

Newman-Janis algorithms application to regular black hole models

Regular rotating black hole: to Kerr or not to Kerr?

Alexander Kamenshchik

University of Bologna and INFN, Bologna, Italy

December 1, 2023

Based on:

Alexander Kamenshchik and Polina Petriakova,
Newman-Janis algorithm's application to regular black hole
models,
Physical Review D 107 (2023) 12, 124020.

and

Leonardo Chataignier, Alexander Kamenshchik, Alessandro
Tronconi and Giovanni Venturi,
Regular black holes, universes without singularities, and
phantom-scalar field transitions,
Physical Review D 107 (2023) 2, 023508.

Content

1. Introduction and motivations
2. Seed (spherically symmetric static) regular geometry
3. From the regular Schwarzschild-like black hole to the regular Kerr-like black hole
4. Regular cosmological models
5. Conclusions

Introduction and Motivations

- ▶ Appearance of singularities is one of the most important phenomena in General Relativity and in its generalizations and modifications.
- ▶ The singularities were first discovered in such simple geometries as those of Friedmann and Schwarzschild and later their general character was established (Penrose, Hawking).
- ▶ The investigation of the oscillatory approach to the cosmological singularity (Belinsky, Khalatnikov, Lifshitz) known also as Mixmaster universe (Misner) has opened the way to the birth of a new branch of the mathematical physics chaotic cosmology and hyperbolic Kac-Moody algebras (Damour, Henneaux, Nicolai).

Introduction and Motivations

- ▶ The investigation of the non-singular (or so-called regular) black holes and their regular rotating counterparts is extremely popular nowadays.
- ▶ There are also attempts to construct non-singular cosmological models.
- ▶ It is **easy** to construct a regular black-hole type solution, it is enough to put some regularizing parameters into the metric.
- ▶ It is **difficult** to do it in such a way to have a plausible matter content.
- ▶ The Newman-Janis algorithm permits to obtain the metric of the Kerr rotating black hole starting from the Schwarzschild metric.

- ▶ We have obtained Kerr-like regular rotating black hole starting from the Schwarzschild-like black hole, sustained by the phantom scalar field.
- ▶ There is no (simple) matter, which could sustain our construction.

Seed (spherically symmetric static) regular geometry

The study of the regular black holes has rather a long history. Recently, [Simpson and Visser, 2018](#) suggested a very simple modification of the Schwarzschild metric:

$$ds^2 = \left(1 - \frac{2m}{\sqrt{u^2 + b^2}}\right) dt^2 - \left(1 - \frac{2m}{\sqrt{u^2 + b^2}}\right)^{-1} du^2 - (u^2 + b^2)(d\theta^2 + \sin^2 \theta d\varphi^2),$$

where the singularity at $r = 0$ is replaced by a regular minimum of $r(u)$ at $u = 0$, a sphere of radius b . If $b > 2m$, this metric describes a [wormhole](#) with a [throat](#) at $u = 0$; if $b < 2m$, one has a [black hole](#) with two [horizons](#) at $u = \pm\sqrt{4m^2 - b^2}$; and if $b = 2m$, we see an extremal black hole with a single horizon at $u = 0$.

What kind of matter can sustain this black hole? It is difficult to invent it.

We would like to have a regular black hole where the role of matter is played by a **scalar field**.

Consider the following spherically symmetric metric

$$ds^2 = A(u) (dx^0)^2 - \frac{du^2}{A(u)} - r^2(u) d\Omega_2^2,$$

where $d\Omega_2^2 = (dx^2)^2 + \sin^2 x^2 (dx^3)^2$ is the line element on a unit sphere; the area function $r(u)$ is regular and positive everywhere and has at least one minimum at some $u = u_{\min}$, at which $r(u_{\min}) > 0$, $r'(u_{\min}) = 0$, and $r''(u_{\min}) > 0$, providing the existence of two asymptotic regions with $r(u) \sim |u|$ at $u \rightarrow \pm\infty$.

