

Rigidity of the extremal Kerr-Newman horizon

Alex Colling

DAMTP, University of Cambridge

Warsaw 2024

- AC, David Katona, James Lucietti (2024). Rigidity of the extremal Kerr-Newman horizon. [arXiv:2406.07128](https://arxiv.org/abs/2406.07128)
- AC, Maciej Dunajski (2024). Quasi-Einstein structures, Hitchin's equations and isometric embeddings. [arXiv:24**.*****](https://arxiv.org/abs/24**.*****)

Motivation: classifying black hole spacetimes

- **BH uniqueness** [Israel, Hawking, Carter, Robinson '70s]: all (analytic) stationary, asymptotically flat solutions of the 4D vacuum Einstein equations with a connected, non-degenerate event horizon are Kerr.

Motivation: classifying black hole spacetimes

- **BH uniqueness** [Israel, Hawking, Carter, Robinson '70s]: all (analytic) stationary, asymptotically flat solutions of the 4D vacuum Einstein equations with a connected, non-degenerate event horizon are Kerr.
- Key ingredient: **rigidity theorem** [Hawking '72], implying that rotating solutions must be axi-symmetric.

Motivation: classifying black hole spacetimes

- **BH uniqueness** [Israel, Hawking, Carter, Robinson '70s]: all (analytic) stationary, asymptotically flat solutions of the 4D vacuum Einstein equations with a connected, non-degenerate event horizon are Kerr.
- Key ingredient: **rigidity theorem** [Hawking '72], implying that rotating solutions must be axi-symmetric.
- In higher dimensions uniqueness is violated, e.g. 5D Myers-Perry (horizon S^3) and black rings [Emparan-Reall '01] (horizon $S^2 \times S^1$). Classification still largely open.

Motivation: classifying black hole spacetimes

- **BH uniqueness** [Israel, Hawking, Carter, Robinson '70s]: all (analytic) stationary, asymptotically flat solutions of the 4D vacuum Einstein equations with a connected, non-degenerate event horizon are Kerr.
- Key ingredient: **rigidity theorem** [Hawking '72], implying that rotating solutions must be axi-symmetric.
- In higher dimensions uniqueness is violated, e.g. 5D Myers-Perry (horizon S^3) and black rings [Emparan-Reall '01] (horizon $S^2 \times S^1$). Classification still largely open.
- For extremal black holes intrinsic geometry of the horizon decouples from extrinsic geometry. Intrinsic **near-horizon geometries** can be studied and classified independent of exterior BH spacetime.

- Let (N, \mathbf{g}) be an $(n + 2)$ -dimensional spacetime containing an extremal Killing horizon \mathcal{H} with normal \mathcal{K} (so $d(|\mathcal{K}|^2) = 0$ on \mathcal{H}). Suppose M is a compact n -dimensional cross-section of \mathcal{H} .

- Let (N, \mathbf{g}) be an $(n + 2)$ -dimensional spacetime containing an extremal Killing horizon \mathcal{H} with normal \mathcal{K} (so $d(|\mathcal{K}|^2) = 0$ on \mathcal{H}). Suppose M is a compact n -dimensional cross-section of \mathcal{H} .
- Introduce Gaussian null coordinates s.t. $\mathcal{H} = \{r = 0\}$, $\mathcal{K} = \frac{\partial}{\partial v}$

$$\mathbf{g} = 2dv \left(dr + rX_a(r, x)dx^a + \frac{1}{2}r^2 F(r, x)dv \right) + g_{ab}(r, x)dx^a dx^b.$$

- Let (N, \mathbf{g}) be an $(n + 2)$ -dimensional spacetime containing an extremal Killing horizon \mathcal{H} with normal \mathcal{K} (so $d(|\mathcal{K}|^2) = 0$ on \mathcal{H}). Suppose M is a compact n -dimensional cross-section of \mathcal{H} .
- Introduce Gaussian null coordinates s.t. $\mathcal{H} = \{r = 0\}$, $\mathcal{K} = \frac{\partial}{\partial v}$

$$\mathbf{g} = 2dv \left(dr + rX_a(r, x)dx^a + \frac{1}{2}r^2 F(r, x)dv \right) + g_{ab}(r, x)dx^a dx^b.$$

- Near-horizon limit:** $r \mapsto \epsilon r, v \mapsto \frac{v}{\epsilon}$, take $\epsilon \rightarrow 0$.

$$\mathbf{g}_{\text{NH}} = 2dv \left(dr + rX_a(x)dx^a + \frac{1}{2}r^2 F(x)dv \right) + g_{ab}(x)dx^a dx^b.$$

- Let (N, \mathbf{g}) be an $(n + 2)$ -dimensional spacetime containing an extremal Killing horizon \mathcal{H} with normal \mathcal{K} (so $d(|\mathcal{K}|^2) = 0$ on \mathcal{H}). Suppose M is a compact n -dimensional cross-section of \mathcal{H} .
- Introduce Gaussian null coordinates s.t. $\mathcal{H} = \{r = 0\}$, $\mathcal{K} = \frac{\partial}{\partial v}$

$$\mathbf{g} = 2dv \left(dr + rX_a(r, x)dx^a + \frac{1}{2}r^2 F(r, x)dv \right) + g_{ab}(r, x)dx^a dx^b.$$

- Near-horizon limit:** $r \mapsto \epsilon r, v \mapsto \frac{v}{\epsilon}$, take $\epsilon \rightarrow 0$.

$$\mathbf{g}_{\text{NH}} = 2dv \left(dr + rX_a(x)dx^a + \frac{1}{2}r^2 F(x)dv \right) + g_{ab}(x)dx^a dx^b.$$

- \mathbf{g}_{NH} determined by near-horizon data (g, F, X) on M .

