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Introduction and Motivations

» Appearance of singularities is one of the most important
phenomena in General Relativity and in its generalizations
and modifications.

» The singularities were first discovered in such simple
geometries as those of Friedmann and Schwarzschild and
later their general character was established (Penrose,
Hawking).

» The investigation of the oscillatory approach to the
cosmological singularity (Belinsky, Khalatnikov, Lifshitz)
known also as Mixmaster universe (Misner) has opened
the way to the birth of a new branch of the mathematical
physics chaotic cosmology and hyperbolic Kac-Moody
algebras (Damour, Henneaux, Nicolai).



Introduction and Motivations

The investigation of the non-singular (or so-called
regular) black holes and their regular rotating
counterparts is extremely popular nowadays.

There are also attempts to construct non-singular
cosmological models.

It is to construct a regular black-hole type solution,
it is enough to put some regularizing parameters into the
metric.

It is to do it in such a way to have a plausible
matter content.

The Newman-Janis algorithm permits to obtain the
metric of the Kerr rotating black hole starting from the
Schwarzschild metric.



» We have obtained Kerr-like regular rotating black hole
starting from the Schwarzschild-like black hole, sustained
by the phantom scalar field.

» There is no (simple) matter, which could sustain our
construction.



Seed (spherically symmetric static) regular geometry

The study of the regular black holes has rather a long history.
Recently, Simpson and Visser, 2018 suggested a very simple
modification of the Schwarzschild metric:
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where the singularity at r = 0 is replaced by a regular
minimum of r(u) at u = 0, a sphere of radius b. If b > 2m,
this metric describes a with a at u=0; if
b < 2m, one has a with two at
u=4++v4m? — b%; and if b = 2m, we see an extremal black
hole with a single horizon at v = 0.



What kind of matter can sustain this black hole? It is difficult
to invent it.

We would like to have a regular black hole where the role of
matter is played by a

Consider the following spherically symmetric metric

du?

ds? = A(u) (dx°)° — A

- r2(u) ng,

where d2 = (dx?)” + sin> x2 (dx3)” is the line element on a
unit sphere; the area function r(u) is regular and positive
everywhere and has at least one minimum at some u = Ui,
at which r(umin) > 0, r'(tmin) = 0, and r"(umin) > 0,
providing the existence of two asymptotic regions with

r(u) ~ |u| at u — +o0.



The Einstein tensor:
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To find a globally regular geometry, we choose the simplest
possible area function

r(u) = Vu?+ b?, b= const > 0.

The exact solution of the equation for A is

Au) =14 (v + b)) + c2<(u2 + b) tan”? % + ub).
By setting ¢; = —7¢,/2 and & b® = ug to ensure the
regularity of A(u) at b — 0 and the Schwarzschild form, i.e.,
A(u) ~ 1 —2uy/3u at u — 400 correspondingly, we get
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We have a traversable wormhole if 2b > 7ug; a regular black
hole if 0 < 2b < mugy with a single horizon at uy,, which is a
regular zero of A(u,) = 0; or a regular black hole with a single
extremal horizon (black throat) at u = 0 if 2b = 7uy. Beyond
the event horizon (if it exists), there is a bounce to anisotropic
Kantowski-Sachs cosmology with two scale factors, A(u) and

r(u).

This solution was first obtained in
K.A. Bronnikov and J.C. Fabris,
Regular Phantom Black Holes,
Phys. Rev. Lett. 96 (2006) 251101.



From the regular Schwarzschild-like black hole to the regular
Kerr-like black hole

The Newman—Janis algorithm provides the derivation of the
solutions from the ones.
One introduces a of null vectors:

e, = (I,n,m,rﬁ)

and a series of complex conjugation transformations.

We switch to a null coordinate system, replacing in the time
coordinate x° with the coordinate 7 via

dx® — d7 = dx° — du /A(u).

In the Eddington—Finkelstein type coordinates:

ds® = A(u)dt? + 2d7du — r*(u)d$s.



In the Newman—Penrose tetrad formalism:

ds® = (/unl, - mﬂn_vl,)dx“dx”,

A(u)
2
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where [* and n* being real null vectors, and m* and its
complex conjugate m* being complex null vectors.
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Complexifixation of the seed metric:
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r(u)=Vi2+ b2, FHu)=Vi*+b?,

requiring at u = i the recovery of initial vierbein.
We apply complex transformation:

xH — x* = x" — jacos x ((5 5“)

treating the primed coordinates as real.



