

NUCLEAR PHYSICS DIVISION UNIVERSITY OF WARSAW

Narzędzia Komputerowe z Fizyki Jądrowej

Wprowadzenie do SRIM/TRIM

Krzysztof Piasecki

Wstęp do SRIM / TRIM

Pakiet do szacowania:

- strat energii wiązki przechodzącej przez absorbent
- zasięgu jonów w materiale •
- strat radiacyjnych w materiale

Zawiera:

- Zestawienia pomiarów strat energii: www.srim.org/SRIM/SRIMPICS/STOPPLOTS.htm
- SRIM: kalkulator strat dla danego jonu i absorbenta
- TRIM: symulacja przejścia jonów przez absorbent •

Instalacja

Windows

- Utwórz katalog SRIM-2013. Przejdź na niego.
- Pobierz www.srim.org/SRIM/SRIM-2013-Std.e
- Do nazwy SRIM-2013-Std.e dodaj xe
- W katalogu SRIM-Setup uruchom MSVBvm50.exe
- Skopiuj *.ocx do katalogu głównego SRIM-2013
- Uruchom SRIM.exe

Linux + Wine

- mkdir SRIM-2013 ; cd SRIM-2013
- wget www.srim.org/SRIM/SRIM-2013-Std.e
- mv SRIM-2013-Std.e{,xe}
- nice wine SRIM-2013-Std.exe
- cd SRIM-Setup ; wine MSVBvm50.exe
- cp *.ocx .. ; cd ..
- nice wine SRIM.exe

Znane problemy

- [Windows] TRIM się zawiesza
- [Linux] TRIM się zawiesza
- Niedziałający komponent OCX:
- → Zmień format daty na "Angielski (Stany Zjednoczone)"
- → w pliku ~/.wine/user.reg zmienną sDecimal zmień z "," na "."
- → znajdź komponent w SRIM-Setup ⊕ cmd jako admin ⊕ zarejestruj go.
- [Compound Dictionary] nieczytelne → dodaj czcionke SRIM-2013/Linedraw.ttf (i uaktywnij)
- **Pomoc:** plik SRIM ReadMe (English-2011).rtf

Zestawienia strat energii w internecie

www.srim.org/SRIM/SRIMPICS/STOPPLOTS.htm

→ ukazuje wykresy straty energii na jednostkę drogi ("specific energy loss") [jonu X w dowolnej tarczy] – albo – [dowolnego jonu w tarczy X]

Wartości dE/dx dla każdego z jonów wiązki zostały unormowane do przypadku jonu ¹³Al, w oparciu o przybliżenie wzoru Bethe-Blocha :

$$-\frac{dE}{dx} \sim \frac{MZ^2}{E_{Kin}} \bigg|_{Jonu} \sim \frac{Z^2}{E_{Kin}/A} \bigg|_{Jonu}$$

Aby odzyskać d*E*/d*x* dla naszego jonu, należy przeliczyć:

$$-\frac{dE}{dx}\Big|_{Jon X} = -\frac{dE}{dx}\Big|_{^{13}Al} \times \left(\frac{Z_{Jon X}}{Z_{Al}}\right)^2$$

 $\frac{n}{N_{A}} = \frac{\rho}{\mu}$

- Jednostka dE/dx jest nietypowa: [eV / cm² / 10¹⁵].
 Wartość dE/dx jest podana na jednostkę N_{S1}, czyli na 1 atom w tarczy o przekroju 1 cm².
- Jak policzyć N_{s1} dla naszej tarczy?
 - ① Dla tarczy o danej A oraz ρ , koncentracja n:
 - ② Liczba N_{s1} atomów w tarczy o grubości x i przekroju $S_1 = 1 \text{ cm}^2$: $N_{s1}(x) = n \cdot x$

SRIM – wyniki

SRIM – substancja złożona

	Сог	nmon Compou	nds			
Ca	tegorized	Alphabetic				
Common Name		Density (g/cm3)	Atomic Stoichiometry (Atoms/Molecule or Percent)			
	Inconel-600	8.43	Cr-15, Fe-9, Ni-76	^		
	Indium nitride (ICRU-488)	6.81	In-1, N-1			
	Indium oxide (ICRU-490)	7.18	In-2, 0-3			
	Indium Phosphide (ICRU-492)	4.81	In-1, P-1			
*	Iso-Butane, (ICRU-493)	(gas) H-1	0, C-4			
*	Iso-octane (ICRU-494)	0.688	C-8, H-18			
*	Kapton Polyimide Film (ICRU-1)	79) 1.42	H-10, C-22, N-2, O-5			
*	Kapton Polyimide Film (ICRU-1)	79) 1.42	H-2.63,C-69.1,N-7.3,O-20.92			
*	Lexan, Makrofol, Polycarbon (ICR)	J-219) 1.20	H-14, C-16, O-3			
*	Lexan, Makrofol, Polycarbonate	(ICRU-219)	1.20 H-14, C-16, O-3			
	LiF Crystal	2.635	Li-1, F-1			
	Lithium Fluoride Crystal (ICR)	J-185) 2.	635 Li-1, F-1	~		
<				>		
<pre>% indicates availabi % = Mass % shown Stopping Cor ***** Corre Bonding Corre Depumped Depum</pre>	<pre>lity of special bond correction * instead of Atomic %</pre>	Add to Ta	arget Close Help			
Chemical Formula	10y — 0.00123 g/um3			v		
Targets with specia This table may be rea	I bonding corrections to stopping are di: arranged or added to edit the file COM	scussed in "J. F. Zieg POUND.DAT.	ler and J. Manoyan, Nucl. Inst. Meth., B35, 215 (1)	988).''		

