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1. Apparent horizons 
 

Imagine a spacetime that contains  a singularity. 
 

For example, a Universe model collapsing to the Big Crunch (BC). 
 

Let an observer O flash at time t0 a bundle of light rays in all directions. 
 

Suppose, the bundle is initially diverging. 
 

When coming nearer to the BC, the bundle will start to re-converge (or so everybody 
believes). 
 

The locus where the bundle has zero divergence is a 2-dimensional surface St.  
 

Its location in spacetime depends on t0 and on the location of O at t0. 
 

Let O follow a world line in spacetime and flash such a bundle at every instant t ≤ tf, 
where tf is the instant of hitting the BC. 
 

The collection of the surfaces St corresponding to all t ≤ tf is a 3-dimensional 
hypersurface H in spacetime. 
 

With a slight abuse of the original definition [1] we will refer to H as the apparent 
horizon (AH) of observer O. 
 
[1] S. W. Hawking and G. F. R. Ellis: The Large-scale Structure of Spaceetime. Cambridge University Press, Cambridge 1973. 
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2. Motivation 
 

In the Friedmann (F) models [2,3] each comoving observer has a differently located AH.  
 
The model used in the figures in the next slide (spatially flat F) has the metric 
 
ds2 = dt2 - S2(t) [dr2 + r2 (dθ2 + sin2θ dφ2)]                                                                   (2.1) 
 
with S(t) = (constant1) × (tBC – t)2/3, tBC is the Big Crunch time. 
 
Its mass content is dust with density 
 
ρ(t) = (constant2)/S3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[2] A. A. Friedmann, Über die Krümmung des Raumes. Z. Physik 10, 377 (1922); Gen. Relativ. Gravit. 31, 1991 (1999) + addendum: 32, 1937 (2000). 
[3] A. A. Friedmann, Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Physik 21, 326 (1924); GRG 31, 2001 (1999) ; both 
reprinted  papers with an editorial note by A. Krasiński and G. F. R. Ellis, Gen. Relativ. Gravit. 31, 1985 (1999). 
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The curves converging at the BC in the right figure are world lines of particles of the 
cosmic medium.  
 

In the left figure they would be vertical straight lines.  
 

Such structures exist around every comoving observer world line in any collapsing 
Friedmann model. 

ds2 = dt2 - S2(t) [dr2 + r2 (dθ2 + sin2θ dφ2)]               (2.1) 

In comoving coordinates (t, r) In (t, rS(t)) coordinates  

S(t) = (constant1) × (tBC – t)2/3 

Collapse of the model (2.1) 
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By contrast, in the Lemaître [4] – Tolman  [5] (LT) models the AH has been considered 
only for bundles of rays emitted at the center of symmetry [6,7].  
 

[Definition and discussion of the LT models will follow.] 
 

In this case, the AH can be defined in two ways: 
 
(1) As the locus where the surface areas of the light fronts achieve maxima.  
 
At the same locus the radius R of the light front becomes maximum. 
 
(2) As the locus where the expansion scalars θ := kμ

;μ of such bundles become zero. 
 
kμ is the vector field tangent to the rays. 
 
Both these definitions determine the same hypersurface R = 2M. 
 
 
 
 
 
[4] G. Lemaître, L'Univers en expansion [The expanding Universe], Ann. Soc. Sci. Bruxelles A53, 51 (1933); Gen. Rel. Grav. 29, 641 (1997).  
[5] R. C. Tolman, Effect of inhomogeneity on cosmological models, Proc. Nat. Acad. Sci. USA 20, 169 (1934); Gen. Rel. Grav. 29, 935 (1997).  
[6] A. Krasiński and C. Hellaby: Formation of a galaxy with a central black hole in the Lemaitre – Tolman model. Phys. Rev. D69, 043502 (2004). 
[7] J. Plebański and A. Krasiński: An Introduction to General Relativity and Cosmology. Cambridge University Press 2006. 
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The past and future apparent horizons in an exemplary recollapsing LT model 
(will be defined and discussed further on). 
 

Mass function M used as a radial coordinate. 
 