Through the null complex tetrad transform,
el — el = el Ox'*/0x¥, and the use of the new light-like
vectors
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it yields the new g’ = 2/"(“p'¥) — 2m'(m'¥) expression
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The covariant metric in the ingoing Eddington—Finkelstein
coordinates is
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The obtained geometry Kerr's usual ring
coordinate singularity at ¢’ = 0 and x? = 7/2, and turns into
the Kerr original one at the b — 0 limit:
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and the Schwarzschild one in the Eddington—Finkelstein null

coordinates for a = 0.

The curvature invariants for the obtained rotated solution are
in the entire range of the v’ coordinate.



The Ricci scalar, the Ricci tensor squared, and the
Kretschmann scalar

6

Y

R~ (rF) 7, RugR™ ~ (rF)”
and K= Rag.y(;Ra/BMS ~ (rF)fﬁ

are globally regular if a # b, and at the b — 0 limit the
standard features of the Kerr spacetime are observed.

As the final step of the NJA, one reverts the metric to the
coordinates, which have only a single

off-diagonal component, g,,s. However, it is not always

possible to find such integrable coordinate transformation,

dr’ — dr = d7’ — a(v')dv’ and

dx”® — dx® = dx* — B(v')du/, that leave a(u') and B(u')

independent of x?’ as in our case here.



For a small regularization parameter b, these functions
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B, x*) = +0(b%)
provide the well-known Boyer—Lindquist transform, and
spacetime being algebraically general, degenerates to an
algebraically special and of Petrov type D up to O(b?); and in
the slow rotation approximation:

a(u', x7) ~ A AW + 0(a"),

B x¥) = s 4 O(2°).



The metric can also be reduced to the Boyer—Lindquist
representation:

d520,, = (A(
+(2asin?
(A W) + 0(a%) ) du”

() + 0()) (65 +sin® 5 (dx)°),

coinciding at v’ — 400 with the slow rotation limit of the
standard Kerr solution in these coordinates.

u') + 0(32))d7'2
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Scalar field
We apply a series of complex conjugation transformations to
the scalar field in the Newman—Janis spirit.

The scalar field's stress-energy tensor is

TV[¢] = ep™ ¢u— 6¢ Go+ 0LV (),

where € = 41 corresponds to a canonical scalar field ¢. and
€ = —1 to a phantom one ¢p,.
Assuming ¢ = ¢(u), we obtain

7

- 2% —et? = dm(u) = £v2tan"? % + do.

We chose the minus sign and ¢y = 7/+/2, resulting in

don(u) = V2cot™! (u/b).



The sum of G and G,/ components leads to an expression for
potential in terms of the radial coordinate u:

<(3u + b?) cot™ 14 e 3ub>
b3(u2 + b2)

V(u) =

We can reconstruct the exact expression for the potential via
the ;

V((bph) = L\/;ibzz (3 — 25in? gf;%) - % sin \/§¢ph7
Pph
V2

where we have used the inversion u = bcot —



We would like to complexify the scalar field, the potential, and
the Lagrangian density, introducing ¢pn(u, &), V(u, i), and
L(u, @), and to apply the complex transformation of the
coordinates x* — x’*. Then, for the scalar field, dropping
coordinate prime indices, we have
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The energy-momentum tensor is
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The non-trivial components of the obtained stress-energy
tensor are asymptotically trivial, see at u — 400, and
TF[dpn] ~ O(b?) at the b — 0 limit, and turn out coinciding
with the exact non-rotation ones if a = 0.

The mixed Einstein tensor components G/ are all non-trivial.
The Einstein equations, G/ = T/[¢pn], are satisfied
asymptotically, being noticeably violated

of the regularization parameter b.



Regular cosmological models

We can construct models, using
Simpson-Visser-like method.

Flat Friedmann model with a scalar field

Let us consider a flat Friedmann universe filled with a massless
scalar field.

ds? = dt® — t3(dx? + dx + ),

b= 21
V3t
Let us now construct the regularized metric:

ds® = dt? — (£ + b*)3(dx? + o + dx3).
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The Friedmann equations give the expressions for the energy
density and for the isotropic pressure of matter

t2
P= 3+ Ry

t2 —2h?