• Przykład: Al+Isobutan

- Szereg kategorii
 NUCLEAR PHYSICS MATERIALS
 COMMON IMPLANTATION COMPOUNDS
 COMMON TARGET MATERIALS
 PLASTICS / POLYMERS
 METAL ALLOYS
 NUMBERED COMPOUNDS (99-277) from ICRU F
 BIOLOGICAL MATERIALS (Human)
 BIOLOGICAL MATERIALS (Misc.)
 LIQUIDS / GASES
- <u>Reguła Bragga</u>:

dla substancji złożonej z atomów A i B,

$$\frac{dE}{dx} = \frac{dE}{dx}\Big|_A + \frac{dE}{dx}\Big|_B$$

→ Przybliżenie mające poprawki.

[☆] dla tak oznaczonych substancji Srim uwzględnia poprawki wg modelu CAB

Gęstość dla p = 1 atm. Jeśli p inne, trzeba przeskalować gęstość.

<u>Uwaga</u>: dla izobutanu przy p = 1 atm, błąd (!) Powinno być: ρ = 0,00251 g/cm³

Stechiometria dla C₄H₁₀

TRIM Menue

5

Type of TRIM Calculation

(Setup Window)

Read

Typ symulacji:

1. Pominiete zniszczenia tarczy i emisja jej atomów

- 2. Pełna symulacja
 - 3. Emisja atomow z tarczy

Wykresy drukowane w trakcie symulacji (zmienialne w locie)

Zmienny, bo *E* się zmienia wzdłuż drogi. Rozkład zasięgów jonów

Trim: Straggling wiązki

Straggling: rozrzut energii jonów w wyniku przejścia przez absorbent (np. wiązki przez tarczę/degrader lub cząstek rozproszonych przez okno detektora)

0. Zakładamy, że przynajmniej część jonów przechodzi p/absorbent

W TRIM:

- 1. Włącz [Output Disk Files] \rightarrow [Transmitted Ions/Recoils] \rightarrow \square , a następnie wybierz "1"
- 2. Po symulacji: odczytaj plik transmit.txt w folderze Srim Outputs.

Trim: śledzenie strat energii na drodze

TRIM potrafi wypisać kolejne akty oddziaływania w ośrodku, podając dla każdej interakcji: miejsce zajścia, energię jonu i lokalną wartość straty energii na jednostkę długości.

W TRIM:

- 1. Włącz [Output Disk Files] \rightarrow [Collision Details] \rightarrow
- 2. Po symulacji: plik collison.txt (posiada literówkę w nazwie) w folderze Srim Outputs.

Przykład dla jednego jonu. Linie o kolejnych oddziaływaniach wyglądają <u>w stanie surowym</u> tak:

I N	on umb	Energy (keV)	Depth (A)	Lateral Di Y Axis	stance (A) Z Axis	Se (eV/A)	Atom Hit	Recoil Energy(eV)	Target DISP.	Target VAC.	Target REPLAC	Target INTER
300 300 300 300	001319 001319 001319 001319 001319	.97E+0333 .93E+0330 .90E+0331 .81E+0332	37875.E-033 54043.E-033 11632.E-023 22070.E-023	-4930.E-063 -2281.E-053 -1204.E-043 -2379.E-043	5782.E-063 1614.E-053 -1444.E-053 -4559.E-053	30772.053 30771.363 30770.633 30768.883	B C B 0 B C B C C C	333617.E-033 318512.E-023 310026.E-023 313711.E-023	80000000 80000000 80000000 80000000	001.0003 002.0913 001.1613 001.5683	3 3 3 3	3 3 3 3 3
	001313	. / / E+0352	27201.1-023	-3020.2-043	- 57 41.2-00.	50700.12.	, ,	555255.L-055		01.0003	5	5

Plik jest jednak źle sformatowany (występują nadmierne "3"). Po korekcie powinny wyglądać tak:

Ion	Energy	Depth	Lateral D:	Se	Atom	
Num	b (keV)	(A)	Y Axis	Z Axis	(eV/A)	Hit
1	19.97E+03	7875.E-03	-4930.E-06	5782.E-06	772.05	С
1	19.93E+03	64043.E-03	-2281.E-05	1614.E-05	771.36	0
1	19.90E+03	11632.E-02	-1204.E-04	-1444.E-05	770.63	С
1	19.81E+03	22070.E-02	-2379.E-04	-4559.E-05	768.88	С
1	19.77E+03	27281.E-02	-3026.E-04	-9741.E-06	768.12	С