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Motivation: classifying black hole spacetimes

e BH uniqueness [Israel, Hawking, Carter, Robinson '70s]: all (analytic)
stationary, asymptotically flat solutions of the 4D vacuum Einstein
equations with a connected, non-degenerate event horizon are Kerr.
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Motivation: classifying black hole spacetimes

e BH uniqueness [Israel, Hawking, Carter, Robinson '70s]: all (analytic)
stationary, asymptotically flat solutions of the 4D vacuum Einstein
equations with a connected, non-degenerate event horizon are Kerr.

o Key ingredient: rigidity theorem [Hawking '72], implying that rotating
solutions must be axi-symmetric.

@ In higher dimensions uniqueness is violated, e.g. 5D Myers-Perry
(horizon S3) and black rings [Emparan-Reall '01] (horizon S? x S1).
Classification still largely open.
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Motivation: classifying black hole spacetimes

e BH uniqueness [Israel, Hawking, Carter, Robinson '70s]: all (analytic)
stationary, asymptotically flat solutions of the 4D vacuum Einstein
equations with a connected, non-degenerate event horizon are Kerr.

o Key ingredient: rigidity theorem [Hawking '72], implying that rotating
solutions must be axi-symmetric.

@ In higher dimensions uniqueness is violated, e.g. 5D Myers-Perry
(horizon S3) and black rings [Emparan-Reall '01] (horizon S? x S1).
Classification still largely open.

@ For extremal black holes intrinsic geometry of the horizon decouples
from extrinsic geometry. Intrinsic near-horizon geometries can be
studied and classified independent of exterior BH spacetime.
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Extremal horizons [Kunduri-Lucietti '13]

e Let (N,g) be an (n + 2)-dimensional spacetime containing an
extremal Killing horizon H with normal K (so d(|K|?) = 0 on H).
Suppose M is a compact n-dimensional cross-section of H.
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Extremal horizons [Kunduri-Lucietti '13]

e Let (N,g) be an (n + 2)-dimensional spacetime containing an
extremal Killing horizon H with normal K (so d(|K|?) = 0 on H).
Suppose M is a compact n-dimensional cross-section of H.

@ Introduce Gaussian null coordinates s.t. H = {r =0}, K = %

g = 2dv (dr + rX,(r,2)dz® + 3r*F(r,z)dv) + gap(r, z)dzda’.
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Extremal horizons [Kunduri-Lucietti '13]

e Let (N,g) be an (n + 2)-dimensional spacetime containing an
extremal Killing horizon H with normal K (so d(|K|?) = 0 on H).
Suppose M is a compact n-dimensional cross-section of H.

@ Introduce Gaussian null coordinates s.t. H = {r =0}, K = %

g = 2dv (dr + rX,(r,2)dz® + 3r*F(r,z)dv) + gap(r, z)dzda’.

@ Near-horizon limit: 7 — er,v % take € — 0.

gnH = 2dv (dr + 7 X, (z)dz® + %’I“QF(LE)CIU) + gap(x)dzdzb.
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Extremal horizons [Kunduri-Lucietti '13]

e Let (N,g) be an (n + 2)-dimensional spacetime containing an
extremal Killing horizon H with normal K (so d(|K|?) = 0 on H).
Suppose M is a compact n-dimensional cross-section of H.

@ Introduce Gaussian null coordinates s.t. H = {r =0}, K = %

g = 2dv (dr + rX,(r,2)dz® + 3r*F(r,z)dv) + gap(r, z)dzda’.

@ Near-horizon limit: 7 — er,v % take € — 0.

gnH = 2dv (dr + 7 X, (z)dz® + %’I“QF(LE)CIU) + gap(x)dzdzb.

@ gyy determined by near-horizon data (g, F, X) on M.
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Near-horizon equations

@ Energy-momentum tensor 7" also has near-horizon limit

Tin = 2dv (Tor(2)dr + 784 (z)d2® + 2r?a(z)dv) + Tup(z)dzda’.
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Near-horizon equations

@ Energy-momentum tensor 7" also has near-horizon limit
Tin = 2dv (Tor(2)dr + 784 (z)d2® + 2r?a(z)dv) + Tup(z)dzda’.
@ Next impose Einstein equations on (N, g)

G,uy [g] + Ag,uy = T,ul/-
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Near-horizon equations