Near-horizon equations

- Energy-momentum tensor T also has near-horizon limit

$$T_{\text{NH}} = 2\text{d}v \left(T_{vr}(x)\text{d}r + r\beta_a(x)\text{d}x^a + \tfrac{1}{2}r^2\alpha(x)\text{d}v \right) + T_{ab}(x)\text{d}x^a\text{d}x^b.$$

Near-horizon equations

- Energy-momentum tensor T also has near-horizon limit

$$T_{\text{NH}} = 2dv \left(T_{vr}(x)dr + r\beta_a(x)dx^a + \frac{1}{2}r^2\alpha(x)dv \right) + T_{ab}(x)dx^a dx^b.$$

- Next impose Einstein equations on (N, \mathbf{g})

$$G_{\mu\nu}[\mathbf{g}] + \Lambda \mathbf{g}_{\mu\nu} = T_{\mu\nu}.$$

Near-horizon equations

- Energy-momentum tensor T also has near-horizon limit

$$T_{\text{NH}} = 2dv \left(T_{vr}(x)dr + r\beta_a(x)dx^a + \frac{1}{2}r^2\alpha(x)dv \right) + T_{ab}(x)dx^a dx^b.$$

- Next impose Einstein equations on (N, \mathbf{g})

$$G_{\mu\nu}[\mathbf{g}] + \Lambda \mathbf{g}_{\mu\nu} = T_{\mu\nu}.$$

- In NH limit this determines $F = F(X, g, T_{ab}, T_{vr})$ and imposes

$$R_{ab} = \frac{1}{2}X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab} + P_{ab},$$

$$P_{ab} = T_{ab} - \frac{1}{n}(g^{cd}T_{cd} + 2T_{vr})g_{ab}.$$

Near-horizon equations

- Energy-momentum tensor T also has near-horizon limit

$$T_{\text{NH}} = 2\text{d}v \left(T_{vr}(x)\text{d}r + r\beta_a(x)\text{d}x^a + \tfrac{1}{2}r^2\alpha(x)\text{d}v \right) + T_{ab}(x)\text{d}x^a\text{d}x^b.$$

- Next impose Einstein equations on (N, \mathbf{g})

$$G_{\mu\nu}[\mathbf{g}] + \Lambda\mathbf{g}_{\mu\nu} = T_{\mu\nu}.$$

- In NH limit this determines $F = F(X, g, T_{ab}, T_{vr})$ and imposes

$$R_{ab} = \frac{1}{2}X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab} + P_{ab},$$

$$P_{ab} = T_{ab} - \frac{1}{n}(g^{cd}T_{cd} + 2T_{vr})g_{ab}.$$

- Together with matter eqns: **near-horizon equations (NHE)** on M .

Outline

- ① Vacuum extremal horizons
- ② Rigidity of the extremal Kerr-Newman horizon
- ③ Rigidity of quasi-Einstein metrics
- ④ Topology of generalized extremal horizons

The NHE in vacuum

- **Vacuum NHE:** compact Riemannian manifold (M, g) with a vector field $X \in \mathfrak{X}(M)$ satisfying

$$R_{ab} = \frac{1}{2}X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab}.$$

The NHE in vacuum

- **Vacuum NHE**: compact Riemannian manifold (M, g) with a vector field $X \in \mathfrak{X}(M)$ satisfying

$$R_{ab} = \frac{1}{2}X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab}.$$

- A solution is **trivial** if $X \equiv 0$ and **static** if $dX^b = 0$.

The NHE in vacuum

- **Vacuum NHE**: compact Riemannian manifold (M, g) with a vector field $X \in \mathfrak{X}(M)$ satisfying

$$R_{ab} = \frac{1}{2}X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab}.$$

- A solution is **trivial** if $X \equiv 0$ and **static** if $dX^b = 0$.
- **Example**: extremal Kerr horizon. $M = S^2, \lambda = 0$.

$$g = \frac{a^2(1+x^2)dx^2}{1-x^2} + \frac{4a^2(1-x^2)d\phi^2}{1+x^2},$$

$$X = \frac{K - \nabla \Gamma}{\Gamma}, \text{ where } \Gamma = \frac{1}{2}(1+x^2), \quad K = \frac{1}{2a^2} \frac{\partial}{\partial \phi}.$$

a rotation parameter, $x \in [-1, 1], \phi \in [0, 2\pi)$.

The NHE in vacuum

- **Vacuum NHE:** compact Riemannian manifold (M, g) with a vector field $X \in \mathfrak{X}(M)$ satisfying

$$R_{ab} = \frac{1}{2}X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab}.$$

- A solution is **trivial** if $X \equiv 0$ and **static** if $dX^b = 0$.
- **Example:** extremal Kerr horizon. $M = S^2, \lambda = 0$.

$$g = \frac{a^2(1+x^2)dx^2}{1-x^2} + \frac{4a^2(1-x^2)d\phi^2}{1+x^2},$$

$$X = \frac{K - \nabla \Gamma}{\Gamma}, \text{ where } \Gamma = \frac{1}{2}(1+x^2), \quad K = \frac{1}{2a^2} \frac{\partial}{\partial \phi}.$$

a rotation parameter, $x \in [-1, 1], \phi \in [0, 2\pi)$.

- **Q:** Are there other (global) solutions to the $n = 2$ vacuum NHE?

Rigidity of the extremal Kerr horizon

- Static case: every solution with $n = 2$ is trivial [Chruściel-Reall-Tod '05].

Rigidity of the extremal Kerr horizon

- Static case: every solution with $n = 2$ is trivial [Chruściel-Reall-Tod '05].
- Axi-symmetric case: extremal Kerr horizon is the unique non-trivial solution with $n = 2$ admitting a $U(1)$ action preserving (g, X) [Lewandowski-Pawlowski '03, Kunduri-Lucietti '09].

Rigidity of the extremal Kerr horizon

- Static case: every solution with $n = 2$ is trivial [Chruściel-Reall-Tod '05].
- Axi-symmetric case: extremal Kerr horizon is the unique non-trivial solution with $n = 2$ admitting a $U(1)$ action preserving (g, X) [Lewandowski-Pawlowski '03, Kunduri-Lucietti '09].

Theorem [Dunajski-Lucietti '23, Colling-Dunajski-Kunduri-Lucietti '24]

Let (M, g) be a compact Riemannian manifold without boundary admitting a non-gradient vector field X such that the vacuum NHE hold. Then (M, g) admits a Killing vector field K . Moreover, $[K, X] = 0$.

Rigidity of the extremal Kerr horizon

- Static case: every solution with $n = 2$ is trivial [Chruściel-Reall-Tod '05].
- Axi-symmetric case: extremal Kerr horizon is the unique non-trivial solution with $n = 2$ admitting a $U(1)$ action preserving (g, X) [Lewandowski-Pawlowski '03, Kunduri-Lucietti '09].

Theorem [Dunajski-Lucietti '23, Colling-Dunajski-Kunduri-Lucietti '24]

Let (M, g) be a compact Riemannian manifold without boundary admitting a non-gradient vector field X such that the vacuum NHE hold. Then (M, g) admits a Killing vector field K . Moreover, $[K, X] = 0$.

- **Corollary:** The general non-trivial solution to the $n = 2$ vacuum NHE is given by the extremal Kerr-(A)dS horizon.

Killing vector Ansatz

- K is constructed using an Ansatz inspired by extremal Kerr horizon.

Lemma

Given a vector field X on a compact Riemannian manifold (M, g) there exists a (unique up to scale) smooth function $\Gamma > 0$ such that $\nabla_a K^a = 0$, where K is defined by

$$K = \Gamma X + \nabla \Gamma.$$

Killing vector Ansatz

- K is constructed using an Ansatz inspired by extremal Kerr horizon.