The center of symmetry is at M = 0. 



7 

It was puzzling where the AH would be for a noncentral observer in an LT model.  
 
The present talk, based on Ref. [8], aims at answering this question.  
 
The loci of R-extrema and of θ = 0 in LT models are investigated for bundles of rays 
emitted at noncentral events O.  
 
Then, sets (1), (2) and (3) defined below are all different, unlike in Friedmann models. 
 
(1) The locus of maxima of R.  
 
(2) The locus where θ := kμ

;μ = 0. 
 
(3) The locus of R = 2M.  
 
Note: The loci of θ = 0 and of extrema of Da (the area distance from O) do coincide [9].  
 
But if O is not at the center of symmetry, then Da ≠ R and their extrema split. 
 
 
 
[8] A. Krasiński, Expansion of bundles of light rays in the Lemaître – Tolman models. Rep. Math. Phys. 88, 203 (2021). 
[9] V. Perlick: Gravitational lensing from a spacetime perspective. Living Rev Relativ. 7 (1):, 9 (2004). 



8 

3. Basic properties of Lemaître [4] – Tolman [5] (LT) models 
 

A spherically symmetric metric can be put in the form: 
 

                                                                                                                                    (3.1) 
 

where C(t,r), A(t,r) and R(t,r) are arbitrary functions.  
 

The LT model is the solution of the Einstein equations  for (3.1) with p = 0 and R,r ≠ 0: 
 

                                                                                                                                    (3.2) 
 

where E(r) is an arbitrary function, R(t,r) is determined by 
 

                                                                                                                                    (3.3) 
 

M(r) is a second arbitrary function, and the mass density ρ is 
 

                                                                                                                                    (3.4)     
 

This solution was found by Lemaître [4] in 1933, then discussed by Tolman [5] and Bondi [10]. 
 

It is called Lemaître – Tolman (LT) or Lemaître – Tolman – Bondi (LTB) (to avoid confusion with the Friedmann – 
Lemaître models), but the credit for its discovery belongs to Lemaître alone . 
 
 
 
 
[4] G. Lemaître, L'Univers en expansion [The expanding Universe], Ann. Soc. Sci. Bruxelles A53, 51 (1933); Gen. Rel. Grav. 29, 641 (1997).  
[5] R. C. Tolman, Effect of inhomogeneity on cosmological models, Proc. Nat. Acad. Sci. USA 20, 169 (1934); Gen. Rel. Grav. 29, 935 (1997).  
[10] H. Bondi, Spherically symmetrical models in general relativity. Mon. Not. Roy. Astr. Soc. 107, 410 (1947); Gen. Rel. Grav. 31, 1783 (1999). 



Properties and astronomical implications of LT were discussed in > 100 publications [11]. 
The counter still ticks! 
 

When E(r) < 0 and Λ = 0, the solution of (3.3) is (algebraically the same as in F!) 
 
R(t,r) = [M/(-2E)] (1 – cos η), 
 

η – sin η = [(-2E)3/2/M] [t – tB(r)].                                                                                  (3.5)  
 
The singularities  at η = 0 and η = 2π are in general at different t for each r = const shell. 
 
(3.2) and (3.3) do not change when r is transformed by r = f(r'). 
 
In the following, it will be convenient to use the mass function M(r) as r'. 
 

 

The Friedmann models (*) – (**) are the special case of (3.2) – (3.3) defined by 
 
R(t,r) = rS(t),     E(r) = -kr2/2,      M = Mr3 , M, k and tB being constant                                                   (3.6) 

 
 
 
 
[11] A. Krasiński, Inhomogeneous cosmological models. Cambridge University Press, Cambridge 1997. 9 

 (3.2)  (*) 

 (**)  (3.3) 
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Expansion in FLRW models.  
Velocity of expansion of each matter shell 
is fixed by its radius.  
The BB is simultaneous in the coordinates 
of (3.2).  

Expansion in L-T models.  
Velocity of expansion is uncorrelated with 
the radius of a matter shell.  
The BB is non-simultaneous  
→ the age of matter particles depends on r. 