@ Energy-momentum tensor 7" also has near-horizon limit
Tin = 2dv (Tor(2)dr + 784 (z)d2® + 2r?a(z)dv) + Tup(z)dzda’.
@ Next impose Einstein equations on (N, g)
Gulgl +Ag,, = Ty
@ In NH limit this determines F' = F'(X, g, Tup, Tyr) and imposes
Ry = %XaXb — V(aXp) + Aab + Pab,

1
Pab - Tab - E(QCchd + 2Tvr)gab~

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 11 October 2024



Near-horizon equations

@ Energy-momentum tensor 7" also has near-horizon limit
Tin = 2dv (Tor(2)dr + 784 (z)d2® + 2r?a(z)dv) + Tup(z)dzda’.
@ Next impose Einstein equations on (N, g)
Gulgl +Ag,, = Ty
@ In NH limit this determines F' = F'(X, g, Tup, Tyr) and imposes
Ry = %XaXb — V(aXp) + Aab + Pab,
Pop = Tap — %(QCchd + 207 ) Gab-

o Together with matter eqns: near-horizon equations (NHE) on M.
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@ Vacuum extremal horizons
@ Rigidity of the extremal Kerr-Newman horizon
@ Rigidity of quasi-Einstein metrics

© Topology of generalized extremal horizons
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The NHE in vacuum

e Vacuum NHE: compact Riemannian manifold (M, g) with a vector
field X € X(M) satisfying

1
Rap = 5XaXp = V(0 Xp) + Aas.
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The NHE in vacuum

e Vacuum NHE: compact Riemannian manifold (M, g) with a vector
field X € X(M) satisfying

1
Rap = 5XaXp = V(0 Xp) + Aas.

@ A solution is trivial if X = 0 and static if dX? = 0.
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The NHE in vacuum

e Vacuum NHE: compact Riemannian manifold (M, g) with a vector
field X € X(M) satisfying

1
Rap = 5XaXp = V(0 Xp) + Aas.

@ A solution is trivial if X = 0 and static if dX? = 0.

e Example: extremal Kerr horizon. M = S?,\ = 0.

(14 2?)da? N 4a%(1 — 2?)d¢?
B 1—2a2 1+ 22

K —-VI 1
:%7 where F:§(1+x2), K=—_—.

)

X

a rotation parameter, x € [—1,1], ¢ € [0, 27).
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The NHE in vacuum

e Vacuum NHE: compact Riemannian manifold (M, g) with a vector
field X € X(M) satisfying

1
Rap = 5XaXp = V(0 Xp) + Aas.

@ A solution is trivial if X = 0 and static if dX? = 0.

e Example: extremal Kerr horizon. M = S?,\ = 0.

(14 2?)da? N 4a%(1 — 2?)d¢?
B 1—2a2 1+ 22

K —-VI 1
:%7 where F:§(1+x2), K=—_—.

)

X

a rotation parameter, x € [—1,1], ¢ € [0, 27).

@ Q: Are there other (global) solutions to the n = 2 vacuum NHE?
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Rigidity of the extremal Kerr horizon

@ Static case: every solution with n = 2 is trivial [Chrusciel-Reall-Tod '05].
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Rigidity of the extremal Kerr horizon

@ Static case: every solution with n = 2 is trivial [Chrusciel-Reall-Tod '05].

@ Axi-symmetric case: extremal Kerr horizon is the unique non-trivial
solution with n = 2 admitting a U(1) action preserving (g, X)
[Lewandowski-Pawlowski '03, Kunduri-Lucietti '09].
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Rigidity of the extremal Kerr horizon

@ Static case: every solution with n = 2 is trivial [Chrusciel-Reall-Tod '05].

@ Axi-symmetric case: extremal Kerr horizon is the unique non-trivial
solution with n = 2 admitting a U(1) action preserving (g, X)
[Lewandowski-Pawlowski '03, Kunduri-Lucietti '09].

Theorem [Dunajski-Lucietti '23, Colling-Dunajski-Kunduri-Lucietti '24]

Let (M, g) be a compact Riemannian manifold without boundary
admitting a non-gradient vector field X such that the vacuum NHE hold.
Then (M, g) admits a Killing vector field K. Moreover, [K, X]| = 0.
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Rigidity of the extremal Kerr horizon

@ Static case: every solution with n = 2 is trivial [Chrusciel-Reall-Tod '05].