Lemma

Given a vector field X on a compact Riemannian manifold (M, g) there exists a (unique up to scale) smooth function $\Gamma > 0$ such that $\nabla_a K^a = 0$, where K is defined by

$$K = \Gamma X + \nabla \Gamma.$$

- **Proof** [Gauduchon '84]: $\nabla_a K^a = 0 \iff L\Gamma = 0$, where

$$L\psi = -\Delta\psi - \nabla_a(\psi X^a).$$

Killing vector Ansatz

- K is constructed using an Ansatz inspired by extremal Kerr horizon.

Lemma

Given a vector field X on a compact Riemannian manifold (M, g) there exists a (unique up to scale) smooth function $\Gamma > 0$ such that $\nabla_a K^a = 0$, where K is defined by

$$K = \Gamma X + \nabla \Gamma.$$

- **Proof** [Gauduchon '84]: $\nabla_a K^a = 0 \iff L\Gamma = 0$, where

$$L\psi = -\Delta\psi - \nabla_a(\psi X^a).$$

- L has formal adjoint

$$L^*\psi = -\Delta\psi + X^a \nabla_a \psi.$$

Now use Fredholm alternative + maximum principle.

Tensor identity

- NHE in terms of $K = \Gamma X + \nabla \Gamma$:

$$R_{ab} = \frac{K_a K_b}{2\Gamma^2} - \frac{(\nabla_a \Gamma)(\nabla_b \Gamma)}{2\Gamma^2} - \frac{1}{\Gamma} \nabla_{(a} K_{b)} + \frac{1}{\Gamma} \nabla_a \nabla_b \Gamma + \lambda g_{ab}.$$

Tensor identity

- NHE in terms of $K = \Gamma X + \nabla \Gamma$:

$$R_{ab} = \frac{K_a K_b}{2\Gamma^2} - \frac{(\nabla_a \Gamma)(\nabla_b \Gamma)}{2\Gamma^2} - \frac{1}{\Gamma} \nabla_{(a} K_{b)} + \frac{1}{\Gamma} \nabla_a \nabla_b \Gamma + \lambda g_{ab}.$$

Proposition

For any solution to the NHE the following identity holds

$$\begin{aligned} \frac{1}{4} |\mathcal{L}_K g|^2 &= \nabla^a \left(K^b \nabla_{(a} K_{b)} - \frac{1}{2} K_a \Delta \Gamma - \frac{1}{2} K_a \nabla_b K^b - \lambda \Gamma K_a \right) \\ &\quad + \nabla_b K^b \left(-\frac{1}{2\Gamma} |K|^2 + \frac{1}{2} \Delta \Gamma + \frac{1}{2} \nabla_b K^b + \frac{1}{2\Gamma} K^b \nabla_b \Gamma + \lambda \Gamma \right). \end{aligned}$$

Tensor identity

- NHE in terms of $K = \Gamma X + \nabla \Gamma$:

$$R_{ab} = \frac{K_a K_b}{2\Gamma^2} - \frac{(\nabla_a \Gamma)(\nabla_b \Gamma)}{2\Gamma^2} - \frac{1}{\Gamma} \nabla_{(a} K_{b)} + \frac{1}{\Gamma} \nabla_a \nabla_b \Gamma + \lambda g_{ab}.$$

Proposition

For any solution to the NHE the following identity holds

$$\begin{aligned} \frac{1}{4} |\mathcal{L}_K g|^2 &= \nabla^a \left(K^b \nabla_{(a} K_{b)} - \frac{1}{2} K_a \Delta \Gamma - \frac{1}{2} K_a \nabla_b K^b - \lambda \Gamma K_a \right) \\ &\quad + \nabla_b K^b \left(-\frac{1}{2\Gamma} |K|^2 + \frac{1}{2} \Delta \Gamma + \frac{1}{2} \nabla_b K^b + \frac{1}{2\Gamma} K^b \nabla_b \Gamma + \lambda \Gamma \right). \end{aligned}$$

- **Proof:** apply $K^b \nabla^a (R_{ab} - \frac{1}{2} R g_{ab}) = 0$ to the NHE and calculate.
The result relies on many mysterious cancellations.

Inheritance of symmetry

- Choose Γ s.t. $\nabla_a K^a = 0$. Integrating the tensor identity over M shows $\mathcal{L}_K g = 0$.

Inheritance of symmetry

- Choose Γ s.t. $\nabla_a K^a = 0$. Integrating the tensor identity over M shows $\mathcal{L}_K g = 0$.
- It remains to prove $[K, X] = 0$, which is equivalent to $\mathcal{L}_K \Gamma = 0$.
Strategy: show $L(\mathcal{L}_K \Gamma) = 0$ and $\ker L = \{0\}$, where

$$L\psi = -\Delta\psi + \nabla_a((\Gamma^{-1}\nabla^a\Gamma)\psi) + \Gamma^{-2}|K|^2\psi.$$

Inheritance of symmetry

- Choose Γ s.t. $\nabla_a K^a = 0$. Integrating the tensor identity over M shows $\mathcal{L}_K g = 0$.
- It remains to prove $[K, X] = 0$, which is equivalent to $\mathcal{L}_K \Gamma = 0$.
Strategy: show $L(\mathcal{L}_K \Gamma) = 0$ and $\ker L = \{0\}$, where

$$L\psi = -\Delta\psi + \nabla_a((\Gamma^{-1}\nabla^a\Gamma)\psi) + \Gamma^{-2}|K|^2\psi.$$

- Applying $\mathcal{L}_K R = 0$ to the NHE gives $L(\mathcal{L}_K \Gamma) = 0$.

