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Motivation behind Cartan connections

Idea: encode the local geometry of a space (Riemannian, conformal,
affine, ...) in a principal bundle equipped with a certain kind of
“connection”.
Model example: homogeneous space G/H acted upon by G with a
stabilizer subgroup H.

G
H−→ G/H, ωMC ∈ T∗G ⊗ g

On the total space G we have the Maurer-Cartan form, which encodes
the information about the group structure.
Examples:

Euclidean space G = Iso(p, q) ∼= Rn ⋊O(p, q), H = O(p, q),

affine space G = Aff(n) ∼= Rn ⋊GL(n), H = GL(n),

conformal space...
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Homogeneous model for a conformal space

Claim: G = O(p + 1, q + 1), H ⊂ G – subgroup preserving a chosen null
ray.
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Motivation behind Cartan connections

We would like to formalize the notion of a space M “being locally like” a
homogeneous space G/H.

We generalize

G
H−→ G/H, ωMC ∈ T∗G ⊗ g, dωMC + ωMC ∧ ωMC = 0

to

P
H−→ M, dimG = dimP, Â ∈ T∗P ⊗ g, dÂ+ Â ∧ Â =: F̂
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Cartan connection

G – Lie group, H ⊂ G – closed subgroup

P
π−→ M – principal H-bundle, dimM = dimG/H

Definition (Cartan connection)

A Cartan connection on P is a g-valued 1-form Â on P such that

1 ξ̂p ⌟ Âp = ξ for vertical ξ̂p ∈ TpP corresponding to ξ ∈ h

2 R∗
h Â = Ad(h−1)∗ ◦ Â

3 ξ̂ ⌟ Â ⇐⇒ ξ̂ = 0 (nondegeneracy)

Curvature: F̂ := dÂ+ Â ∧ Â.

Special (“flat”) case

Homogeneous space M = G/H, the H-bundle G → G/H. The
Maurer-Cartan form ωMC of G satisfies the above definition.

dωMC + ωMC ∧ ωMC = 0
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Cartan connection

Examples:

Affine space: G = Aff(n) ∼= Rn ⋊GL(n), H = GL(n),

P
GL(n)−−−−→ M – frame bundle.

Cartan connections Â on P encode the affine connections. The
curvature dÂ+ Â ∧ Â encodes both the usual curvature, as well as
torsion.

Euclidean space: G = Iso(p, q) ∼= Rn ⋊O(p, q), H = O(p, q),

P
O(n)−−−→ M – orthonormal frame bundle.

Cartan connections Â on P encode the affine metric-compatible
connections.
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The conformal bundle: step 1

We want to construct a principal H-bundle P
π−→ M, dimP = dimG ,

from the homogeneous model G = O(p + 1, q + 1), H ⊂ G - stabilizer of
a null ray in Rp+1,q+1.
We start with an n-dimensional conformal manifold (M, [g ]) with
nondegenerate signature (p, q).
Scale bundle:

S =
⋃

m∈M

[g ](m) ⊂ T∗M⊗2

S
πS−→ M, πS(g(m)) = m

Sections of S - metrics from the class [g ]
Structure at each point g(m) ∈ S :

a degenerate metric g̃g(m) := π∗
Sg(m)

a vector field ζ̃g(m) null w.r.t. g̃ , defined by

ζg(m)(f ) :=
d
dc

∣∣
c=1

f (c2g(m)), f ∈ C∞(S).
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The conformal bundle: step 2

P – bundle of co-frames of S compatible with the structure (g̃ , ζ̃)

P := { (θ̃a, ϕ̃)(g(m)) ∈ L∗S | g̃g(m) = ηab θ̃
aθ̃b, ϕ̃(ζ̃g(m)) = −1 }

P
π−→ M, π((θa, ϕ)(g(m))) = m

G = O(Q) ∼= O(p + 1, q + 1), Q =

 0 0 −1
0 ηab 0
−1 0 0


H =

〈1 0 0
0 Λa

b 0
0 0 1

 ,

c 0 0
0 δab 0
0 0 1

c

 ,

 1 0 0
ba δab 0

1
2b

cbc bb 1

〉 ⊂ G

where Λ ∈ O(η), c ∈ R+, b ∈ Rn.
Corresponding actions on (θ̃a, ϕ̃)(g(m)) ∈ P:

rotate θ̃a by Λa
b

rescale θ̃a by c and g(m) by c2

ϕ̃ 7→ ϕ̃+ baθ̃
a

Then P
π−→ M is a principal H-bundle and dimP = dimG
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Conformal Cartan connection

P
H−→ M, H ⊂ G = O(p + 1, q + 1), dimP = dimG

There are many 1-forms Â on P satisfying the definition of the Cartan
connection, called conformal Cartan connections.
Given some normalizing assumptions about Â and its curvature (analogue

in the Riemannian case P
O(n)−−−→ M – torsion), there exists a unique one,

called the normal conformal Cartan connection.
For each local section M ⊃ U ∋ m 7→ σ(m) = (θ̃a, ϕ̃)(g(m)) ∈ P, we
have