@ Axi-symmetric case: extremal Kerr horizon is the unique non-trivial
solution with n = 2 admitting a U(1) action preserving (g, X)
[Lewandowski-Pawlowski '03, Kunduri-Lucietti '09].

Theorem [Dunajski-Lucietti '23, Colling-Dunajski-Kunduri-Lucietti '24]

Let (M, g) be a compact Riemannian manifold without boundary
admitting a non-gradient vector field X such that the vacuum NHE hold.
Then (M, g) admits a Killing vector field K. Moreover, [K, X]| = 0.

@ Corollary: The general non-trivial solution to the n = 2 vacuum NHE
is given by the extremal Kerr-(A)dS horizon.
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Killing vector Ansatz

@ K is constructed using an Ansatz inspired by extremal Kerr horizon.

Given a vector field X on a compact Riemannian manifold (M, g) there
exists a (unique up to scale) smooth function I' > 0 such that V,K* =0,
where K is defined by

K =TX + VI.
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Killing vector Ansatz

@ K is constructed using an Ansatz inspired by extremal Kerr horizon.

Given a vector field X on a compact Riemannian manifold (M, g) there
exists a (unique up to scale) smooth function I' > 0 such that V,K* =0,
where K is defined by

K =TX + VI.

@ Proof [Gauduchon '84]: V,K* =0 <= LI' =0, where

L = —Ad - Vo($X?),
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Killing vector Ansatz

@ K is constructed using an Ansatz inspired by extremal Kerr horizon.

Given a vector field X on a compact Riemannian manifold (M, g) there
exists a (unique up to scale) smooth function I' > 0 such that V,K* =0,
where K is defined by

K =TX + VI.

@ Proof [Gauduchon '84]: V,K* =0 <= LI' =0, where
Lip = =Ap = Vo (9 X9).

@ L has formal adjoint
L* = —Ay + XV 1.

Now use Fredholm alternative + maximum principle. OJ
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Tensor identity

@ NHE in terms of K =T'X + VI:

KKy,  (VaD) (VD) 1 1
Rab = oT2 - o2 - fv(aKb) + fvavbr + Agab-
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Tensor identity

@ NHE in terms of K =T'X + VI:

KKy (VuD)(VD) 1

Rab = 5r2 — or?2 T

1
V(a]:(b) =+ fvavbr =+ Agab-

Proposition

For any solution to the NHE the following identity holds

|.ch|2 ve (Kbv( Ky — $K.AT — LK,V K° —/\FKa>

1
+ VK (——|K|2+ —AT + = VbeJrﬁKbeFvL)\F).

v
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Tensor identity

@ NHE in terms of K =T'X + VI:

KKy (VuD)(VD) 1

Rab = 5r2 — or?2 T

1
V(a}'(b) =+ fvavbr =+ Agab-

Proposition

For any solution to the NHE the following identity holds

|.ch|2 ve (Kbv( Ky — $K.AT — LK,V K° —/\FKa)

1
+ VK (——|K|2+ —AT + = VbeJrﬁKbeFvL)\F).

v

@ Proof: apply KbV“(Rab — %Rgab) = 0 to the NHE and calculate.
The result relies on many mysterious cancellations.
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Inheritance of symmetry

@ Choose I' s.t. V,K® = 0. Integrating the tensor identity over M
shows Lxg = 0.
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Inheritance of symmetry

@ Choose I' s.t. V,K® = 0. Integrating the tensor identity over M
shows Lxg = 0.

@ It remains to prove [K, X| = 0, which is equivalent to LxT" = 0.
Strategy: show L(LxI') =0 and ker L = {0}, where

Lp = =AY + Vo ((I7IVD)e) + T2 | K 9.
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Inheritance of symmetry

@ Choose I' s.t. V,K® = 0. Integrating the tensor identity over M
shows Lxg = 0.

@ It remains to prove [K, X| = 0, which is equivalent to LxT" = 0.
Strategy: show L(LxI') =0 and ker L = {0}, where

Lp = =AY + Vo ((I7IVD)e) + T2 | K 9.

o Applying Lx R = 0 to the NHE gives L(LxT") = 0.
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Inheritance of symmetry

@ Choose I' s.t. V,K® = 0. Integrating the tensor identity over M
shows Lxg = 0.