Inheritance of symmetry

- Choose Γ s.t. $\nabla_a K^a = 0$. Integrating the tensor identity over M shows $\mathcal{L}_K g = 0$.
- It remains to prove $[K, X] = 0$, which is equivalent to $\mathcal{L}_K \Gamma = 0$.
Strategy: show $L(\mathcal{L}_K \Gamma) = 0$ and $\ker L = \{0\}$, where

$$L\psi = -\Delta\psi + \nabla_a((\Gamma^{-1}\nabla^a\Gamma)\psi) + \Gamma^{-2}|K|^2\psi.$$

- Applying $\mathcal{L}_K R = 0$ to the NHE gives $L(\mathcal{L}_K \Gamma) = 0$.
- L has formal adjoint of the form

$$L^*\psi = -\Delta\psi + B^a\nabla_a\psi + C\psi,$$

with $C = \Gamma^{-2}|K|^2 \geq 0$. Maximum principle + Fredholm alternative imply $\ker L = \{0\}$. □

The NHE in Einstein-Maxwell theory

- Energy-momentum tensor for Einstein-Maxwell

$$T_{\mu\nu} = 2 \left(\mathcal{F}_{\mu\rho} \mathcal{F}_{\nu}^{\rho} - \frac{1}{4} \mathcal{F}_{\rho\sigma} \mathcal{F}^{\rho\sigma} \mathbf{g}_{\mu\nu} \right).$$

The NHE in Einstein-Maxwell theory

- Energy-momentum tensor for Einstein-Maxwell

$$T_{\mu\nu} = 2 \left(\mathcal{F}_{\mu\rho} \mathcal{F}_{\nu}^{\rho} - \frac{1}{4} \mathcal{F}_{\rho\sigma} \mathcal{F}^{\rho\sigma} \mathbf{g}_{\mu\nu} \right).$$

- Maxwell 2-form \mathcal{F} is closed and has NH limit

$$\mathcal{F}_{\text{NH}} = d(r\psi(x)dv) + \frac{1}{2}B_{ab}(x)dx^a \wedge dx^b$$

The NHE in Einstein-Maxwell theory

- Energy-momentum tensor for Einstein-Maxwell

$$T_{\mu\nu} = 2 \left(\mathcal{F}_{\mu\rho} \mathcal{F}_{\nu}^{\rho} - \frac{1}{4} \mathcal{F}_{\rho\sigma} \mathcal{F}^{\rho\sigma} \mathbf{g}_{\mu\nu} \right).$$

- Maxwell 2-form \mathcal{F} is closed and has NH limit

$$\mathcal{F}_{\text{NH}} = d(r\psi(x)dv) + \frac{1}{2}B_{ab}(x)dx^a \wedge dx^b$$

- **Einstein-Maxwell NHE**: compact Riemannian manifold (M, g) with $X \in \mathfrak{X}(M)$, $\psi \in C^\infty(M)$, $B \in \Omega^2(M)$ satisfying $dB = 0$ and

$$\begin{aligned} R_{ab} &= \frac{1}{2}X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab} + P_{ab}, \\ (\nabla^a - X^a)B_{ab} &= -(\nabla_b - X_b)\psi, \end{aligned}$$

where

$$P_{ab} = 2B_{ac}B_b{}^c + \frac{1}{n}g_{ab}(2\psi^2 - B_{cd}B^{cd}).$$

Extremal Kerr-Newman horizon

- **Example:** extremal Kerr-Newman horizon. $M = S^2, \lambda = 0$.

$$g = \frac{\rho_+^2}{1-x^2} dx^2 + \frac{(1-x^2)(a^2+r_+^2)^2}{\rho_+^2} d\phi^2,$$

$$X = \frac{K - \nabla \Gamma}{\Gamma}, \text{ where } \Gamma = \frac{\rho_+^2}{2ar_+}, \quad K = \frac{1}{a^2+r_+^2} \frac{\partial}{\partial \phi},$$

$$\psi = \frac{a^2Q^2x^2 - 2aPr_+x - Qr_+^2}{\rho_+^4},$$

$$B = -\frac{(a^2+r_+^2)(a^2Px^2 + 2aQr_+x - Pr_+^2)}{\rho_+^4} dx \wedge d\phi.$$

Here $\rho_+^2 = r_+^2 + a^2x^2$, $r_+^2 = a^2 + P^2 + Q^2$. a rotation parameter, P, Q magnetic resp. electric charge. $x \in [-1, 1], \phi \in [0, 2\pi)$.

Rigidity of the extremal Kerr-Newman horizon

- From now on set $n = 2$ (four space-time dimensions).

Rigidity of the extremal Kerr-Newman horizon

- From now on set $n = 2$ (four space-time dimensions).
- [Chruściel-Tod '07, Kunduri-Lucietti '09, Kamiński-Lewandowski '24]: every static solution is trivial, i.e. $X \equiv 0$ and $R, \psi, \star B$ are constant.

Rigidity of the extremal Kerr-Newman horizon

- From now on set $n = 2$ (four space-time dimensions).
- [Chruściel-Tod '07, Kunduri-Lucietti '09, Kamiński-Lewandowski '24]: every static solution is trivial, i.e. $X \equiv 0$ and $R, \psi, \star B$ are constant.
- [Lewandowski-Pawlowski '03, Kunduri-Lucietti '09]: extremal KN horizon is unique non-trivial solution with $U(1)$ action preserving (g, X, ψ, B) .

Rigidity of the extremal Kerr-Newman horizon

- From now on set $n = 2$ (four space-time dimensions).
- [Chruściel-Tod '07, Kunduri-Lucietti '09, Kamiński-Lewandowski '24]: every static solution is trivial, i.e. $X \equiv 0$ and $R, \psi, \star B$ are constant.
- [Lewandowski-Pawlowski '03, Kunduri-Lucietti '09]: extremal KN horizon is unique non-trivial solution with $U(1)$ action preserving (g, X, ψ, B) .

Theorem [Colling-Katona-Lucietti '24]

Let (M, g) be a compact, oriented Riemannian surface (without boundary) admitting a non-gradient vector field X such that the Einstein-Maxwell NHE hold. Then (M, g) admits a Killing vector field K . Moreover, $[K, X] = 0$, $\mathcal{L}_K \psi = 0$ and $\mathcal{L}_K B = 0$.

The matter equation for $n = 2$

- Define the function $\beta = \star B$. The matter equation becomes

$$\star(d\beta - \beta X^\flat) = d\psi - \psi X^\flat.$$

The matter equation for $n = 2$

- Define the function $\beta = \star B$. The matter equation becomes

$$\star(d\beta - \beta X^\flat) = d\psi - \psi X^\flat.$$

Lemma

Let (M, g) be a compact, oriented Riemannian surface admitting a solution (X, ψ, β) to the Einstein-Maxwell NHE. Then the function $\rho = \sqrt{\beta^2 + \psi^2}$ is either identically zero or strictly positive.

The matter equation for $n = 2$

- Define the function $\beta = \star B$. The matter equation becomes

$$\star(d\beta - \beta X^\flat) = d\psi - \psi X^\flat.$$

Lemma

Let (M, g) be a compact, oriented Riemannian surface admitting a solution (X, ψ, β) to the Einstein-Maxwell NHE. Then the function $\rho = \sqrt{\beta^2 + \psi^2}$ is either identically zero or strictly positive.

