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Motivation: classifying black hole spacetimes

BH uniqueness [Israel, Hawking, Carter, Robinson ’70s]: all (analytic)
stationary, asymptotically flat solutions of the 4D vacuum Einstein
equations with a connected, non-degenerate event horizon are Kerr.

Key ingredient: rigidity theorem [Hawking ’72], implying that rotating
solutions must be axi-symmetric.

In higher dimensions uniqueness is violated, e.g. 5D Myers-Perry
(horizon S3) and black rings [Emparan-Reall ’01] (horizon S2 × S1).
Classification still largely open.

For extremal black holes intrinsic geometry of the horizon decouples
from extrinsic geometry. Intrinsic near-horizon geometries can be
studied and classified independent of exterior BH spacetime.
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Extremal horizons [Kunduri-Lucietti ’13]

Let (N, g) be an (n+ 2)-dimensional spacetime containing an
extremal Killing horizon H with normal K (so d(|K|2) = 0 on H).
Suppose M is a compact n-dimensional cross-section of H.

Introduce Gaussian null coordinates s.t. H = {r = 0}, K = ∂
∂v

g = 2dv
(
dr + rXa(r, x)dx

a + 1
2r

2F (r, x)dv
)
+ gab(r, x)dx

adxb.

Near-horizon limit: r 7→ ϵr, v 7→ v
ϵ , take ϵ→ 0.

gNH = 2dv
(
dr + rXa(x)dx

a + 1
2r

2F (x)dv
)
+ gab(x)dx

adxb.

gNH determined by near-horizon data (g, F,X) on M .
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Near-horizon equations

Energy-momentum tensor T also has near-horizon limit

TNH = 2dv
(
Tvr(x)dr + rβa(x)dx

a + 1
2r

2α(x)dv
)
+ Tab(x)dx

adxb.

Next impose Einstein equations on (N, g)

Gµν [g] + Λgµν = Tµν .

In NH limit this determines F = F (X, g, Tab, Tvr) and imposes

Rab =
1

2
XaXb −∇(aXb) + λgab + Pab,

Pab = Tab −
1

n
(gcdTcd + 2Tvr)gab.

Together with matter eqns: near-horizon equations (NHE) on M .

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024 4 / 27



Near-horizon equations

Energy-momentum tensor T also has near-horizon limit

TNH = 2dv
(
Tvr(x)dr + rβa(x)dx

a + 1
2r

2α(x)dv
)
+ Tab(x)dx

adxb.

Next impose Einstein equations on (N, g)

Gµν [g] + Λgµν = Tµν .

In NH limit this determines F = F (X, g, Tab, Tvr) and imposes

Rab =
1

2
XaXb −∇(aXb) + λgab + Pab,

Pab = Tab −
1

n
(gcdTcd + 2Tvr)gab.

Together with matter eqns: near-horizon equations (NHE) on M .

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024 4 / 27



Near-horizon equations

Energy-momentum tensor T also has near-horizon limit

TNH = 2dv
(
Tvr(x)dr + rβa(x)dx

a + 1
2r

2α(x)dv
)
+ Tab(x)dx

adxb.

Next impose Einstein equations on (N, g)

Gµν [g] + Λgµν = Tµν .

In NH limit this determines F = F (X, g, Tab, Tvr) and imposes

Rab =
1

2
XaXb −∇(aXb) + λgab + Pab,

Pab = Tab −
1

n
(gcdTcd + 2Tvr)gab.

Together with matter eqns: near-horizon equations (NHE) on M .

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024 4 / 27



Near-horizon equations

Energy-momentum tensor T also has near-horizon limit

TNH = 2dv
(
Tvr(x)dr + rβa(x)dx

a + 1
2r

2α(x)dv
)
+ Tab(x)dx

adxb.

Next impose Einstein equations on (N, g)

Gµν [g] + Λgµν = Tµν .