@ It remains to prove [K, X| = 0, which is equivalent to LxT" = 0.
Strategy: show L(LxI') =0 and ker L = {0}, where

Lip = —A¢ + Vo (D7'VD)0) + T2 K 2.
o Applying Lx R = 0 to the NHE gives L(LxT") = 0.
@ L has formal adjoint of the form

L™ = =Ap + B*Vatp + C1),

with C' = T72|K|? > 0. Maximum principle + Fredholm alternative
imply ker L = {0}. O
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The NHE in Einstein-Maxwell theory

@ Energy-momentum tensor for Einstein-Maxwell

Ty =2 (FupF," — 1F oo F 7 8p) -
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The NHE in Einstein-Maxwell theory

@ Energy-momentum tensor for Einstein-Maxwell
Ty =2 (FupF," — 1F oo F 7 8p) -
o Maxwell 2-form F is closed and has NH limit

Fnu = d(ry(x)dv) + 5 Bgy(z)dz® A da?
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The NHE in Einstein-Maxwell theory

@ Energy-momentum tensor for Einstein-Maxwell
Ty =2 (]:up]:up - i}—pa}—paguu) :
o Maxwell 2-form F is closed and has NH limit
Fn = d(r(z)dv) + 2 Boy(x)da® A da

e Einstein-Maxwell NHE: compact Riemannian manifold (M, g) with
X € X(M), ¢ € C®(M), B € Q*(M) satisfying dB = 0 and
1
Raup= iXaXb = V(aXp) + Agab + Pas,
(V" = X)) By, = =(Ve = Xp)¥,

where .
Py, = 2Bu.B,° + ggab(w2 — BgB“).
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Extremal Kerr-Newman horizon

o Example: extremal Kerr-Newman horizon. M = S?, X\ = 0.

1— 22)(a2 + r2)2
g= p+ d +( Z )(Z T+) d¢27
11—z Jh
K-Vr 2 1 9
X:7V7 where T' = p+,K:
r 2ar, —|—r+3¢
w:aQQZ x? 2aPr+x—Qr+
P
B:_(a2+r+)( 2Px2j:2aQr+x—Pri)d$Ad¢.
Py

Here p2 =12 + a?2?,r2 = a® + P? + Q2. a rotation parameter,

P, Q magnetic resp. electric charge. x € [—1,1],¢ € [0, 27).
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Rigidity of the extremal Kerr-Newman horizon

e From now on set n = 2 (four space-time dimensions).
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Rigidity of the extremal Kerr-Newman horizon

e From now on set n = 2 (four space-time dimensions).

@ [Chrusciel-Tod '07, Kunduri-Lucietti '09, Kamiriski-Lewandowski '24]: every
static solution is trivial, i.e. X =0 and R,,*B are constant.
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Rigidity of the extremal Kerr-Newman horizon

e From now on set n = 2 (four space-time dimensions).

@ [Chrusciel-Tod '07, Kunduri-Lucietti '09, Kamiriski-Lewandowski '24]: every
static solution is trivial, i.e. X =0 and R,,*B are constant.

@ [Lewandowski-Pawlowski '03, Kunduri-Lucietti '09]: extremal KN horizon
is unique non-trivial solution with U(1) action preserving (g, X, v, B).
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Rigidity of the extremal Kerr-Newman horizon

e From now on set n = 2 (four space-time dimensions).

@ [Chrusciel-Tod '07, Kunduri-Lucietti '09, Kamiriski-Lewandowski '24]: every
static solution is trivial, i.e. X =0 and R,,*B are constant.

@ [Lewandowski-Pawlowski '03, Kunduri-Lucietti '09]: extremal KN horizon
is unique non-trivial solution with U(1) action preserving (g, X, v, B).

Theorem [Colling-Katona-Lucietti '24]

Let (M, g) be a compact, oriented Riemannian surface (without boundary)
admitting a non-gradient vector field X such that the Einstein-Maxwell
NHE hold. Then (M, g) admits a Killing vector field K. Moreover,

[K,X] =0, Lxt)=0and LxB = 0.
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The matter equation for n = 2

@ Define the function = xB. The matter equation becomes

*(dB — BX°) = dip — pX°.
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The matter equation for n = 2

@ Define the function = xB. The matter equation becomes

*(dB — BX°) = dip — pX°.

Let (M, g) be a compact, oriented Riemannian surface admitting a
solution (X, %, B) to the Einstein-Maxwell NHE. Then the function

p = /3% + 1?2 is either identically zero or strictly positive.
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The matter equation for n = 2

@ Define the function = xB. The matter equation becomes

*(dB — BX°) = dip — pX°.