- **Proof:** Assume $\rho \not\equiv 0$. On $\widetilde{M} = \{\rho > 0\}$ the function ρ solves

$$\Delta \log \rho = \nabla_a X^a.$$

The matter equation for $n = 2$

- Define the function $\beta = \star B$. The matter equation becomes

$$\star(d\beta - \beta X^\flat) = d\psi - \psi X^\flat.$$

Lemma

Let (M, g) be a compact, oriented Riemannian surface admitting a solution (X, ψ, β) to the Einstein-Maxwell NHE. Then the function $\rho = \sqrt{\beta^2 + \psi^2}$ is either identically zero or strictly positive.

- **Proof:** Assume $\rho \not\equiv 0$. On $\widetilde{M} = \{\rho > 0\}$ the function ρ solves

$$\Delta \log \rho = \nabla_a X^a.$$

- Let f be a global solution to $\Delta f = \nabla_a X^a$ and consider $h = \log \rho - f$ on \widetilde{M} . Maximum principle: $h \equiv c = \text{const} \implies \rho = e^{c+f} > 0$. □

The matter equation for $n = 2$

- Define the function $\beta = \star B$. The matter equation becomes

$$\star(d\beta - \beta X^\flat) = d\psi - \psi X^\flat.$$

Lemma

Let (M, g) be a compact, oriented Riemannian surface admitting a solution (X, ψ, β) to the Einstein-Maxwell NHE. Then the function $\rho = \sqrt{\beta^2 + \psi^2}$ is either identically zero or strictly positive.

- **Proof:** Assume $\rho \not\equiv 0$. On $\widetilde{M} = \{\rho > 0\}$ the function ρ solves

$$\Delta \log \rho = \nabla_a X^a.$$

- Let f be a global solution to $\Delta f = \nabla_a X^a$ and consider $h = \log \rho - f$ on \widetilde{M} . Maximum principle: $h \equiv c = \text{const} \implies \rho = e^{c+f} > 0$. □
- Other proof: [Dobkowski-Ryłko, Kamiński, Lewandowski, Szereszewski '18].

Maxwell tensor identity

- Einstein-Maxwell NHE in terms of $K = \Gamma X + \nabla \Gamma$:

$$R_{ab} = \frac{K_a K_b}{2\Gamma^2} - \frac{(\nabla_a \Gamma)(\nabla_b \Gamma)}{2\Gamma^2} - \frac{1}{\Gamma} \nabla_{(a} K_{b)} + \frac{1}{\Gamma} \nabla_a \nabla_b \Gamma + \lambda g_{ab} + \rho^2 g_{ab}.$$

Maxwell tensor identity

- Einstein-Maxwell NHE in terms of $K = \Gamma X + \nabla \Gamma$:

$$R_{ab} = \frac{K_a K_b}{2\Gamma^2} - \frac{(\nabla_a \Gamma)(\nabla_b \Gamma)}{2\Gamma^2} - \frac{1}{\Gamma} \nabla_{(a} K_{b)} + \frac{1}{\Gamma} \nabla_a \nabla_b \Gamma + \lambda g_{ab} + \rho^2 g_{ab}.$$

Proposition

For any solution to the Einstein-Maxwell NHE the following identity holds

$$\begin{aligned} \frac{1}{4} |\mathcal{L}_K g|^2 + 2|\nabla(\Gamma\rho)|^2 &= \\ \nabla^a \left(K^b \nabla_{(a} K_{b)} - \frac{1}{2} K_a \Delta \Gamma - \frac{1}{2} K_a \nabla_b K^b - \lambda \Gamma K_a + \Gamma \rho \nabla_a (\Gamma \rho) \right) \\ + \nabla_b K^b \left(-\frac{1}{2\Gamma} |K|^2 + \frac{1}{2} \Delta \Gamma + \frac{1}{2} \nabla_b K^b + \frac{1}{2\Gamma} K^b \nabla_b \Gamma + \lambda \Gamma - \Gamma \rho^2 \right). \end{aligned}$$

Proof of theorem

- The vacuum calculation gives

$$\frac{1}{4}|\mathcal{L}_K g|^2 = \nabla_a(\dots^a) + \nabla_a K^a(\dots) - \rho^2 K^a \nabla_a \Gamma.$$

Proof of theorem

- The vacuum calculation gives

$$\frac{1}{4}|\mathcal{L}_K g|^2 = \nabla_a(\dots^a) + \nabla_a K^a(\dots) - \rho^2 K^a \nabla_a \Gamma.$$

- Use the matter equation to rewrite the last term

$$-\rho^2 K^a \nabla_a \Gamma = -\Gamma \rho^2 \nabla_a K^a + \nabla^a (\Gamma \rho \nabla_a (\Gamma \rho)) - 2|\nabla(\Gamma \rho)|^2.$$

Proof of theorem

- The vacuum calculation gives

$$\frac{1}{4}|\mathcal{L}_K g|^2 = \nabla_a(\dots^a) + \nabla_a K^a(\dots) - \rho^2 K^a \nabla_a \Gamma.$$

- Use the matter equation to rewrite the last term

$$-\rho^2 K^a \nabla_a \Gamma = -\Gamma \rho^2 \nabla_a K^a + \nabla^a (\Gamma \rho \nabla_a (\Gamma \rho)) - 2|\nabla(\Gamma \rho)|^2.$$

- Fix Γ s.t. $\nabla_a K^a = 0$. Tensor identity: $\mathcal{L}_K g = 0$ and $\Gamma \rho = \text{const.}$

Proof of theorem

- The vacuum calculation gives

$$\frac{1}{4}|\mathcal{L}_K g|^2 = \nabla_a(\dots^a) + \nabla_a K^a(\dots) - \rho^2 K^a \nabla_a \Gamma.$$

- Use the matter equation to rewrite the last term

$$-\rho^2 K^a \nabla_a \Gamma = -\Gamma \rho^2 \nabla_a K^a + \nabla^a (\Gamma \rho \nabla_a (\Gamma \rho)) - 2|\nabla(\Gamma \rho)|^2.$$

- Fix Γ s.t. $\nabla_a K^a = 0$. Tensor identity: $\mathcal{L}_K g = 0$ and $\Gamma \rho = \text{const.}$
- Matter equation implies $\mathcal{L}_K \Gamma = \mathcal{L}_K \rho = 0$. Therefore

$$[K, X] = 0, \quad \mathcal{L}_K \psi = 0 \quad \text{and} \quad \mathcal{L}_K B = 0.$$

□

Proof of theorem

- The vacuum calculation gives

$$\frac{1}{4}|\mathcal{L}_K g|^2 = \nabla_a(\dots^a) + \nabla_a K^a(\dots) - \rho^2 K^a \nabla_a \Gamma.$$

- Use the matter equation to rewrite the last term

$$-\rho^2 K^a \nabla_a \Gamma = -\Gamma \rho^2 \nabla_a K^a + \nabla^a (\Gamma \rho \nabla_a (\Gamma \rho)) - 2|\nabla(\Gamma \rho)|^2.$$

- Fix Γ s.t. $\nabla_a K^a = 0$. Tensor identity: $\mathcal{L}_K g = 0$ and $\Gamma \rho = \text{const.}$
- Matter equation implies $\mathcal{L}_K \Gamma = \mathcal{L}_K \rho = 0$. Therefore

$$[K, X] = 0, \quad \mathcal{L}_K \psi = 0 \quad \text{and} \quad \mathcal{L}_K B = 0.$$

□

- **Corollary:** The general non-trivial solution to the $n = 2$ Einstein-Maxwell NHE is given by extremal KN-(A)dS horizon.