The Einstein tensor:

$$G_0^0 = -A' \frac{r'}{r} - 2A \frac{r''}{r} - A \frac{r'^2}{r^2} + \frac{1}{r^2},$$

$$G_u^u = -A' \frac{r'}{r} - A \frac{r'^2}{r^2} + \frac{1}{r^2},$$

$$G_2^2 = G_3^3 = -\frac{1}{2}A'' - A' \frac{r'}{r} - A \frac{r''}{r}.$$

For a minimally coupled scalar field $\phi(r)$:

$$T_0^0[\phi] = T_2^2[\phi] = T_3^3[\phi].$$

Hence,

$$\frac{1}{2}A'' - A \frac{r''}{r} - A \frac{r'^2}{r^2} + \frac{1}{r^2} = 0.$$

To find a globally regular geometry, we choose the simplest possible area function

$$r(u) = \sqrt{u^2 + b^2}, \quad b = \text{const} > 0.$$

The exact solution of the equation for A is

$$A(u) = 1 + c_1(u^2 + b^2) + c_2 \left((u^2 + b^2) \tan^{-1} \frac{u}{b} + ub \right).$$

By setting $c_1 = -\pi c_2/2$ and $c_2 b^3 \equiv u_0$ to ensure the regularity of $A(u)$ at $b \rightarrow 0$ and the Schwarzschild form, i.e., $A(u) \simeq 1 - 2u_0/3u$ at $u \rightarrow +\infty$ correspondingly, we get

$$A(u) = 1 - \frac{u_0}{b^3} \left((u^2 + b^2) \cot^{-1} \frac{u}{b} - ub \right).$$

We have a traversable wormhole if $2b > \pi u_0$; a regular black hole if $0 < 2b < \pi u_0$ with a single horizon at u_h , which is a regular zero of $A(u_h) = 0$; or a regular black hole with a single extremal horizon (black throat) at $u = 0$ if $2b = \pi u_0$. Beyond the event horizon (if it exists), there is a bounce to anisotropic **Kantowski–Sachs cosmology** with two scale factors, $A(u)$ and $r(u)$.

This solution was first obtained in
K.A. Bronnikov and J.C. Fabris,
Regular Phantom Black Holes,
Phys. Rev. Lett. 96 (2006) 251101.

From the regular Schwarzschild-like black hole to the regular Kerr-like black hole

The **Newman–Janis** algorithm provides the derivation of the **rotating** solutions from the **static** ones.

One introduces a **vierbein** of null vectors:

$$\mathbf{e}_\alpha = (\mathbf{l}, \mathbf{n}, \mathbf{m}, \bar{\mathbf{m}})$$

and a series of complex conjugation transformations.

We switch to a null coordinate system, replacing in the time coordinate x^0 with the **null time** coordinate τ via
 $dx^0 \rightarrow d\tau = dx^0 - du/A(u)$.

In the **Eddington–Finkelstein** type coordinates:

$$ds^2 = A(u)d\tau^2 + 2d\tau du - r^2(u)d\Omega_2^2.$$

In the Newman–Penrose tetrad formalism:

$$ds^2 = (l_\mu n_\nu - m_\mu \bar{m}_\nu) dx^\mu dx^\nu,$$

$$l^\mu = \delta_u^\mu, \quad n^\mu = \delta_\tau^\mu - \frac{A(u)}{2} \delta_u^\mu,$$

$$m^\mu = \frac{1}{\sqrt{2}r(u)} \left(\delta_2^\mu + \frac{i}{\sin x^2} \delta_3^\mu \right),$$

where l^μ and n^μ being **real** null vectors, and m^μ and its complex conjugate \bar{m}^μ being **complex** null vectors.

$$l_\mu m^\mu = l_\mu \bar{m}^\mu = n_\mu m^\mu = n_\mu \bar{m}^\mu = 0, l_\mu n^\mu = -m_\mu \bar{m}^\mu = 1.$$

Complexification of the seed metric:

$$A(u, \bar{u}) = 1 + \frac{u_0}{2b^2} (u + \bar{u}) - \\ - \frac{u_0}{2b^3} \left((u^2 + b^2) \cot^{-1} \frac{u}{b} + (\bar{u}^2 + b^2) \cot^{-1} \frac{\bar{u}}{b} \right),$$

$$r(u) = \sqrt{u^2 + b^2}, \quad \bar{r}(u) = \sqrt{\bar{u}^2 + b^2},$$

requiring at $u = \bar{u}$ the recovery of initial vierbein.
We apply complex transformation:

$$x^\mu \rightarrow x'^\mu = x^\mu - ia \cos x^2 (\delta_\tau^\mu - \delta_u^\mu),$$

treating the primed coordinates as real.