Let (M, g) be a compact, oriented Riemannian surface admitting a
solution (X, %, B) to the Einstein-Maxwell NHE. Then the function

p = /3% + 1?2 is either identically zero or strictly positive.

e Proof: Assume p# 0. On M = {p > 0} the function p solves

Alogp =V X
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The matter equation for n = 2

@ Define the function = xB. The matter equation becomes

*(dB — BX°) = dip — pX°.

Let (M, g) be a compact, oriented Riemannian surface admitting a
solution (X, %, B) to the Einstein-Maxwell NHE. Then the function

p = /3% + 1?2 is either identically zero or strictly positive.

e Proof: Assume p# 0. On M = {p > 0} the function p solves
Alogp =V X

o Let f be a global solution to Af = V,X*“ and consider h = logp — f
on M. Maximum principle: h = ¢ = const = p = et > 0. O
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The matter equation for n = 2

@ Define the function = xB. The matter equation becomes

*(dB — BX°) = dip — pX°.

Let (M, g) be a compact, oriented Riemannian surface admitting a
solution (X, %, B) to the Einstein-Maxwell NHE. Then the function

p = /3% + 1?2 is either identically zero or strictly positive.

e Proof: Assume p# 0. On M = {p > 0} the function p solves
Alogp =V X

o Let f be a global solution to Af = V,X*“ and consider h = logp — f
on M. Maximum principle: h = ¢ = const = p = et > 0. O

@ Other proof: [Dobkowski-Rytko, Kamiriski, Lewandowski, Szereszewski '18].
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Maxwell tensor identity

@ Einstein-Maxwell NHE in terms of K =T'X + VI

KKy (VaD)(VBD) 1
212 212 T

1
Rap = Vil + pVaVel' + Agay + P*Gab-
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Maxwell tensor identity

@ Einstein-Maxwell NHE in terms of K =T'X + VI

KKy (VaD)(VBD) 1

1 2
Ry = o 5T7 FV(aKb) + fVa,VbF + Agab + 07 Gab-

Proposition

For any solution to the Einstein-Maxwell NHE the following identity holds
1 2 2
7Exal” +2V(Ip)|" =

ve (Kbv(aKb) — LK,AT — LK, V,K? — ATK, + vaa(Fp)>

1 1 1 1
+ VK (—ﬁ|K|2 i QAF + §vab i ﬁKbvbr + A — rp2> .

v
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Proof of theorem

@ The vacuum calculation gives

1
Z|£Kg\2 =Vl Y+ VK ...) = p°K°V,I.
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Proof of theorem

@ The vacuum calculation gives
1
Z|£Kg\2 =Vl Y+ VK ...) = p°K°V,I.

@ Use the matter equation to rewrite the last term

—p* KV, = —Tp’V,K* + V*(T'pVa(T'p)) — 2|V(Ip)[*.
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Proof of theorem

@ The vacuum calculation gives
1
Z|£Kg\2 =Vl Y+ VK ...) = p°K°V,I.

@ Use the matter equation to rewrite the last term

—p* KV, = —Tp’V,K* + V*(T'pVa(T'p)) — 2|V(Ip)[*.

o Fix I'sit. VoK =0. Tensor identity: Lxg = 0 and I'p = const.
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Proof of theorem

@ The vacuum calculation gives
%chgP =Va(...") + V K%...) = p?K°V,T.
@ Use the matter equation to rewrite the last term
—p* KV, = —Tp’V,K* + V*(T'pVa(T'p)) — 2|V(Ip)[*.

o Fix I'sit. VoK =0. Tensor identity: Lxg = 0 and I'p = const.
@ Matter equation implies L' = L p = 0. Therefore

[K,X]:O, £K¢:0 and EKB:O. 0
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Proof of theorem

@ The vacuum calculation gives
%chgP =Va(...") + V K%...) = p?K°V,T.
@ Use the matter equation to rewrite the last term
—p* KV, = —Tp’V,K* + V*(T'pVa(T'p)) — 2|V(Ip)[*.

o Fix I'sit. VoK =0. Tensor identity: Lxg = 0 and I'p = const.
@ Matter equation implies L' = L p = 0. Therefore