Quasi-Einstein equations

- **Quasi-Einstein equations (QEE):** Riemannian manifold (M, g) of dimension n together with $X \in \mathfrak{X}(M)$ satisfying

$$R_{ab} = \frac{1}{m} X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab}.$$

$m \neq 0$ and λ constants.

Quasi-Einstein equations

- **Quasi-Einstein equations (QEE):** Riemannian manifold (M, g) of dimension n together with $X \in \mathfrak{X}(M)$ satisfying

$$R_{ab} = \frac{1}{m} X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab}.$$

$m \neq 0$ and λ constants.

- $m = 2$: vacuum NHE with cosmological constant λ .

Quasi-Einstein equations

- **Quasi-Einstein equations (QEE):** Riemannian manifold (M, g) of dimension n together with $X \in \mathfrak{X}(M)$ satisfying

$$R_{ab} = \frac{1}{m} X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab}.$$

$m \neq 0$ and λ constants.

- $m = 2$: vacuum NHE with cosmological constant λ .
- $m = 1 - n, \lambda = 0$: Levi-Civita connections projectively equivalent to connections with skew Ricci tensor [Nurowski-Randall '16].

Quasi-Einstein equations

- **Quasi-Einstein equations (QEE):** Riemannian manifold (M, g) of dimension n together with $X \in \mathfrak{X}(M)$ satisfying

$$R_{ab} = \frac{1}{m} X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab}.$$

$m \neq 0$ and λ constants.

- $m = 2$: vacuum NHE with cosmological constant λ .
- $m = 1 - n, \lambda = 0$: Levi-Civita connections projectively equivalent to connections with skew Ricci tensor [Nurowski-Randall '16].
- $m = 2 - n$: Einstein-Weyl structures [Cartan '43].

Quasi-Einstein equations

- **Quasi-Einstein equations (QEE):** Riemannian manifold (M, g) of dimension n together with $X \in \mathfrak{X}(M)$ satisfying

$$R_{ab} = \frac{1}{m} X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab}.$$

$m \neq 0$ and λ constants.

- $m = 2$: vacuum NHE with cosmological constant λ .
- $m = 1 - n, \lambda = 0$: Levi-Civita connections projectively equivalent to connections with skew Ricci tensor [Nurowski-Randall '16].
- $m = 2 - n$: Einstein-Weyl structures [Cartan '43].
- $m \in \mathbb{N}, X^b = df$: warped product Einstein metrics [Kim-Kim '03].

Quasi-Einstein equations

- **Quasi-Einstein equations (QEE):** Riemannian manifold (M, g) of dimension n together with $X \in \mathfrak{X}(M)$ satisfying

$$R_{ab} = \frac{1}{m} X_a X_b - \nabla_{(a} X_{b)} + \lambda g_{ab}.$$

$m \neq 0$ and λ constants.

- $m = 2$: vacuum NHE with cosmological constant λ .
- $m = 1 - n, \lambda = 0$: Levi-Civita connections projectively equivalent to connections with skew Ricci tensor [Nurowski-Randall '16].
- $m = 2 - n$: Einstein-Weyl structures [Cartan '43].
- $m \in \mathbb{N}, X^b = df$: warped product Einstein metrics [Kim-Kim '03].
- $m = \infty$: Ricci solitons [Hamilton '98].

Rigidity of quasi-Einstein metrics

- **Q:** do all solutions to the QEE with non-gradient X on compact M admit a Killing vector of the form $K = \frac{2}{m}\Gamma X + \nabla\Gamma$?

Rigidity of quasi-Einstein metrics

- **Q:** do all solutions to the QEE with non-gradient X on compact M admit a Killing vector of the form $K = \frac{2}{m}\Gamma X + \nabla\Gamma$?
- Fixing Γ s.t. $\nabla_a K^a = 0$ and repeating steps for $m = 2$ [Cochran '24],

$$\int_M |\mathcal{L}_K g|^2 \, \text{vol}_g = \frac{4}{m}(2-m) \int_M R_{ab} K^a \nabla^b \Gamma \, \text{vol}_g.$$

Unclear how to proceed.

Rigidity of quasi-Einstein metrics

- **Q:** do all solutions to the QEE with non-gradient X on compact M admit a Killing vector of the form $K = \frac{2}{m}\Gamma X + \nabla\Gamma$?
- Fixing Γ s.t. $\nabla_a K^a = 0$ and repeating steps for $m = 2$ [Cochran '24],

$$\int_M |\mathcal{L}_K g|^2 \, \text{vol}_g = \frac{4}{m}(2-m) \int_M R_{ab} K^a \nabla^b \Gamma \, \text{vol}_g.$$

Unclear how to proceed.

Theorem

Let (M, g) be a compact Riemannian n -manifold without boundary admitting a non-gradient vector field X such that the QEE hold with either (i) $m > 2$ or (ii) $m \leq 2 - n$. Then (M, g) admits a Killing vector field K . Moreover, $[K, X] = 0$.

