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Motivation behind Cartan connections

Idea: encode the local geometry of a space (Riemannian, conformal,
affine, ...) in a principal bundle equipped with a certain kind of

“connection”.
Model example: homogeneous space G/H acted upon by G with a

stabilizer subgroup H.

G G/H, waceT Gog

On the total space G we have the Maurer-Cartan form, which encodes
the information about the group structure.
Examples:

e Euclidean space G = Iso(p, q) 2 R" x O(p,q), H= O(p, q),
o affine space G = Aff(n) = R"” x GL(n), H = GL(n),

@ conformal space...
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Motivation behind Cartan connections

We would like to formalize the notion of a space M “being locally like" a
homogeneous space G/H.

We generalize

¢4 G/H, wmce€T"G®g, dwmc+wmeAwnc =0
to

P M, dimG=dmP, AcT'Pog, dA+ANA=F
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@ G — Lie group, H C G — closed subgroup
e P 5 M — principal H-bundle, dim M = dim G/H

Definition (Cartan connection)

A Cartan connection on P is a g-valued 1-form A on P such that
Q pr a Ap = ¢ for vertical ép € T,P corresponding to £ € b
Q@ R:A=Ad(h 1), 0A
Q@ {.A «— £ =0 (nondegeneracy)

Curvature: F:=dA+ ANA.

Special (“flat") case

Homogeneous space M = G/H, the H-bundle G — G/H. The
Maurer-Cartan form wyic of G satisfies the above definition.

dwnme + wve A wvc =0
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Examples:
o Affine space: G = Aff(n) = R” x GL(n), H = GL(n),

P GL—(n)> M - frameAbundIe.
Cartan connAectioAns AAon P encode the affine connections. The
curvature dA + A A A encodes both the usual curvature, as well as
torsion.
e Euclidean space: G =1Iso(p,q) 2 R" x O(p,q), H=O(p, q),
P M M — orthonormal frame bundle.
Cartan connections A on P encode the affine metric-compatible
connections.
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We want to construct a principal H-bundle P Iy M, dimP =dim G,
from the homogeneous model G = O(p+ 1,9+ 1), H C G - stabilizer of
a null ray in RPTLa+1,
We start with an n-dimensional conformal manifold (M, [g]) with
nondegenerate signature (p, q).
Scale bundle:

S= U [g](m) € T*M®?

meM

S M, 7s(g(m))=m

Sections of S - metrics from the class [g]
Structure at each point g(m) € S:
o a degenerate metric Zg(m) = msg(m)
@ a vector field fg(m) null w.r.t. g, defined by
Co(my(F) = | __, f(c?g(m)), f € C=(S).
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P — bundle of co-frames of S compatible with the structure (&, ()

P = {(587 dﬂ))(g(m)) eL*s | gg(m) = nabéaéb7 &(ég(m)) = _1}

s

P =M, =((6°¢)(g(m)))=m

0 0o -1
G=0(Q)=0(p+1,g+1), Q@=|0 ns O

1 0 0] [¢ © 1 0 0
H:< A of, |0 6% of,| b &7 0>CG
0 0 1| |0 o 1bhe by 1

where A € O(n), c € RT, b € R".
Corresponding actions on (62, ¢)(g(m)) € P:
o rotate #? by A%,
@ rescale #2 by c and g(m) by c?
® ¢+ d+ b,6°
Then P 55 M is a principal H-bundle and dim P = dim G
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P M, HcG=0(p+1,qg+1), dmP=dimG

There are many 1-forms Aon P satisfying the definition of the Cartan
connection, called conformal Cartan connections.

Given some normalizing assumptions about A and its curvature (analogue

. . . e} . ) .
in the Riemannian case P ﬂ> M — torsion), there exists a unique one,

called the normal conformal Cartan connection.
For each local section M O U 3 m — a(m) = (62, $)(g(m)) € P, we
have

A=0c*A, F=0"F
Under a change of sections given by a point-dependent transformation
he C®(U,H),

A h*Ah+hYdh, Fw— h7'Fh
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A=0"A, F=0"F
A h*Ah+h"Ydh, Fw— h7'Fh
A choice of a co-frame 62 € L*U such that 1,,670° € [g] determines
fields 62 := 7°0? and & = 1,5020°.