A := σ∗Â, F := σ∗F̂

Under a change of sections given by a point-dependent transformation
h ∈ C∞(U,H),

A 7→ h−1Ah + h−1 dh , F 7→ h−1Fh
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There are many 1-forms Â on P satisfying the definition of the Cartan
connection, called conformal Cartan connections.
Given some normalizing assumptions about Â and its curvature (analogue
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A := σ∗Â, F := σ∗F̂

Under a change of sections given by a point-dependent transformation
h ∈ C∞(U,H),

A 7→ h−1Ah + h−1 dh , F 7→ h−1Fh



Conformal Cartan connection

P
H−→ M, H ⊂ G = O(p + 1, q + 1), dimP = dimG
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NCC connection in the natural gauge

A := σ∗Â, F := σ∗F̂

A 7→ h−1Ah + h−1 dh , F 7→ h−1Fh

A choice of a co-frame θa ∈ L∗U such that ηabθ
aθb ∈ [g ] determines

fields θ̃a := π∗θa and g̃ := ηab θ̃
aθ̃b.

However, we can choose any ϕ̃, subject to the condition ϕ̃(ζ̃). There is a
unique choice, such that the resulting section σN : U → P satisfies

A := σ∗
N Â =

0 ∗ ∗
∗ ∗ ∗
∗ ∗ 0


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NCC connection in the natural gauge

A =

 0 θb 0
Pa Γab θa

0 Pb 0


dθa + Γab ∧ θb = 0, Γab = −Γba

Pa = Pabθ
b, Pab =

1

12
Rηab−

1

2
Rab

(Schouten tensor)

(Rab, R – Ricci tensor and scalar of g := ηabθ
aθb, indices lowered/raised

with ηab/η
ab)

Under θa 7→ Λa
bθ

b, Λ ∈ O(η),

A 7→ h−1Ah + h−1 dh , h =

1 0 0
0 Λa

b 0
0 0 1


Under θa 7→ Ωθa, Ω ∈ R+,

A 7→ h−1Ah + h−1 dh , h =

 Ω−1 0 0
Ω,

aΩ−2 δab 0
1
2Ω,cΩ,

cΩ−3 Ω,aΩ
−1 Ω
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NCC connection in the natural gauge – curvature

F = dA+ A ∧ A =

 0 0 0
DPa C a

b 0
0 DPb 0
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DPa = dPa + Γab ∧ Pb (∼ Cotton tensor), C a

b =
1

2
C a

bcd θ
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NCC connection in the natural gauge – summary

A =

 0 θb 0
Pa Γab θa

0 Pb 0

 , F =

 0 0 0
DPa C a

b 0
0 DPb 0


A 7→ h−1Ah + h−1 dh , F 7→ h−1Fh

h =

 Ω−1 0 0
Ω,

aΩ−2 δab 0
1
2Ω,cΩ,

cΩ−3 Ω,aΩ
−1 Ω

 ∨ h =

 Ω−1 0 0
Ω,

aΩ−2 δab 0
1
2Ω,cΩ,

cΩ−3 Ω,aΩ
−1 Ω


The Bianchi identity

DAF = dF + A ∧ F − F ∧ A = 0

encodes the differential identities encoded by the Weyl and Schouten
tensors.



Relation to the Bach tensor

We now restrict to dimM = 4, signature of η: (−,+,+,+).

g := ηabθ
aθb, ϵabcd :=

√
|det η|εabcd , ε0123 := 1

⋆− Hodge star of g

DA⋆F = dF + A ∧ ⋆F − ⋆F ∧ A =

 0 0 0
Bac⋆θc 0 0

0 Bbc⋆θ
c 0


Bab := 2∇c∇[bPc]a − 2PcdCcadb

In particular, for Einstein spacetimes:

Rab = Ληab =⇒ Bab = 0 =⇒ DA⋆F = 0
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0 Bbc⋆θ
c 0


Bab := 2∇c∇[bPc]a − 2PcdCcadb

In particular, for Einstein spacetimes:

Rab = Ληab =⇒ Bab = 0 =⇒ DA⋆F = 0
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Yang-Mills theory of the NCC connection

LCYM(θ) :=
1

2
Tr (F ∧ ⋆F )

δLCYM(θ) = Tr (δF ∧ ⋆F ) + Tr (F ∧ (δ⋆)F )

= Tr (δF ∧ ⋆F ) (because ⋆C a
b =

1

2
ϵa d

bc C c
d )

= Tr (DA(δA) ∧ ⋆F )

= Tr(δA ∧ DA⋆F ) + dTr (δA ∧ ⋆F )

A =

 0 θb 0
Pa Γab θa

0 Pb 0

 , DA⋆F =

 0 0 0
Bac⋆θc 0 0

0 Bbc⋆θ
c 0


=⇒ δLCYM(θ) = 2δθa ∧ Bab⋆θ

b + dTr (δA ∧ ⋆F )
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Presymplectic potential current
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ΘCYM(Λa
bθ

b,Λa
bδθ

b) = ΘCYM(θa, δθa), Λ ∈ C∞(U,O(η))