In NH limit this determines F = F (X, g, Tab, Tvr) and imposes

Rab =
1

2
XaXb −∇(aXb) + λgab + Pab,

Pab = Tab −
1

n
(gcdTcd + 2Tvr)gab.

Together with matter eqns: near-horizon equations (NHE) on M .

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024 4 / 27



Outline

1 Vacuum extremal horizons

2 Rigidity of the extremal Kerr-Newman horizon

3 Rigidity of quasi-Einstein metrics

4 Topology of generalized extremal horizons

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024 5 / 27



The NHE in vacuum

Vacuum NHE: compact Riemannian manifold (M, g) with a vector
field X ∈ X(M) satisfying

Rab =
1

2
XaXb −∇(aXb) + λgab.

A solution is trivial if X ≡ 0 and static if dX♭ = 0.

Example: extremal Kerr horizon. M = S2, λ = 0.

g =
a2(1 + x2)dx2

1− x2
+

4a2(1− x2)dϕ2

1 + x2
,

X =
K −∇Γ

Γ
, where Γ =

1

2
(1 + x2), K =

1

2a2
∂

∂ϕ
.

a rotation parameter, x ∈ [−1, 1], ϕ ∈ [0, 2π).

Q: Are there other (global) solutions to the n = 2 vacuum NHE?
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Rigidity of the extremal Kerr horizon

Static case: every solution with n = 2 is trivial [Chruściel-Reall-Tod ’05].

Axi-symmetric case: extremal Kerr horizon is the unique non-trivial
solution with n = 2 admitting a U(1) action preserving (g,X)
[Lewandowski-Pawlowski ’03, Kunduri-Lucietti ’09].

Theorem [Dunajski-Lucietti ’23, Colling-Dunajski-Kunduri-Lucietti ’24]

Let (M, g) be a compact Riemannian manifold without boundary
admitting a non-gradient vector field X such that the vacuum NHE hold.
Then (M, g) admits a Killing vector field K. Moreover, [K,X] = 0.

Corollary: The general non-trivial solution to the n = 2 vacuum NHE
is given by the extremal Kerr-(A)dS horizon.
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Killing vector Ansatz

K is constructed using an Ansatz inspired by extremal Kerr horizon.

Lemma

Given a vector field X on a compact Riemannian manifold (M, g) there
exists a (unique up to scale) smooth function Γ > 0 such that ∇aK

a = 0,
where K is defined by

K = ΓX +∇Γ.

Proof [Gauduchon ’84]: ∇aK
a = 0 ⇐⇒ LΓ = 0, where

Lψ = −∆ψ −∇a(ψX
a).

L has formal adjoint

L∗ψ = −∆ψ +Xa∇aψ.

Now use Fredholm alternative + maximum principle. □
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Tensor identity

NHE in terms of K = ΓX +∇Γ:

Rab =
KaKb

2Γ2
− (∇aΓ)(∇bΓ)

2Γ2
− 1

Γ
∇(aKb) +

1

Γ
∇a∇bΓ + λgab.

Proposition

For any solution to the NHE the following identity holds

1

4
|LKg|2 = ∇a

(
Kb∇(aKb) − 1

2Ka∆Γ− 1
2Ka∇bK

b − λΓKa

)
+∇bK

b

(
− 1

2Γ
|K|2 + 1

2
∆Γ +

1

2
∇bK

b +
1

2Γ
Kb∇bΓ + λΓ

)
.

Proof: apply Kb∇a(Rab − 1
2Rgab) = 0 to the NHE and calculate.

The result relies on many mysterious cancellations.
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Inheritance of symmetry

Choose Γ s.t. ∇aK
a = 0. Integrating the tensor identity over M

shows LKg = 0.

It remains to prove [K,X] = 0, which is equivalent to LKΓ = 0.
Strategy: show L(LKΓ) = 0 and ker L = {0}, where

Lψ = −∆ψ +∇a((Γ
−1∇aΓ)ψ) + Γ−2|K|2ψ.