Through the null complex tetrad transform,
 $e_\alpha^\mu \rightarrow e_\alpha'^\mu = e_\alpha^\nu \partial x'^\mu / \partial x^\nu$, and the use of the new light-like vectors

$$l'^\mu = \delta_{u'}^\mu, \quad n'^\mu = \delta_{\tau'}^\mu - \frac{A(u', x^{2'})}{2} \delta_{u'}^\mu,$$

$$m'^\mu = \frac{i a \sin x^{2'} \left(\delta_{\tau'}^\mu - \delta_{u'}^\mu \right) + \delta_{2'}^\mu + \frac{i}{\sin x^{2'}} \delta_{3'}^\mu}{\sqrt{2} \bar{r}(u', x^{2'})},$$

$$\bar{m}'^\mu = \frac{-i a \sin x^{2'} \left(\delta_{\tau'}^\mu - \delta_{u'}^\mu \right) + \delta_{2'}^\mu - \frac{i}{\sin x^{2'}} \delta_{3'}^\mu}{\sqrt{2} r(u', x^{2'})},$$

it yields the new $g'^{\mu\nu} = 2l'^{(\mu}n'^{\nu)} - 2m'^{(\mu}\bar{m}'^{\nu)}$ expression

$$g'^{\mu\nu} = \begin{pmatrix} -\frac{a^2 \sin^2 x^{2'}}{r\bar{r}(u', x^{2'})} & \frac{1 + \frac{a^2 \sin^2 x^{2'}}{r\bar{r}(u', x^{2'})}}{r\bar{r}(u', x^{2'})} & 0 & -\frac{a}{r\bar{r}(u', x^{2'})} \\ \frac{1 + \frac{a^2 \sin^2 x^{2'}}{r\bar{r}(u', x^{2'})}}{r\bar{r}(u', x^{2'})} & -A(u', x^{2'}) - \frac{a^2 \sin^2 x^{2'}}{r\bar{r}(u', x^{2'})} & 0 & \frac{a}{r\bar{r}(u', x^{2'})} \\ 0 & 0 & -\frac{1}{r\bar{r}(u', x^{2'})} & 0 \\ -\frac{a}{r\bar{r}(u', x^{2'})} & \frac{a}{r\bar{r}(u', x^{2'})} & 0 & -\frac{1}{r\bar{r}(u', x^{2'}) \sin^2 x^{2'}} \end{pmatrix}.$$

The covariant metric in the ingoing Eddington–Finkelstein coordinates is

$$\begin{aligned} ds'^2 &= A(u', x^{2'}) \left(d\tau' - a \sin^2 x^{2'} dx^{3'} \right)^2 \\ &+ 2 \left(d\tau' - a \sin^2 x^{2'} dx^{3'} \right) \left(du' + a \sin^2 x^{2'} dx^{3'} \right) \\ &- r\bar{r}(u', x^{2'}) \left((dx^{2'})^2 + \sin^2 x^{2'} (dx^{3'})^2 \right). \end{aligned}$$

$$\begin{aligned}
A(u', x^{2'}) &= 1 + \frac{u_0 u'}{b^2} \\
&+ \frac{u_0}{2b^3} \left(u'^2 - a^2 \cos^2 x^{2'} + b^2 \right) \\
&\times \left(\tan^{-1} \frac{u'}{b + a \cos x^{2'}} + \tan^{-1} \frac{u'}{b - a \cos x^{2'}} - \pi \right) \\
&+ \frac{a u_0 u'}{2b^3} \cos x^{2'} \ln \frac{u'^2 + (b - a \cos x^{2'})^2}{u'^2 + (b + a \cos x^{2'})^2},
\end{aligned}$$

$$r\bar{r}(u', x^{2'}) = \sqrt{(u'^2 - a^2 \cos^2 x^{2'} + b^2)^2 + 4a^2 u'^2 \cos^2 x^{2'}}.$$