ΘCYM(Ωθb,Ωδθb) = ΘCYM(θa, δθa), Ω ∈ C∞(U,R+)

A =

 0 θb 0
Pa Γab θa

0 Pb 0

 , F =

 0 0 0
DPa C a

b 0
0 DPb 0


ΘCYM(θ, δθ) = 2δθa ∧ ⋆DPa + δΓab ∧ ⋆C a

b
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Decomposition of ΘCYM

LCYM =
1

4
E + L1

E – Euler form
E := ϵabcdRab ∧Rcd

Rab :=
1

2
Rabcdθ

c ∧ θd , ϵabcd :=
√
|det η|εabcd

δE = 2ϵabcdδRab ∧Rcd = 2ϵabcdD(δΓab) ∧Rcd

= d
(
2ϵabcdδΓab ∧Rcd

)
+ 2ϵabcdδΓab ∧ DRcd

= d
(
2ϵabcdδΓab ∧Rcd

)
(Bianchi identity)

δE = dΘE , ΘE := 2ϵabcdδΓab ∧Rcd
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Decomposition of ΘCYM on Einstein spacetimes

LCYM =
1

4
E + L1, ΘCYM =

1

4
ΘE +Θ1

Θ1 := 2δθa ∧ ⋆DPa + ϵabcdδΓab ∧ θc ∧ Pd

When Rab = Ληab, Pa = −Λ
6 θa and DPa = 0. Then

Θ1
∼= −Λ

3
δΓab ∧ ⋆

(
θa ∧ θb

)
LEH =

1

16πG
⋆(R − 2Λ) =

1

16πG

(
Rab ∧ ⋆

(
θa ∧ θb

)
− ⋆2Λ

)
δLEH = − 1

8πG
δθa ∧

(
Rab −

1

2
Rηab + Ληab

)
⋆θb + dΘEH

ΘEH :=
1

16πG
δΓab ∧ ⋆

(
θa ∧ θb

)
ΘCYM

∼=
1

4
ΘE − 16πGΛ

3
ΘEH
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ΘCYM on the conformal boundary

Conformal compactification (M̂, ĝ)

g = ηabθ
aθb, θ̂a := Ωθa, ĝ = Ω2g = ηab θ̂

aθ̂b

ι : I → M̂, ι(I ) : Ω = 0

θ̂a finite at I =⇒ ΘCYM(θ̂, δθ̂) = ΘCYM(θ, δθ) also finite
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g = ηabθ
aθb, θ̂a := Ωθa, ĝ = Ω2g = ηab θ̂
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ΘCYM on the boundary of asymptotically de Sitter

g =
ℓ2

ρ2

(
−dρ2 +

∞∑
n=0

g
(n)
ij dx i dx j

)

i , j , k, . . . = 1, 2, 3, lowered / raised with g
(0)
ij / g ij

(0) =
(
g
(0)
ij

)−1

Conformal compactification ĝ := ρ2

ℓ2 g ,

ι : I → M̂, ι(I ) : ρ = 0

ΘCYM(θ, δθ) = 2δθa ∧ ⋆DPa + δΓab ∧ ⋆C b
a

= δΓab ∧ ⋆C b
a , since Rab = Ληab

Result:

ι∗ΘCYM(θ, δθ) =
8πG

ℓ
δg̊ijT

ij V̊ol

where

δg̊ := ι∗δĝ , Tij :=
3ℓ

16πG
g
(3)
ij
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Noether currents

δLCYM = 2δθa ∧ Bab⋆θ
b + dΘCYM

For symmetries:
δSLCYM = dZS

The Noether current

JS(θ) := ΘCYM(θ, δSθ)− ZS(θ)

is conserved whenever Bab = 0 (in particular when Rab = Ληab).
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Noether currents - diffeomorphisms

JS(θ) := ΘCYM(θ, δSθ)− ZS(θ), δSLCYM = dZS

LξLCYM = d(ξ ⌟ LCYM) =⇒ Zξ = ξ ⌟ LCYM = Tr ((ξ ⌟ F ) ∧ ⋆F )

ΘCYM(θ,Lξθ) = Tr (LξA ∧ ∗F )

Jξ = Tr (DA(ξ ⌟ A) ∧ ⋆F ) = dTr ((ξ ⌟ A)⋆F )− Tr ((ξ ⌟ A) ∧ DA⋆F )

Qξ = Tr ((ξ ⌟ A)⋆F )
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Noether currents - gauge transofrmations

JS(θ) := ΘCYM(θ, δSθ)− ZS(θ), δSLCYM = dZS

Conformal rescalings (δθa = cθa, c ∈ R):

δLCYM(θ) = 0, ΘCYM(θ, δθ) = 0

Jc = 0, Qc = 0

Lorentz transformations (δθa = ωa
bθ

b, ω ∈ o(p, q)):

δLCYM(θ) = 0, ΘCYM(θ, δθ) = d
(
ωa

b⋆C
b
a

)
Jω = d

(
ωa

b⋆C
b
a

)
, Qω = ωa

b⋆C
b
a
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Summary



Thank you!