Applying LKR = 0 to the NHE gives L(LKΓ) = 0.

L has formal adjoint of the form

L∗ψ = −∆ψ +Ba∇aψ + Cψ,

with C = Γ−2|K|2 ≥ 0. Maximum principle + Fredholm alternative
imply ker L = {0}. □
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The NHE in Einstein-Maxwell theory

Energy-momentum tensor for Einstein-Maxwell

Tµν = 2
(
FµρF ρ

ν − 1
4FρσFρσgµν

)
.

Maxwell 2-form F is closed and has NH limit

FNH = d(rψ(x)dv) + 1
2Bab(x)dx

a ∧ dxb

Einstein-Maxwell NHE: compact Riemannian manifold (M, g) with
X ∈ X(M), ψ ∈ C∞(M), B ∈ Ω2(M) satisfying dB = 0 and

Rab=
1

2
XaXb −∇(aXb) + λgab + Pab,

(∇a −Xa)Bab = −(∇b −Xb)ψ,

where

Pab = 2BacB
c

b +
1

n
gab(2ψ

2 −BcdB
cd).
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Extremal Kerr-Newman horizon

Example: extremal Kerr-Newman horizon. M = S2, λ = 0.

g =
ρ2+

1− x2
dx2 +

(1− x2)(a2 + r2+)
2

ρ2+
dϕ2,

X =
K −∇Γ

Γ
, where Γ =

ρ2+
2ar+

, K =
1

a2 + r2+

∂

∂ϕ
,

ψ =
a2Q2x2 − 2aPr+x−Qr2+

ρ4+
,

B = −
(a2 + r2+)(a

2Px2 + 2aQr+x− Pr2+)

ρ4+
dx ∧ dϕ.

Here ρ2+ = r2+ + a2x2, r2+ = a2 + P 2 +Q2. a rotation parameter,
P,Q magnetic resp. electric charge. x ∈ [−1, 1], ϕ ∈ [0, 2π).
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Rigidity of the extremal Kerr-Newman horizon

From now on set n = 2 (four space-time dimensions).

[Chruściel-Tod ’07, Kunduri-Lucietti ’09, Kamiński-Lewandowski ’24]: every
static solution is trivial, i.e. X ≡ 0 and R,ψ, ⋆B are constant.

[Lewandowski-Pawlowski ’03, Kunduri-Lucietti ’09]: extremal KN horizon
is unique non-trivial solution with U(1) action preserving (g,X, ψ,B).

Theorem [Colling-Katona-Lucietti ’24]

Let (M, g) be a compact, oriented Riemannian surface (without boundary)
admitting a non-gradient vector field X such that the Einstein-Maxwell
NHE hold. Then (M, g) admits a Killing vector field K. Moreover,
[K,X] = 0, LKψ = 0 and LKB = 0.
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The matter equation for n = 2

Define the function β = ⋆B. The matter equation becomes

⋆(dβ − βX♭) = dψ − ψX♭.

Lemma

Let (M, g) be a compact, oriented Riemannian surface admitting a
solution (X,ψ, β) to the Einstein-Maxwell NHE. Then the function
ρ =

√
β2 + ψ2 is either identically zero or strictly positive.

Proof: Assume ρ ̸≡ 0. On M̃ = {ρ > 0} the function ρ solves

∆ log ρ = ∇aX
a.

Let f be a global solution to ∆f = ∇aX
a and consider h = log ρ− f

on M̃ . Maximum principle: h ≡ c = const =⇒ ρ = ec+f > 0. □

Other proof: [Dobkowski-Ry lko, Kamiński, Lewandowski, Szereszewski ’18].
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Maxwell tensor identity

Einstein-Maxwell NHE in terms of K = ΓX +∇Γ:

Rab =
KaKb

2Γ2
− (∇aΓ)(∇bΓ)

2Γ2
− 1

Γ
∇(aKb) +

1

Γ
∇a∇bΓ+ λgab + ρ2gab.