The obtained geometry **does not contain** Kerr's usual ring coordinate singularity at $u' = 0$ and $x^{2'} = \pi/2$, and turns into the Kerr original one at the $b \rightarrow 0$ limit:

$$g'_{\mu\nu} \Big|_{b=0} = \begin{pmatrix} 1 - \frac{2u_0 u'}{3(u'^2 + a^2 \cos^2 x^{2'})} & 1 & 0 & \frac{2a u_0 u' \sin^2 x^{2'}}{3(u'^2 + a^2 \cos^2 x^{2'})} \\ 1 & 0 & 0 & -a \sin^2 x^{2'} \\ 0 & 0 & -u'^2 - \frac{a^2 \cos^2 x^{2'}}{a^2 \sin^2 x^{2'}} & 0 \\ \frac{2a u_0 u' \sin^2 x^{2'}}{3(u'^2 + a^2 \cos^2 x^{2'})} & -a \sin^2 x^{2'} & 0 & -\left(u'^2 + a^2 + \frac{2a^2 u_0 u' \sin^2 x^{2'}}{3(u'^2 + a^2 \cos^2 x^{2'})}\right) \sin^2 x^{2'} \end{pmatrix},$$

and the Schwarzschild one in the Eddington–Finkelstein null coordinates for $a = 0$.

The curvature invariants for the obtained rotated solution are **finite** in the entire range of the u' coordinate.

The Ricci scalar, the Ricci tensor squared, and the Kretschmann scalar

$$R \sim (r\bar{r})^{-3}, \quad R_{\alpha\beta}R^{\alpha\beta} \sim (r\bar{r})^{-6},$$

and $\mathcal{K} \equiv R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta} \sim (r\bar{r})^{-6}$

are globally regular if $a \neq b$, and at the $b \rightarrow 0$ limit the standard features of the Kerr spacetime are observed.

As the final step of the NJA, one reverts the metric to the Boyer–Lindquist coordinates, which have only a single off-diagonal component, $g_{\tau x^3}$. However, it is not always possible to find such integrable coordinate transformation, $d\tau' \rightarrow d\tau = d\tau' - \alpha(u')du'$ and $dx'^3 \rightarrow dx^3 = dx'^3 - \beta(u')du'$, that leave $\alpha(u')$ and $\beta(u')$ independent of x^2 as in our non-empty case here.

For a small regularization parameter b , these functions

$$\alpha(u', x^2') = \frac{g'^{\tau u}}{g'^{uu}} \simeq \frac{u'^2 + a^2}{u'^2 + a^2 - 2u_0 u'/3} + O(b^2),$$

$$\beta(u', x^2') = \frac{g'^{ux^3}}{g'^{uu}} \simeq \frac{a}{u'^2 + a^2 - 2u_0 u'/3} + O(b^2)$$

provide the well-known Boyer–Lindquist transform, and spacetime being algebraically general, degenerates to an algebraically special and of Petrov type D up to $O(b^2)$; and in the slow rotation approximation:

$$\alpha(u', x^2') \simeq \frac{1}{A(u')} - \frac{a^2(1 - A(u'))}{A^2(u')r^2(u')} + O(a^4),$$

$$\beta(u', x^2') \simeq \frac{a}{A(u')r^2(u')} + O(a^3).$$

The metric can also be reduced to the Boyer–Lindquist representation:

$$\begin{aligned}ds_{\text{slow}}^2 \simeq & \left(A(u') + O(a^2) \right) d\tau^2 \\& + \left(2a \sin^2 x^{2'} (1 - A(u')) + O(a^3) \right) d\tau du' \\& - \left(A^{-1}(u') + O(a^2) \right) du'^2 \\& - \left(r^2(u') + O(a^2) \right) \left((dx^{2'})^2 + \sin^2 x^{2'} (dx^3)^2 \right),\end{aligned}$$

coinciding at $u' \rightarrow +\infty$ with the slow rotation limit of the standard Kerr solution in these coordinates.

Scalar field

We apply a series of complex conjugation transformations to the scalar field in the Newman–Janis spirit.