[K,X]:O, £K¢:0 and EKBZO. 0

@ Corollary: The general non-trivial solution to the n = 2
Einstein-Maxwell NHE is given by extremal KN-(A)dS horizon.
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Quasi-Einstein equations

@ Quasi-Einstein equations (QEE): Riemannian manifold (M, g) of
dimension n together with X € X(M) satisfying

1
Rap = — XaXp = V(@ Xp) + Adap-

m # 0 and X constants.
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Quasi-Einstein equations

@ Quasi-Einstein equations (QEE): Riemannian manifold (M, g) of
dimension n together with X € X(M) satisfying

1
Rap = — XaXp = V(@ Xp) + Adap-

m # 0 and X constants.

e m = 2: vacuum NHE with cosmological constant A.
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Quasi-Einstein equations

@ Quasi-Einstein equations (QEE): Riemannian manifold (M, g) of
dimension n together with X € X(M) satisfying

1
Rap = — XaXp = V(@ Xp) + Adap-

m # 0 and X constants.
e m = 2: vacuum NHE with cosmological constant A.

e m =1—n,\=0: Levi-Civita connections projectively equivalent to
connections with skew Ricci tensor [Nurowski-Randall '16].
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Quasi-Einstein equations

@ Quasi-Einstein equations (QEE): Riemannian manifold (M, g) of
dimension n together with X € X(M) satisfying

1
Rap = — XaXp = V(@ Xp) + Adap-

m # 0 and X constants.
e m = 2: vacuum NHE with cosmological constant A.

e m =1—n,\=0: Levi-Civita connections projectively equivalent to
connections with skew Ricci tensor [Nurowski-Randall '16].

@ m = 2 — n: Einstein-Weyl structures [Cartan '43].
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Quasi-Einstein equations

@ Quasi-Einstein equations (QEE): Riemannian manifold (M, g) of
dimension n together with X € X(M) satisfying

1
Rap = — XaXp = V(@ Xp) + Adap-

m # 0 and X constants.
e m = 2: vacuum NHE with cosmological constant A.

e m =1—n,\=0: Levi-Civita connections projectively equivalent to
connections with skew Ricci tensor [Nurowski-Randall '16].

@ m = 2 — n: Einstein-Weyl structures [Cartan '43].
o m e N, X" = df: warped product Einstein metrics [Kim-Kim '03].

@ m = oo: Ricci solitons [Hamilton '98].
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Rigidity of quasi-Einstein metrics

@ Q: do all solutions to the QEE with non-gradient X on compact M
admit a Killing vector of the form K = %FX + VI'?
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Rigidity of quasi-Einstein metrics

@ Q: do all solutions to the QEE with non-gradient X on compact M
admit a Killing vector of the form K = %FX + VI'?

o Fixing I' s.t. V,K® =0 and repeating steps for m = 2 [Cochran '24],

4
/ Lreg|? volg = —(2 —m) / Ry K*V'T voly.
M m M

Unclear how to proceed.
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Rigidity of quasi-Einstein metrics

@ Q: do all solutions to the QEE with non-gradient X on compact M
admit a Killing vector of the form K = %FX + VI'?

o Fixing I' s.t. V,K® =0 and repeating steps for m = 2 [Cochran '24],

4
/ [Lrcgl* voly = —(2 —m) / Ry K“VT voly.
M m M

Unclear how to proceed.

Let (M, g) be a compact Riemannian n-manifold without boundary
admitting a non-gradient vector field X such that the QEE hold with
either (i) m > 2 or (i) m < 2 — n. Then (M, g) admits a Killing vector
field K. Moreover, [K, X| = 0.
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QEE Tensor identity

o QEE in terms of K = %FX + VI

m

Ry = T2

KoKy — =V (o Ky + %vavbr — (VD) (VD) + Ao

412 2r
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QEE Tensor identity

o QEE in terms of K = %FX + VI

m m
KK —
afrd o

Rav = 11

m
V(aKb) + ﬁvava 2

Proposition
For any solution to the QEE with m # 2 the following identity holds

L (VaD) (V3T) + Agap.

v,

1 m—
7L + —r T (VaK®)?2 = Vo (T K) H + VoV,
H
R TN VIP | o g
H = —1on + §AT + (m — 2) 7+ 2(m_Q)vaK + AT,
Ve = FTKbV(“Kb) - K — 1777 (V, K K®
~1 (AF)K — A[BKe.
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QEE Killing vector

@ Let U be a smooth positive function satisfying
AV + V,(TX) = 0.