Proposition

For any solution to the Einstein-Maxwell NHE the following identity holds

1

4
|LKg|2 + 2|∇(Γρ)|2 =

∇a
(
Kb∇(aKb) − 1

2Ka∆Γ− 1
2Ka∇bK

b − λΓKa + Γρ∇a(Γρ)
)

+∇bK
b

(
− 1

2Γ
|K|2 + 1

2
∆Γ +

1

2
∇bK

b +
1

2Γ
Kb∇bΓ + λΓ− Γρ2

)
.

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024 15 / 27



Maxwell tensor identity

Einstein-Maxwell NHE in terms of K = ΓX +∇Γ:

Rab =
KaKb

2Γ2
− (∇aΓ)(∇bΓ)

2Γ2
− 1

Γ
∇(aKb) +

1

Γ
∇a∇bΓ+ λgab + ρ2gab.

Proposition

For any solution to the Einstein-Maxwell NHE the following identity holds

1

4
|LKg|2 + 2|∇(Γρ)|2 =

∇a
(
Kb∇(aKb) − 1

2Ka∆Γ− 1
2Ka∇bK

b − λΓKa + Γρ∇a(Γρ)
)

+∇bK
b

(
− 1

2Γ
|K|2 + 1

2
∆Γ +

1

2
∇bK

b +
1

2Γ
Kb∇bΓ + λΓ− Γρ2

)
.

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024 15 / 27



Proof of theorem

The vacuum calculation gives

1

4
|LKg|2 = ∇a(. . .

a) +∇aK
a(. . . )− ρ2Ka∇aΓ.

Use the matter equation to rewrite the last term

−ρ2Ka∇aΓ = −Γρ2∇aK
a +∇a(Γρ∇a(Γρ))− 2|∇(Γρ)|2.

Fix Γ s.t. ∇aK
a = 0. Tensor identity: LKg = 0 and Γρ = const.

Matter equation implies LKΓ = LKρ = 0. Therefore

[K,X] = 0, LKψ = 0 and LKB = 0. □

Corollary: The general non-trivial solution to the n = 2
Einstein-Maxwell NHE is given by extremal KN-(A)dS horizon.

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024 16 / 27



Proof of theorem

The vacuum calculation gives

1

4
|LKg|2 = ∇a(. . .

a) +∇aK
a(. . . )− ρ2Ka∇aΓ.

Use the matter equation to rewrite the last term

−ρ2Ka∇aΓ = −Γρ2∇aK
a +∇a(Γρ∇a(Γρ))− 2|∇(Γρ)|2.

Fix Γ s.t. ∇aK
a = 0. Tensor identity: LKg = 0 and Γρ = const.

Matter equation implies LKΓ = LKρ = 0. Therefore

[K,X] = 0, LKψ = 0 and LKB = 0. □

Corollary: The general non-trivial solution to the n = 2
Einstein-Maxwell NHE is given by extremal KN-(A)dS horizon.

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024 16 / 27



Proof of theorem

The vacuum calculation gives

1

4
|LKg|2 = ∇a(. . .

a) +∇aK
a(. . . )− ρ2Ka∇aΓ.

Use the matter equation to rewrite the last term

−ρ2Ka∇aΓ = −Γρ2∇aK
a +∇a(Γρ∇a(Γρ))− 2|∇(Γρ)|2.

Fix Γ s.t. ∇aK
a = 0. Tensor identity: LKg = 0 and Γρ = const.

Matter equation implies LKΓ = LKρ = 0. Therefore

[K,X] = 0, LKψ = 0 and LKB = 0. □

Corollary: The general non-trivial solution to the n = 2
Einstein-Maxwell NHE is given by extremal KN-(A)dS horizon.

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024 16 / 27



Proof of theorem

The vacuum calculation gives

1

4
|LKg|2 = ∇a(. . .

a) +∇aK
a(. . . )− ρ2Ka∇aΓ.

