861E-1	-7.09055E-1	1.1827E+0	6.2874E-2	-6.4578E-1	-1.1831E+1	3.0200E+1	3.0200E+1
					†							
			¥				_					
			masa	$\rho_{\rm x}$	$ ho_{_{ m Y}}$	ρ_{z}	E					