However, we can choose any gb subject to the condition ¢(C) There is a
unique choice, such that the resulting section oy : U — P satisfies

0 =x*
A=0onyA= [x =
3

ES3

O * ¥
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NCC connection in the natural gauge

97 + T N0° =0, Tap=—Th
A= |P? rab 0° P, = Pabeba Pap = ERnab_fRab

0 P, 0 2
(Schouten tensor)

(Rab, R — Ricci tensor and scalar of g := 7,,0?6°, indices lowered /raised
with 7,5/77)

Under 07 — A2,0°, A € O(n),

1 0 0
A h A4+ h7tdh, h= [0 A%, 0
0 0 1
Under 67 — Q82, Q € R,
Q-1 0
A hPAh4+h71dh, h=| Q2072 5 0
19,0073 Q.01 Q
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NCC connection in the natural gauge — curvature

0 0 0
F=dA+AANA=|DP? (3% 0
0 DP, O
1
DP? = dP? +T?, A P? (~ Cotton tensor), C3 = 5 %eg 0° N 07
Under 62 — /\abe, A€ O(n),
1 0 O
Fe h™*Fh, h= |0 A% O
0 0 1
Under 67 — Q0?, Q € R,
Q! 0 0
a

Fs h™'Fh, h=

N
N
(«9)
v
o
o



NCC connection in the natural gauge — summary

0 6 O 0 0 0
A=|P® T2, ¢°|, F=|DP> C3 O

0 P, O 0 DP, 0
A h *Ah+h7rdh, Fw— h7'Fh
ot 0 0 Q! 0 0
h=1] Q2202 6 0| Vh=]| Q202 6% 0
.03 Q.01 Q .03 Q.01 Q

The Bianchi identity
DaF =dF +AANF—-—FAA=0

encodes the differential identities encoded by the Weyl and Schouten
tensors.
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Relation to the Bach tensor

We now restrict to dim M = 4, signature of n: (—, +,+, +).

g = 77ab939b, €abed = V/|detn|€aped, 0123 =1

* — Hodge star of g

0 0 0
DaxF =dF + AAxF —%F N A = | B30, 0 0
0 Bpx0c 0

Bab = 2V VpPea — 2P Coaap

In particular, for Einstein spacetimes:

Rab:/\nab — B,, =0 = DsxF =0
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Yang-Mills theory of the NCC connection

1
LCYM(Q) = 5 Tr(F /\*F)

SLoym(0) = Tr (0F A%F) + Tr (F A (0%)F)
=Tr(6F A%F) (because C? = %ﬁbcdci,)
= Tr(Da(6A) A xF)
=Tr(SANA DaxF) +dTr (6AAXF)

0 6, 0 0 0 0
A= |P? T2, 02|, DaxF=|B*x0. 0 0
0 P, O 0 Byexf 0

— SLoym(0) = 2667 A Bopx0® + d Tr (A A +F)
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Presymplectic potential current

SLoym(0) = 26607 A Bapx0® + d Tr (SA A %F)
@CYM(ea 59) = Tr (6/4 A\ *F)

GCYM(Aabe, Aabéﬁb) = @CYM(F)"”,M"), Ae COO(U7 O(’I]))
Ocym(Q6°,Q00°) = Ocym(6?,067), Qe C(U,R")

0 6 0 0 0 0
A=|pPo 12, 02|, F=|DP® C3 O

0 P, O 0 DP, O

Ocym (0, 60) = 266° A xDP, + 572, A +C?,
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Decomposition of @cyym

1
Leym = ZE’ + L

& — Euler form
£ = €adeRab A Red

1
Rap = ERabcdec A ed, €abcd = V |det77|53bcd

6E = 26*P6R .y A Reg = 262U D (6T 1p) A Reg
= d (26?67 25 A Reg) + 26767 25 A DReq
= d (26?67 35 A Red) (Bianchi identity)

0 =dOg, Og i=2¢ 0 A Req
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Decomposition of @cyym

1
LCYM == Zf + L]_
06 =dOg, ©Og =2 5 A Rey
SLoym = 207 A Bapk0® +dOcym,  Ocym = 207 AxDP, 4 6T, A%CE,

8Ly = 2607 A Bapx® + 4O,

1
©1 :=Ocym — Zes

1
= 2007 A*DP, + Eeab“’(srab A (Ced — Red)
= 2007 A xDP, + €6, A O A Py
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1 1
Leym = 15 + L1, Ocym = 195 + 6,

©1 = 2660° N xDP, + €6 5 N Oc A Py
When Ry = Anap, P, = =46, and DP, = 0. Then

0 fgél'ab A*(67 A 6)