Use the matter equation to rewrite the last term

−ρ2Ka∇aΓ = −Γρ2∇aK
a +∇a(Γρ∇a(Γρ))− 2|∇(Γρ)|2.

Fix Γ s.t. ∇aK
a = 0. Tensor identity: LKg = 0 and Γρ = const.

Matter equation implies LKΓ = LKρ = 0. Therefore

[K,X] = 0, LKψ = 0 and LKB = 0. □

Corollary: The general non-trivial solution to the n = 2
Einstein-Maxwell NHE is given by extremal KN-(A)dS horizon.

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024 16 / 27



Proof of theorem

The vacuum calculation gives

1

4
|LKg|2 = ∇a(. . .

a) +∇aK
a(. . . )− ρ2Ka∇aΓ.

Use the matter equation to rewrite the last term

−ρ2Ka∇aΓ = −Γρ2∇aK
a +∇a(Γρ∇a(Γρ))− 2|∇(Γρ)|2.

Fix Γ s.t. ∇aK
a = 0. Tensor identity: LKg = 0 and Γρ = const.

Matter equation implies LKΓ = LKρ = 0. Therefore

[K,X] = 0, LKψ = 0 and LKB = 0. □

Corollary: The general non-trivial solution to the n = 2
Einstein-Maxwell NHE is given by extremal KN-(A)dS horizon.

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024 16 / 27



Quasi-Einstein equations

Quasi-Einstein equations (QEE): Riemannian manifold (M, g) of
dimension n together with X ∈ X(M) satisfying

Rab =
1

m
XaXb −∇(aXb) + λgab.

m ̸= 0 and λ constants.

m = 2: vacuum NHE with cosmological constant λ.

m = 1− n, λ = 0: Levi-Civita connections projectively equivalent to
connections with skew Ricci tensor [Nurowski-Randall ’16].

m = 2− n: Einstein-Weyl structures [Cartan ’43].

m ∈ N, X♭ = df : warped product Einstein metrics [Kim-Kim ’03].

m = ∞: Ricci solitons [Hamilton ’98].
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Rigidity of quasi-Einstein metrics

Q: do all solutions to the QEE with non-gradient X on compact M
admit a Killing vector of the form K = 2

mΓX +∇Γ?

Fixing Γ s.t. ∇aK
a = 0 and repeating steps for m = 2 [Cochran ’24],∫

M
|LKg|2 volg =

4

m
(2−m)

∫
M
RabK

a∇bΓ volg.

Unclear how to proceed.

Theorem

Let (M, g) be a compact Riemannian n-manifold without boundary
admitting a non-gradient vector field X such that the QEE hold with
either (i) m > 2 or (ii) m ≤ 2− n. Then (M, g) admits a Killing vector
field K. Moreover, [K,X] = 0.
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QEE Tensor identity

QEE in terms of K = 2
mΓX +∇Γ:

Rab =
m

4Γ2
KaKb−

m

2Γ
∇(aKb)+

m

2Γ
∇a∇bΓ−

m

4Γ2
(∇aΓ)(∇bΓ)+λgab.

Proposition

For any solution to the QEE with m ̸= 2 the following identity holds

1

4
Γ

m−2
2 |LKg|2 +

1

m− 2
Γ

m−2
2 (∇aK

a)2 = ∇a

(
Γ

m−2
2 Ka

)
H +∇aV

a.

Here

H = −|K|2

2Γ
+ 1

2∆Γ+ 1
4(m− 2)

|∇Γ|2

Γ
+ m

2(m−2)∇aK
a + λΓ,

V a = Γ
m−2

2 Kb∇(aKb) − m−2
4 |∇Γ|2Γ

m−4
2 Ka − 1

2Γ
m−2

2 (∇bK
b)Ka

− 1
2Γ

m−2
2 (∆Γ)Ka − λΓ

m
2 Ka.
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QEE Killing vector

Let Ψ be a smooth positive function satisfying

∆Ψ+∇a(ΨX
a) = 0.