P= 3(t2 + b%)?



Let us suppose that the universe is filled with a spatially
homogeneous scalar field with a potential V(¢).

1

= V(o)
P=3 :
Then
‘/ b2
¢ = 3 t2+b2 ’
- m

What happens at |t| < b?
The kinetic energy of ¢ changes sign and the standard scalar
field transforms into a



We can study the behaviour of the potential V' in the vicinity
of t = b.

t=b+ T,
where 7 is small.
a0 _ VT
dr V3p3'
273/2
T)= @0+

T=3b (¢ 2%)



In the vicinity of the critical point:

V(p) = ! 5

3b2 {(1 +3 (‘?5‘2‘f’°)§>2 + 1}

By keeping only the leading terms:

V() = 121b2 [1—6(¢_2¢0)§].

The distinguishing feature of this expressions is the presence
of a of the type, which is responsible for
the transition from the standard scalar field to its phantom
counterpart and vice versa.




It is interesting that a similar phenomenon of the transition
from the phantom and non-phantom phases of the scalar field
was found in another context in Andrianov, Cannata and
Kamenshchik, 2005, Smooth dynamical crossing of the
phantom divide line of a scalar field in simple cosmological
models, Phys. Rev. D 72, 043531.

The potential of the scalar field had also a cusp with the same
type of non-analyticity (¢ — ¢)?/>.



A slightly more general model

ds? = dt? — t**(dx{ + dx3 + dx3).
Such an evolution arises in a universe filled with a perfect
fluid with the equation of state parameter
2 -3«
w = .
3a

The results obtained in this model are similar to those
described above.

An analogous study was undertaken also for a Bianchi-| model.



Conclusions

» The appearance of the singularities in the cosmological
and other gravitational systems is not drawback of
models or theories

» It is their distinguishing feature.

» Rather than avoid singularities, it is better to study how
their presence influences the non-singular quantities (just
like in quantum field theory).



» For simple systems (like Friedmann universes or
Schwarzschild black holes) it is possible to construct their
regular analogs sustained by more or less reasonable
energy-momentum tensors.

» It is not easy to find the regular version of the rotating
black hole sustained by a plausible matter source.



The Synge G-Method: Cosmology, Wormholes, Firewalls,

Geometry,
arXiv: 2311.06881 [gr-qc].

“J.L. Synge many years ago showed how a simple process (his
“G-Method") could lead purely by differentiation to exact
solutions of the Einstein Field Equations.

However, this often leads to a negative inertial mass density,
hence they are unphysical.”



, Relativity: The General Theory,
North-Hollad Publishing Company, Amsterdam, 1960.

Chapter IV. The Material Continuum.
Paragraph 6. Survey of field equations and coordinate
conditions.

Any set of ten functions g;;(x), sufficiently smooth, define a
Riemannian spacetime. If then we choose such functions
arbitrarily, we have a universe in which the energy tensor is

7—1" - _k_1GU7

the Einstein tensor having been calculated from gj; - this
involves no more than finding g¥ algebraically and carrying out
the required differentiations. There are no partial differential
equations to solve. Since the procedure is based on chosen
values of g;;, we shall call it



Reversing the roles, we now regards T; as given (
so that
Gjj = —kTj

is a set of ten non-linear second-order partial differential
equations to be satisfied by gj;.



, Absolute Zero of Time,
Physical Review 186 (1969) 1328.

| prefer a more optimistic viewpoint ( “Nature and Einstein are
subtle but tolerant”) which views the initial singularity in
cosmological theory not as a proof of our ignorance, but as a
source from which we can much valuable understanding of
cosmology.

Thus, while | presume that relativity, like other physical
theories, will be improved from time to time, | do not see that
these changes need bear directly on the problem of
cosmological singularity.



We should , find some more acceptable set of

words to describe the , how identified
as “singular”, and then proceed to incorporate this singularity
into our until observational difficulties force

revision on us.

The concept of a (as distinct from an
indescribable early era at extravagant but finite high densities
and temperatures) can be a element in

cosmological theory.

The Universe is because
have happened since the beginning.