QEE Tensor identity

- QEE in terms of $K = \frac{2}{m}\Gamma X + \nabla\Gamma$:

$$R_{ab} = \frac{m}{4\Gamma^2} K_a K_b - \frac{m}{2\Gamma} \nabla_{(a} K_{b)} + \frac{m}{2\Gamma} \nabla_a \nabla_b \Gamma - \frac{m}{4\Gamma^2} (\nabla_a \Gamma)(\nabla_b \Gamma) + \lambda g_{ab}.$$

QEE Tensor identity

- QEE in terms of $K = \frac{2}{m}\Gamma X + \nabla\Gamma$:

$$R_{ab} = \frac{m}{4\Gamma^2}K_aK_b - \frac{m}{2\Gamma}\nabla_{(a}K_{b)} + \frac{m}{2\Gamma}\nabla_a\nabla_b\Gamma - \frac{m}{4\Gamma^2}(\nabla_a\Gamma)(\nabla_b\Gamma) + \lambda g_{ab}.$$

Proposition

For any solution to the QEE with $m \neq 2$ the following identity holds

$$\frac{1}{4}\Gamma^{\frac{m-2}{2}}|\mathcal{L}_K g|^2 + \frac{1}{m-2}\Gamma^{\frac{m-2}{2}}(\nabla_a K^a)^2 = \nabla_a \left(\Gamma^{\frac{m-2}{2}} K^a \right) H + \nabla_a V^a.$$

Here

$$H = -\frac{|K|^2}{2\Gamma} + \frac{1}{2}\Delta\Gamma + \frac{1}{4}(m-2)\frac{|\nabla\Gamma|^2}{\Gamma} + \frac{m}{2(m-2)}\nabla_a K^a + \lambda\Gamma,$$

$$\begin{aligned} V^a &= \Gamma^{\frac{m-2}{2}}K_b\nabla^{(a}K^{b)} - \frac{m-2}{4}|\nabla\Gamma|^2\Gamma^{\frac{m-4}{2}}K^a - \frac{1}{2}\Gamma^{\frac{m-2}{2}}(\nabla_b K^b)K^a \\ &\quad - \frac{1}{2}\Gamma^{\frac{m-2}{2}}(\Delta\Gamma)K^a - \lambda\Gamma^{\frac{m}{2}}K^a. \end{aligned}$$

QEE Killing vector

- Let Ψ be a smooth positive function satisfying

$$\Delta\Psi + \nabla_a(\Psi X^a) = 0.$$

Choose Γ to be $\Psi^{\frac{2}{m}}$, so that $\Gamma^{\frac{m-2}{2}} K$ is divergence-free.

QEE Killing vector

- Let Ψ be a smooth positive function satisfying

$$\Delta\Psi + \nabla_a(\Psi X^a) = 0.$$

Choose Γ to be $\Psi^{\frac{2}{m}}$, so that $\Gamma^{\frac{m-2}{2}}K$ is divergence-free.

- Integrating the tensor identity over M ,

$$\int_M \Gamma^{\frac{m}{2}-1} \left(\frac{1}{4} |\mathcal{L}_K g|^2 + \frac{1}{m-2} (\nabla_a K^a)^2 \right) \text{vol}_g = 0.$$

QEE Killing vector

- Let Ψ be a smooth positive function satisfying

$$\Delta\Psi + \nabla_a(\Psi X^a) = 0.$$

Choose Γ to be $\Psi^{\frac{2}{m}}$, so that $\Gamma^{\frac{m-2}{2}}K$ is divergence-free.

- Integrating the tensor identity over M ,

$$\int_M \Gamma^{\frac{m}{2}-1} \left(\frac{1}{4} |\mathcal{L}_K g|^2 + \frac{1}{m-2} (\nabla_a K^a)^2 \right) \text{vol}_g = 0.$$

- For $m > 2$ integrand is non-negative $\Rightarrow \mathcal{L}_K g = 0$.
For $m < 2 - n$ same result holds after using $|\mathcal{L}_K g|^2 \geq \frac{4}{n} (\nabla_a K^a)^2$.
For $m = 2 - n$ find that K is CKVF. Use $\nabla_a V^a = 0 \Rightarrow \mathcal{L}_K g = 0$.

QEE Killing vector

- Let Ψ be a smooth positive function satisfying

$$\Delta\Psi + \nabla_a(\Psi X^a) = 0.$$

Choose Γ to be $\Psi^{\frac{2}{m}}$, so that $\Gamma^{\frac{m-2}{2}}K$ is divergence-free.

- Integrating the tensor identity over M ,

$$\int_M \Gamma^{\frac{m}{2}-1} \left(\frac{1}{4} |\mathcal{L}_K g|^2 + \frac{1}{m-2} (\nabla_a K^a)^2 \right) \text{vol}_g = 0.$$

- For $m > 2$ integrand is non-negative $\Rightarrow \mathcal{L}_K g = 0$.
For $m < 2 - n$ same result holds after using $|\mathcal{L}_K g|^2 \geq \frac{4}{n} (\nabla_a K^a)^2$.
For $m = 2 - n$ find that K is CKVF. Use $\nabla_a V^a = 0 \Rightarrow \mathcal{L}_K g = 0$.
- $\nabla_a K^a = \nabla_a (\Gamma^{\frac{m-2}{2}} K^a) = 0$ implies $\mathcal{L}_K \Gamma = 0$ and so $[K, X] = 0$. □

Generalized extremal horizon equations

Definition [Kamiński-Lewandowski '24]

A metric g and vector field X on a surface M satisfy the **generalized extremal horizon equation (GEHE)** for some $f \in C^\infty(M)$ and $c \neq 0$ if

$$\nabla_{(a} X_{b)} + c X_a X_b + f g_{ab} = 0.$$

Generalized extremal horizon equations

Definition [Kamiński-Lewandowski '24]

A metric g and vector field X on a surface M satisfy the **generalized extremal horizon equation (GEHE)** for some $f \in C^\infty(M)$ and $c \neq 0$ if

$$\nabla_{(a} X_{b)} + c X_a X_b + f g_{ab} = 0.$$

- $c = -\frac{1}{2}, f = \frac{1}{2}R - \lambda$: vacuum NHE.
- $c = -\frac{1}{2}, f = \frac{1}{2}R - \lambda - \rho^2$: Einstein-Maxwell NHE.
- $c = -\frac{1}{m}, f = \frac{1}{2}R - \lambda$: QEE.

Topological rigidity

Theorem

Let (g, X) be a solution to the GEHE on a closed, connected and oriented surface M with X not identically zero. Then M is diffeomorphic to S^2 .

Topological rigidity

Theorem

Let (g, X) be a solution to the GEHE on a closed, connected and oriented surface M with X not identically zero. Then M is diffeomorphic to S^2 .

- [Kamiński-Lewandowski '24]: proof based on holomorphic vector fields.

Topological rigidity

Theorem

Let (g, X) be a solution to the GEHE on a closed, connected and oriented surface M with X not identically zero. Then M is diffeomorphic to S^2 .

- [Kamiński-Lewandowski '24]: proof based on holomorphic vector fields.
- **Poincaré-Hopf theorem:** Let M be a closed manifold and X a vector field on M having only isolated zeros. The sum of the indices of the zeros of X equals the Euler characteristic $\chi(M)$.

Topological rigidity

Theorem

Let (g, X) be a solution to the GEHE on a closed, connected and oriented surface M with X not identically zero. Then M is diffeomorphic to S^2 .