The scalar field's stress-energy tensor is

$$T_\nu^\mu[\phi] = \epsilon \phi^{\mu}_{;\nu} \phi_{,\nu} - \frac{\delta_\nu^\mu}{2} \epsilon \phi^{\alpha}_{;\alpha} \phi_{,\nu} + \delta_\nu^\mu V(\phi),$$

where $\epsilon = +1$ corresponds to a canonical scalar field ϕ_c and $\epsilon = -1$ to a phantom one ϕ_{ph} .

Assuming $\phi = \phi(u)$, we obtain

$$-2\frac{r''}{r} = \epsilon \phi'^2 \quad \rightarrow \quad \phi_{ph}(u) = \pm \sqrt{2} \tan^{-1} \frac{u}{b} + \phi_0.$$

We chose the minus sign and $\phi_0 = \pi/\sqrt{2}$, resulting in $\phi_{ph}(u) = \sqrt{2} \cot^{-1}(u/b)$.

The sum of G_τ^τ and G_u^u components leads to an expression for potential in terms of the radial coordinate u :

$$V(u) = \frac{u_0 \left((3u^2 + b^2) \cot^{-1} \frac{u}{b} - 3ub \right)}{b^3(u^2 + b^2)}.$$

We can reconstruct the exact expression for the potential via the **phantom scalar field**:

$$V(\phi_{\text{ph}}) = \frac{u_0 \phi_{\text{ph}}}{\sqrt{2}b^3} \left(3 - 2 \sin^2 \frac{\phi_{\text{ph}}}{\sqrt{2}} \right) - \frac{3u_0}{2b^3} \sin \sqrt{2} \phi_{\text{ph}},$$

where we have used the inversion $u = b \cot \frac{\phi_{\text{ph}}}{\sqrt{2}}$.

We would like to complexify the scalar field, the potential, and the Lagrangian density, introducing $\phi_{\text{ph}}(u, \bar{u})$, $V(u, \bar{u})$, and $L(u, \bar{u})$, and to apply the complex transformation of the coordinates $x^\mu \rightarrow x'^\mu$. Then, for the scalar field, dropping coordinate prime indices, we have

$$\phi_{\text{ph}}(u, x^2) = \frac{\pi}{\sqrt{2}} - \frac{1}{\sqrt{2}} \tan^{-1} \frac{u}{b + a \cos x^2} - \frac{1}{\sqrt{2}} \tan^{-1} \frac{u}{b - a \cos x^2}.$$

The energy-momentum tensor is

$$T_\nu^\mu =$$

$$\begin{pmatrix} -L(u, x^2) & -\left(1 + \frac{a^2 \sin^2 x^2}{r\bar{r}(u, x^2)}\right) (\phi_{\text{ph}})_u'^2 & -\left(1 + \frac{a^2 \sin^2 x^2}{r\bar{r}(u, x^2)}\right) (\phi_{\text{ph}})_u' (\phi_{\text{ph}})_{x^2}' & 0 \\ 0 & \left(A(u, x^2) + \frac{a^2 \sin^2 x^2}{r\bar{r}(u, x^2)}\right) (\phi_{\text{ph}})_u'^2 - L(u, x^2) & \left(A(u, x^2) + \frac{a^2 \sin^2 x^2}{r\bar{r}(u, x^2)}\right) (\phi_{\text{ph}})_u' (\phi_{\text{ph}})_{x^2}' & 0 \\ 0 & \frac{(\phi_{\text{ph}})_u' (\phi_{\text{ph}})_{x^2}'}{r\bar{r}(u, x^2)} & \frac{(\phi_{\text{ph}})_{x^2}'^2}{r\bar{r}(u, x^2)} - L(u, x^2) & 0 \\ 0 & -\frac{a(\phi_{\text{ph}})_u'^2}{r\bar{r}(u, x^2)} & -\frac{a(\phi_{\text{ph}})_u' (\phi_{\text{ph}})_{x^2}'}{r\bar{r}(u, x^2)} & -L(u, x^2) \end{pmatrix},$$