Choose Γ to be Ψ
2
m , so that Γ

m−2
2 K is divergence-free.

Integrating the tensor identity over M ,∫
M

Γ
m
2
−1

(
1

4
|LKg|2 +

1

m− 2
(∇aK

a)2
)

volg = 0.

For m > 2 integrand is non-negative =⇒ LKg = 0.
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Generalized extremal horizon equations

Definition [Kamiński-Lewandowski ’24]

A metric g and vector field X on a surface M satisfy the generalized
extremal horizon equation (GEHE) for some f ∈ C∞(M) and c ̸= 0 if

∇(aXb) + cXaXb + fgab = 0.

c = −1
2 , f = 1

2R− λ: vacuum NHE.

c = −1
2 , f = 1

2R− λ− ρ2: Einstein-Maxwell NHE.

c = − 1
m , f = 1

2R− λ: QEE.
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Topological rigidity

Theorem

Let (g,X) be a solution to the GEHE on a closed, connected and oriented
surface M with X not identically zero. Then M is diffeomorphic to S2.

[Kamiński-Lewandowski ’24]: proof based on holomorphic vector fields.

Poincaré-Hopf theorem: Let M be a closed manifold and X a vector
field on M having only isolated zeros. The sum of the indices of the
zeros of X equals the Euler characteristic χ(M).

Recall the index of X at an isolated zero p ∈M is defined as the
degree of the map X/|X| : ∂D → Sn−1, where D is a coordinate disk
around p s.t. p is the only zero of X in D.
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Proof of theorem: step 1

Outline of proof: show that

1 X has at least one zero.

2 Any zero of X is isolated.

3 The index of X at any zero is positive.

This implies χ(M) > 0 and hence M ∼= S2.

Step 1: Use the trace of GEHE to express f in terms of X. Then
contract the GEHE twice with X to find [Jezierski ’09]

∇a

(
Xa

|X|2

)
= c.

On a closed manifold M this shows X must have zero.
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Proof of theorem: step 2

Step 2: Introduce complex coords (z, z̄) around a zero p ∈ U and
functions H : U → R, P : U → C s.t.

g = 2eHdzdz̄, X♭ = Pdz + P̄dz̄.

Define a complex function F locally by ∂z̄F = P̄ . The
(z̄z̄)-component of the GEHE gives

∂z̄
(
ecF e−H P̄

)
= 0.

Hence p is an isolated zero of X.

Note: if M = S2 we can define F globally by ∂̄F = (X♭)(0,1). The
computation above then shows that V = ecFX(1,0) is a holomorphic
vector field.
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Proof of theorem: step 3

Step 3: motivated by [Chruściel-Szybka-Tod ’17]. Key ingredient

Lemma [Milnor ’65]: Let p be a zero of a vector field X. If (in some
coordinates) det(∂µX

ν) > 0 at p, then then the zero is isolated and
of index 1.

Prolong the GEHE: define Ω by dX♭ = 2Ωϵ, so that

∇aXb + cXaXb = −fgab +Ωϵab.

We find
det(∂µX

ν)
∣∣
p
= f(p)2 +Ω(p)2.

Hence det(∂µX
ν) > 0 at p unless X, f,Ω vanish simultaneously.

In this degenerate case it can be shown that det(∂µX
ν) has a strict

minimum at p, which still implies that the index is positive.
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Summary

Main results

4D Einstein-Maxwell Theory: every non-trivial extremal horizon
cross-section admits a Killing vector and hence is given by the
extremal KN family.

Quasi-Einstein equation: every compact non-gradient solution to
the QEE with m > 2 or m ≤ 2− n admits a Killing vector
preserving X.

Generalized extremal horizon equation: every non-trivial solution
is (up to a double cover) on the two-sphere S2.

Open problems

Killing vector for the QEE with m ∈ (2− n, 2)?

Other theories, e.g. 5D Einstein-Maxwell Chern-Simons.
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Thank you
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