Choose T to be \Il%, so that I K is divergence-free.
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QEE Killing vector

@ Let U be a smooth positive function satisfying
AV + V,(TX) = 0.
Choose T to be \Il%, so that I K is divergence-free.

@ Integrating the tensor identity over M,

m 1 1
rz-t(:= 24 = (V,K%)? l, = 0.
/M 2 <4|£K9| +m_2(V )) vol, =0
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QEE Killing vector

@ Let U be a smooth positive function satisfying
AV + V(T XY =0.
Choose T to be \Il%, so that I K is divergence-free.
@ Integrating the tensor identity over M,
/ rz-t <1|[,Kg|2 + 1(VGK“)2> vol, = 0.
M 4 m
@ For m > 2 integrand is non-negative — Lxg = 0.

For m < 2 — n same result holds after using |Lxg|? > 2(V,K?)2.
For m = 2 — n find that K is CKVF. Use V, V¢ =0 = Lgg =0.
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QEE Killing vector

@ Let U be a smooth positive function satisfying
AV + V,(TX) = 0.
Choose T to be \Il%, so that I K is divergence-free.

@ Integrating the tensor identity over M,
/ rz-! 1|L',Kg|2 + ;(VGK“)Q vol, = 0.
M 4 m g

@ For m > 2 integrand is non-negative — Lxg = 0.
For m < 2 — n same result holds after using |Lxg|? > 2(V,K?)2.
For m =2 —n find that K is CKVF. Use V,V* =0 = Lgg=0.

0 V,K%=V,("2 K% =0 implies LT =0 and so [K, X] =0. [
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Generalized extremal horizon equations

Definition [Kamirski-Lewandowski '24]

A metric g and vector field X on a surface M satisfy the generalized
extremal horizon equation (GEHE) for some f € C*°(M) and ¢ # 0 if

V(aXe) + ¢Xo X+ fgap = 0.
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Generalized extremal horizon equations

Definition [Kamirski-Lewandowski '24]

A metric g and vector field X on a surface M satisfy the generalized
extremal horizon equation (GEHE) for some f € C*°(M) and ¢ # 0 if

V(aXe) + ¢Xo X+ fgap = 0.

e c= —%,f = %R— A: vacuum NHE.
o c= —%,f = %R — A — p?: Einstein-Maxwell NHE.

ec=—1 :%R—/\: QEE.
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Topological rigidity

Let (g, X) be a solution to the GEHE on a closed, connected and oriented
surface M with X not identically zero. Then M is diffeomorphic to S2.
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Topological rigidity

Let (g, X) be a solution to the GEHE on a closed, connected and oriented
surface M with X not identically zero. Then M is diffeomorphic to S2.

@ [Kamiriski-Lewandowski '24]: proof based on holomorphic vector fields.
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Topological rigidity

Let (g, X) be a solution to the GEHE on a closed, connected and oriented
surface M with X not identically zero. Then M is diffeomorphic to S2.

@ [Kamiriski-Lewandowski '24]: proof based on holomorphic vector fields.

@ Poincaré-Hopf theorem: Let M be a closed manifold and X a vector
field on M having only isolated zeros. The sum of the indices of the
zeros of X equals the Euler characteristic x(M).
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Topological rigidity

Let (g, X) be a solution to the GEHE on a closed, connected and oriented
surface M with X not identically zero. Then M is diffeomorphic to S2.

@ [Kamiriski-Lewandowski '24]: proof based on holomorphic vector fields.

@ Poincaré-Hopf theorem: Let M be a closed manifold and X a vector
field on M having only isolated zeros. The sum of the indices of the
zeros of X equals the Euler characteristic x(M).

@ Recall the index of X at an isolated zero p € M is defined as the
degree of the map X/|X|: 0D — S™!, where D is a coordinate disk
around p s.t. pis the only zero of X in D.
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Proof of theorem: step 1

@ Qutline of proof: show that

@ X has at least one zero.
@ Any zero of X is isolated.

© The index of X at any zero is positive.

This implies x(M) > 0 and hence M = S2.
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Proof of theorem: step 1

@ Qutline of proof: show that

@ X has at least one zero.
@ Any zero of X is isolated.

© The index of X at any zero is positive.

This implies x(M) > 0 and hence M = S2.