- [Kamiński-Lewandowski '24]: proof based on holomorphic vector fields.
- **Poincaré-Hopf theorem:** Let M be a closed manifold and X a vector field on M having only isolated zeros. The sum of the indices of the zeros of X equals the Euler characteristic $\chi(M)$.
- Recall the **index** of X at an isolated zero $p \in M$ is defined as the degree of the map $X/|X| : \partial D \rightarrow S^{n-1}$, where D is a coordinate disk around p s.t. p is the only zero of X in D .

Proof of theorem: step 1

- **Outline of proof:** show that
 - ① X has at least one zero.
 - ② Any zero of X is isolated.
 - ③ The index of X at any zero is positive.

This implies $\chi(M) > 0$ and hence $M \cong S^2$.

Proof of theorem: step 1

- **Outline of proof:** show that

- ① X has at least one zero.
- ② Any zero of X is isolated.
- ③ The index of X at any zero is positive.

This implies $\chi(M) > 0$ and hence $M \cong S^2$.

- **Step 1:** Use the trace of GEHE to express f in terms of X . Then contract the GEHE twice with X to find [Jezierski '09]

$$\nabla_a \left(\frac{X^a}{|X|^2} \right) = c.$$

On a closed manifold M this shows X must have zero.

Proof of theorem: step 2

- **Step 2:** Introduce complex coords (z, \bar{z}) around a zero $p \in U$ and functions $H : U \rightarrow \mathbb{R}$, $P : U \rightarrow \mathbb{C}$ s.t.

$$g = 2e^H dz d\bar{z}, \quad X^\flat = P dz + \bar{P} d\bar{z}.$$

Proof of theorem: step 2

- **Step 2:** Introduce complex coords (z, \bar{z}) around a zero $p \in U$ and functions $H : U \rightarrow \mathbb{R}$, $P : U \rightarrow \mathbb{C}$ s.t.

$$g = 2e^H dz d\bar{z}, \quad X^\flat = P dz + \bar{P} d\bar{z}.$$

- Define a complex function F locally by $\partial_{\bar{z}} F = \bar{P}$. The $(\bar{z}\bar{z})$ -component of the GEHE gives

$$\partial_{\bar{z}} (e^{cF} e^{-H} \bar{P}) = 0.$$

Hence p is an isolated zero of X .

Proof of theorem: step 2

- **Step 2:** Introduce complex coords (z, \bar{z}) around a zero $p \in U$ and functions $H : U \rightarrow \mathbb{R}$, $P : U \rightarrow \mathbb{C}$ s.t.

$$g = 2e^H dz d\bar{z}, \quad X^\flat = P dz + \bar{P} d\bar{z}.$$

- Define a complex function F locally by $\partial_{\bar{z}} F = \bar{P}$. The $(\bar{z}\bar{z})$ -component of the GEHE gives

$$\partial_{\bar{z}} (e^{cF} e^{-H} \bar{P}) = 0.$$

Hence p is an isolated zero of X .

- Note: if $M = S^2$ we can define F globally by $\bar{\partial} F = (X^\flat)^{(0,1)}$. The computation above then shows that $V = e^{cF} X^{(1,0)}$ is a holomorphic vector field.

Proof of theorem: step 3

- **Step 3:** motivated by [Chr\'{u}ciel-Szybka-Tod '17]. Key ingredient
- **Lemma** [Milnor '65]: Let p be a zero of a vector field X . If (in some coordinates) $\det(\partial_\mu X^\nu) > 0$ at p , then the zero is isolated and of index 1.

Proof of theorem: step 3

- **Step 3:** motivated by [Chr\'{u}ciel-Szybka-Tod '17]. Key ingredient
- **Lemma** [Milnor '65]: Let p be a zero of a vector field X . If (in some coordinates) $\det(\partial_\mu X^\nu) > 0$ at p , then the zero is isolated and of index 1.
- Prolong the GEHE: define Ω by $dX^b = 2\Omega\epsilon$, so that

$$\nabla_a X_b + c X_a X_b = -f g_{ab} + \Omega \epsilon_{ab}.$$

Proof of theorem: step 3

- **Step 3:** motivated by [Chr\'{u}ciel-Szybka-Tod '17]. Key ingredient
- **Lemma** [Milnor '65]: Let p be a zero of a vector field X . If (in some coordinates) $\det(\partial_\mu X^\nu) > 0$ at p , then the zero is isolated and of index 1.
- Prolong the GEHE: define Ω by $dX^\flat = 2\Omega\epsilon$, so that

$$\nabla_a X_b + c X_a X_b = -f g_{ab} + \Omega \epsilon_{ab}.$$

- We find

$$\det(\partial_\mu X^\nu)|_p = f(p)^2 + \Omega(p)^2.$$

Hence $\det(\partial_\mu X^\nu) > 0$ at p unless X, f, Ω vanish simultaneously.

Proof of theorem: step 3

- **Step 3:** motivated by [Chr\'{u}ciel-Szybka-Tod '17]. Key ingredient
- **Lemma** [Milnor '65]: Let p be a zero of a vector field X . If (in some coordinates) $\det(\partial_\mu X^\nu) > 0$ at p , then the zero is isolated and of index 1.
- Prolong the GEHE: define Ω by $dX^\flat = 2\Omega\epsilon$, so that

$$\nabla_a X_b + c X_a X_b = -f g_{ab} + \Omega \epsilon_{ab}.$$

- We find

$$\det(\partial_\mu X^\nu)|_p = f(p)^2 + \Omega(p)^2.$$

Hence $\det(\partial_\mu X^\nu) > 0$ at p unless X, f, Ω vanish simultaneously.

- In this degenerate case it can be shown that $\det(\partial_\mu X^\nu)$ has a strict minimum at p , which still implies that the index is positive.

Summary

- Main results

- 4D Einstein-Maxwell Theory: every non-trivial extremal horizon cross-section admits a Killing vector and hence is given by the extremal KN family.
- Quasi-Einstein equation: every compact non-gradient solution to the QEE with $m > 2$ or $m \leq 2 - n$ admits a Killing vector preserving X .
- Generalized extremal horizon equation: every non-trivial solution is (up to a double cover) on the two-sphere S^2 .

Summary

- Main results
 - 4D Einstein-Maxwell Theory: every non-trivial extremal horizon cross-section admits a Killing vector and hence is given by the extremal KN family.
 - Quasi-Einstein equation: every compact non-gradient solution to the QEE with $m > 2$ or $m \leq 2 - n$ admits a Killing vector preserving X .
 - Generalized extremal horizon equation: every non-trivial solution is (up to a double cover) on the two-sphere S^2 .
- Open problems
 - Killing vector for the QEE with $m \in (2 - n, 2)$?
 - Other theories, e.g. 5D Einstein-Maxwell Chern-Simons.

Thank you