where

$$\begin{aligned}L(u, x^2) = & \frac{1}{b^2(r\bar{r}(u, x^2))^4} \left((u^2 + b^2)^2 (3u_0 u^3 + 4u_0 b^2 u + b^4) \right. \\& + \left(u_0 u (9u^4 + 4b^2 u^2 - b^4) - 2b^4 (3u^2 + b^2) \right) a^2 \cos^2 x^2 \\& + \left. (9u_0 u^3 - 6u_0 b^2 u + b^4) a^4 \cos^4 x^2 + 3u_0 u a^6 \cos^6 x^2 \right) \\& + \frac{u_0 u a \cos x^2}{2b(r\bar{r}(u, x^2))^2} \ln \frac{u^2 + (b - a \cos x^2)^2}{u^2 + (b + a \cos x^2)^2} \\& + \frac{u_0}{2b^3(r\bar{r}(u, x^2))^2} \left((3u^2 + 2b^2)(u^2 + b^2) \right. \\& + \left. (6u^2 - 5b^2) a^2 \cos^2 x^2 + 3a^4 \cos^4 x^2 \right) \\& \times \left(\tan^{-1} \frac{u}{b + a \cos x^2} + \tan^{-1} \frac{u}{b - a \cos x^2} - \pi \right).\end{aligned}$$

The non-trivial components of the obtained stress-energy tensor are asymptotically trivial, see at $u \rightarrow +\infty$, and $T_{\nu}^{\mu}[\phi_{\text{ph}}] \sim O(b^2)$ at the $b \rightarrow 0$ limit, and turn out coinciding with the exact non-rotation ones if $a = 0$.

The mixed Einstein tensor components G_{ν}^{μ} are all non-trivial. The Einstein equations, $G_{\nu}^{\mu} = T_{\nu}^{\mu}[\phi_{\text{ph}}]$, are satisfied asymptotically, being noticeably violated **only at distances of the order** of the regularization parameter b .

Regular cosmological models

We can construct **non-singular cosmological** models, using Simpson-Visser-like method.

Flat Friedmann model with a scalar field

Let us consider a flat Friedmann universe filled with a massless scalar field.

$$ds^2 = dt^2 - t^{\frac{2}{3}}(dx_1^2 + dx_2^2 + dx_3^2),$$

$$\dot{\phi} = \sqrt{\frac{2}{3}} \frac{1}{t}.$$

Let us now construct the regularized metric:

$$ds^2 = dt^2 - (t^2 + b^2)^{\frac{1}{3}}(dx_1^2 + dx_2^2 + dx_3^2).$$

$$R_0^0 = \frac{2t^2 - 3b^2}{3(t^2 + b^2)^4},$$

$$R_1^1 = R_2^2 = R_3^3 = -\frac{b^2}{3(t^2 + b^2)^2}.$$

$$R = \frac{2t^2 - 6b^2}{3(t^2 + b^2)^2}.$$

The Friedmann equations give the expressions for the energy density and for the isotropic pressure of matter

$$\rho = \frac{t^2}{3(t^2 + b^2)^2},$$

$$p = \frac{t^2 - 2b^2}{3(t^2 + b^2)^2}.$$

Let us suppose that the universe is filled with a spatially homogeneous scalar field with a potential $V(\phi)$.

$$\rho = \frac{1}{2}\dot{\phi}^2 + V(\phi),$$

$$p = \frac{1}{2}\dot{\phi}^2 - V(\phi).$$

Then

$$\dot{\phi} = \pm \sqrt{\frac{2}{3}} \frac{\sqrt{t^2 - b^2}}{t^2 + b^2},$$

$$V = \frac{b^2}{3(t^2 + b^2)^2}.$$

What happens at $|t| < b$?

The kinetic energy of ϕ changes sign and the standard scalar field transforms into a **phantom scalar field**.