R —2N) (Rab A %(67 A 6°) — x2N)

1
Len = ~ 167G

T6xG



Decomposition of ©¢yy on Einstein spacetimes

1 1
Leym = 15 + L1, Ocym = 195 + 6,
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Decomposition of ©¢yy on Einstein spacetimes

1 1
Leym = 15 + L1, Ocym = 195 + 6,

©1 = 2660° N xDP, + €6 5 N Oc A Py
When Ry = Anap, P, = =46, and DP, = 0. Then

0 fgél'ab A*(67 A 6)

1 a b
LEH —_ m*(R - 2/\) —_ R(Rab /\*(9 /\ 9 ) - *2/\)
1 5 1 b
OLgy = ———=60" N | Rap — =Rnap + Nap | %x0° + dOgn
8rG 2
._ 1 a b
1 16w GA
Ocym = Z@g i Orn



©cynm on the conformal boundary



©cynm on the conformal boundary

Conformal compactification (M, &)

A~

g =070, 07 =Q0%, & =Q%g =n,p0°0°



©cynm on the conformal boundary

Conformal compactification (M, &)

A~

g =070, 07 =Q0%, & =Q%g =n,p0°0°



©cynm on the conformal boundary

Conformal compactification (M, &)

A~

g = nabeaabv 0% = anv é' = Q2g = nabéaéb

i =M, (F):Q=0
02 finite at .# = Ocym(,80) = Ocym(6,86) also finite
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©cynm on the boundary of asymptotically de Sitter

2 2 Wy i
g:p2<—dp —&-Zg,-j dx' dx’!

n=0
-1
i,j,k,...=1,2,3, lowered / raised with gu /g(o _ <gl5_0))

Conformal compactification g = ng'

LI =M, W(I):p=0

Ocym(f,00) = 2667 A xDP, + 672, A xCP,

=02, AxCE | since R,y = Anjap

Result: 8rC
U Ocym (0, 50) = ”75;-,- TiVol

where

0g =176, Tj=



©cynm on the boundary of asymptotically de Sitter

8rG e
U Ocyy = —7; 5, THVol



©cynm on the boundary of asymptotically de Sitter

8rG e
U Ocyy = —7; 5, THVol

On the other hand, from the holographically renormalized action

1 4 .\
SREN—M(/M(R—%\)Vol—i—/ﬂ(2K+€—R>Vol>

one obtains ’
L"OREN = — 508 TV



©cynm on the boundary of asymptotically de Sitter

8rG e
U Ocyy = —7; 5, THVol

On the other hand, from the holographically renormalized action

1 4 .\
SREN—M(/M(R—%\)Vol—i—/ﬂ(2K+€—R>Vol>

one obtains ’
L"OREN = — 508 TV

16w GA
3

* *
"Ocym = — (" OREN



©cynm on the boundary of asymptotically de Sitter

8rG e
U Ocyy = —7; 5, THVol

On the other hand, from the holographically renormalized action

1 4 .\
SREN—M(/M(R—%\)Vol—i—/ﬂ(2K+€—R>Vol>

one obtains ’
L"OREN = — 508 TV

167 GA L1 16w GA
7; 1*OREN Ocym = 195* 3 Orn

"Ocym = —
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Noether currents

SLoym = 2607 A BopxB® + dOcyr

For symmetries:
dsLoym = dZs

The Noether current
J5(9) = OCYM(G, 559) — 25(9)

is conserved whenever B,, = 0 (in particular when R.p = Anap).
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Noether currents - diffeomorphisms

Js(0) = ©cym(0,0s0) — Zs(0), dsLeym = dZs

LgLCYM = d(f i LCYM) - Zg = f Jloym = Tr((§ 1 F) /\*F)
@CYM(G, [,59) =Tr (ﬁgA A *F)

Je =Tr(Da(§ s A)AXF) =dTr((§ 2 A)xF) — Tr ((€ 2 A) A DaxF)
Qe = Tr((£ 1 A)xF)
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Noether currents - gauge transofrmations

Js(0) == Ocvwm(b,ds0) — Zs(0), dsleym = dZs
Conformal rescalings (66° = c6?, c € R):

dLeym(0) =0, Ocym(d,00) =0

Jc:07 Qc:O

Lorentz transformations (667 = w?,6°, w € o(p, q)):
SLeym(0) =0, Ocym(f, 60) = d(w?,xC?,)

Jo = d(w?yxC%), Q= w?*C",



Summary



Thank you!