@ Step 1: Use the trace of GEHE to express f in terms of X. Then
contract the GEHE twice with X to find [Jezierski '09]

X(l
Ve <\X\2> =

On a closed manifold M this shows X must have zero.
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Proof of theorem: step 2

@ Step 2: Introduce complex coords (z, z) around a zero p € U and
functions H: U - R, P: U — C s.t.

g=2eld2dz, X’ = Pdz + Pdz.
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Proof of theorem: step 2

@ Step 2: Introduce complex coords (z, z) around a zero p € U and
functions H: U - R, P: U — C s.t.

g=2eld2dz, X’ = Pdz + Pdz.

o Define a complex function F locally by 9;F = P. The
(2z)-component of the GEHE gives

Oz (ecpefHP) =0.

Hence p is an isolated zero of X.
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Proof of theorem: step 2

@ Step 2: Introduce complex coords (z, z) around a zero p € U and
functions H: U - R, P: U — C s.t.

g=2eld2dz, X’ = Pdz + Pdz.

o Define a complex function F locally by 9;F = P. The
(2z)-component of the GEHE gives

0 (eCFefHP) =0.
Hence p is an isolated zero of X.

o Note: if M = 52 we can define F globally by 9F = (X*)(®1) The
computation above then shows that V = e¢f' X(1:9) is a holomorphic
vector field.
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Proof of theorem: step 3

@ Step 3: motivated by [Chrusciel-Szybka-Tod '17]. Key ingredient

@ Lemma [Milnor '65]: Let p be a zero of a vector field X. If (in some
coordinates) det(d,X") > 0 at p, then then the zero is isolated and
of index 1.
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Proof of theorem: step 3

@ Step 3: motivated by [Chrusciel-Szybka-Tod '17]. Key ingredient

@ Lemma [Milnor '65]: Let p be a zero of a vector field X. If (in some
coordinates) det(d,X") > 0 at p, then then the zero is isolated and
of index 1.

@ Prolong the GEHE: define Q by dX” = 2Q¢, so that

VoXp + X Xp = 7fgab + Qegp.
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Proof of theorem: step 3

@ Step 3: motivated by [Chrusciel-Szybka-Tod '17]. Key ingredient

@ Lemma [Milnor '65]: Let p be a zero of a vector field X. If (in some
coordinates) det(d,X") > 0 at p, then then the zero is isolated and
of index 1.

@ Prolong the GEHE: define Q by dX” = 2Q¢, so that

VoXp + X Xp = 7fgab + Qegp.

e We find
det(9,X")|, = f()* + Qp)*.

Hence det(9,X") > 0 at p unless X, f, 2 vanish simultaneously.
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Proof of theorem: step 3

@ Step 3: motivated by [Chrusciel-Szybka-Tod '17]. Key ingredient

@ Lemma [Milnor '65]: Let p be a zero of a vector field X. If (in some
coordinates) det(d,X") > 0 at p, then then the zero is isolated and
of index 1.

@ Prolong the GEHE: define Q by dX” = 2Q¢, so that

VoXp + X Xp = 7fgab + Qegp.

e We find
det(9,X")|, = f()* + Qp)*.

Hence det(9,X") > 0 at p unless X, f, 2 vanish simultaneously.

@ In this degenerate case it can be shown that det(d,X") has a strict
minimum at p, which still implies that the index is positive.
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o Main results

e 4D Einstein-Maxwell Theory: every non-trivial extremal horizon
cross-section admits a Killing vector and hence is given by the
extremal KN family.

o Quasi-Einstein equation: every compact non-gradient solution to
the QEE with m > 2 or m < 2 —n admits a Killing vector
preserving X.

o Generalized extremal horizon equation: every non-trivial solution
is (up to a double cover) on the two-sphere S2.
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o Main results

e 4D Einstein-Maxwell Theory: every non-trivial extremal horizon
cross-section admits a Killing vector and hence is given by the
extremal KN family.

o Quasi-Einstein equation: every compact non-gradient solution to
the QEE with m > 2 or m < 2 —n admits a Killing vector
preserving X.

o Generalized extremal horizon equation: every non-trivial solution
is (up to a double cover) on the two-sphere S2.

e Open problems
o Killing vector for the QEE with m € (2 — n,2)?

o Other theories, e.g. 5D Einstein-Maxwell Chern-Simons.
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Thank you
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