We can study the behaviour of the potential V in the vicinity of $t = b$.

$$t = b + \tau,$$

where τ is small.

$$\frac{d\phi}{d\tau} = \frac{\sqrt{\tau}}{\sqrt{3b^3}},$$

$$\phi(\tau) = \phi_0 + \frac{2\tau^{3/2}}{3\sqrt{3b^3}}.$$

$$\tau = 3b \left(\frac{\phi - \phi_0}{2} \right)^{\frac{2}{3}}.$$

In the vicinity of the critical point:

$$V(\phi) = \frac{1}{3b^2 \left[\left(1 + 3 \left(\frac{\phi - \phi_0}{2} \right)^{\frac{2}{3}} \right)^2 + 1 \right]^2}.$$

By keeping only the leading terms:

$$V(\phi) = \frac{1}{12b^2} \left[1 - 6 \left(\frac{\phi - \phi_0}{2} \right)^{\frac{2}{3}} \right].$$

The distinguishing feature of this expressions is the presence of a **non-analyticity** of the **cusp** type, which is responsible for the transition from the standard scalar field to its phantom counterpart and vice versa.

It is interesting that a similar phenomenon of the transition from the phantom and non-phantom phases of the scalar field was found in another context in Andrianov, Cannata and Kamenshchik, 2005, Smooth dynamical crossing of the phantom divide line of a scalar field in simple cosmological models, Phys. Rev. D 72, 043531.

The potential of the scalar field had also a **cusp** with the same type of non-analyticity $(\phi - \phi_0)^{2/3}$.

A slightly more general model

$$ds^2 = dt^2 - t^{2\alpha}(dx_1^2 + dx_2^2 + dx_3^2).$$

Such an evolution arises in a universe filled with a perfect fluid with the equation of state parameter

$$w = \frac{2 - 3\alpha}{3\alpha}.$$

The results obtained in this model are similar to those described above.

An analogous study was undertaken also for a **Bianchi-I** model.

Conclusions

- ▶ The appearance of the singularities in the cosmological and other gravitational systems is not drawback of models or theories
- ▶ It is their distinguishing feature.
- ▶ Rather than avoid singularities, it is better to study how their presence influences the non-singular quantities (just like in quantum field theory).

- ▶ For simple systems (like Friedmann universes or Schwarzschild black holes) it is possible to construct their regular analogs sustained by more or less reasonable energy-momentum tensors.
- ▶ It is not easy to find the regular version of the rotating black hole sustained by a plausible matter source.

G.F.R. Ellis and D. Garfinkle,

The Synge G-Method: Cosmology, Wormholes, Firewalls,
Geometry,

arXiv: 2311.06881 [gr-qc].

“J.L. Synge many years ago showed how a simple process (his “G-Method”) could lead purely by differentiation to exact solutions of the Einstein Field Equations.

However, this often leads to a negative inertial mass density, hence they are unphysical.”

J.L. Synge, Relativity: The General Theory,
North-Holland Publishing Company, Amsterdam, 1960.

Chapter IV. The Material Continuum.

Paragraph 6. Survey of field equations and coordinate conditions.

Any set of ten functions $g_{ij}(x)$, sufficiently smooth, define a Riemannian spacetime. If then we choose such functions arbitrarily, we have a universe in which the energy tensor is

$$T_{ij} = -k^{-1} G_{ij},$$

the Einstein tensor having been calculated from g_{ij} - this involves no more than finding g^{ij} algebraically and carrying out the required differentiations. There are no partial differential equations to solve. Since the procedure is based on chosen values of g_{ij} , we shall call it **g-method**.

Reversing the roles, we now regards T_{ij} as given (**T-method**), so that

$$G_{ij} = -kT_{ij}$$

is a set of ten non-linear second-order partial differential equations to be satisfied by g_{ij} .

C. W. Misner, Absolute Zero of Time,
Physical Review 186 (1969) 1328.

I prefer a more optimistic viewpoint ("Nature and Einstein are subtle but tolerant") which views the initial singularity in cosmological theory not as a proof of our ignorance, but as a source from which we can much valuable understanding of cosmology.

Thus, while I presume that relativity, like other physical theories, will be improved from time to time, I do not see that these changes need bear directly on the problem of cosmological singularity.

We should **stretch our minds**, find some more acceptable set of words to describe the **mathematical situation**, now identified as “singular”, and then proceed to incorporate this singularity into our **physical thinking** until observational difficulties force revision on us.

The concept of a **true initial singularity** (as distinct from an indescribable early era at extravagant but finite high densities and temperatures) can be a **positive and useful** element in cosmological theory.

The Universe is **meaningfully infinitely old** because **infinitely many things** have happened since the beginning.