(3.2) 



11 

4. Light rays in an LT model 
 

The geodesic equations for the metric (3.2) are: 
 
 

                                                                                                                                            (4.1) 
 
 
 

                                                                                                                                            (4.2)  
 

                                                                                                                                            (4.3) 
 
                                                                                                                                            (4.4) 
 

where kα is the tangent vector field to the geodesic and λ is the affine parameter.  
 

Eqs. (4.3) and (4.4) have the first integrals 
 

(R sin θ)2 kφ = J0,              (R2kθ sin θ)2  + J0
2 = (C sin θ)2                                               (4.5) 

 

where J0 and C are constants. 
 

With (4.5), the null condition  gαβkαkβ = 0 becomes 
 

                                                                                                                                            (4.6)   

(3.2) 
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 (4.6) 

With C = 0 (which implies J0 = kθ = 0, and kφ = 0 when θ ≠ 0, π) the geodesic is radial. 
 
The coordinates (θ, φ) can be adapted to any single geodesic so that it stays in the 
hypersurface θ' = π/2 in the new coordinates (θ', φ'). 
 
Note: the hypersurface θ = π/2 is in general not flat. 
 
For the pictures in the next slides, the geodesic equations {(4.1), (4.2), (4.6)} were  
integrated numerically. 

(3.2) 

(R sin θ)2 kφ = J0,              (R2kθ sin θ)2  + J0
2 = (C sin θ)2           (4.5) 



5. The extremum of R along a ray 
 

The following holds at an extremum of R(t, r) along a curve tangent to kα 
 

dR/dλ ≡ R,t k
t + R,r k

r = 0.                                                                                                     (5.1) 
 

On future-directed curves kt > 0, so R,t k
t < 0 when the model collapses.  

 

When shell crossings and necks are absent, R,r ≠ 0 [12].  
 

→ Solutions of (5.1) in a collapsing model may exist only with R,rk
r > 0.  

 

On a null geodesic, (5.1) implies, via (4.6): 
  
                                                      .                                                                                         (5.2) 
  
 From (3.3) with Λ = 0, extrema of R along a light ray occur where 
 

(2M/R – 1) (R,r k
r)2 + (CR,t /R)2(1 + 2E) = 0.                                                                       (5.3)    

 

 
 
 
 
[12] C. Hellaby and K. Lake: Shell crossings and the Tolman model. Astrophys. J. 290, 381 (1985) [+ erratum: Astrophys. J. 300, 461 (1985)]. 

13 

 (3.3)  (4.6) 
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Where R < 2M, both terms in (5.3) are ≥ 0 → (5.3) may hold only when both are 
zero. This case will not happen in what follows. 
 

Elsewhere 1 + 2E > 0 must hold for the signature to be (+ – – –). 
 

R,t < 0 in a collapsing model. 
 

So, by (5.3), R = 2M → C = 0.  
 

With C ≠ 0, (5.3) may have solutions only where R > 2M. 
 

After some manipulations: 
 

                                                                                                                                        (5.4) 
 
From (3.4) M,rR,r > 0 and the first term above  ≤ 0.  
 

The second term < 0 only where R < 3M.  
 

R ≤ 3M → d2R/dλ2 < 0 → an R extremum (if exists) is a maximum.  
 

Where R > 3M both minima and maxima are possible. 
 

For radial geodesics C = 0, so d2R/dλ2 < 0 in (5.4) → only maxima of R may exist. 

(2M/R – 1) (R,r k
r)2 + (CR,t /R)2(1 + 2E) = 0              (5.3) dR/dλ ≡ R,t k

t + R,r k
r = 0 (5.1) (3.4) 
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6. Extrema of R along nonradial rays in an exemplary LT model 
 

Consider a recollapsing LT model with the Big Bang (BB) at t = tB(M)  
and the Big Crunch (BC) at t = tC(M) given by 
 

tB(M) = - bM2 + tB0,                                                                                                         (6.1) 
 

tC(M) = aM3 + tB0 + T0,                                                                                                    (6.2) 
  
with a = 104, b = 200, tB0 = 5 and T0 = 0.1 being constants.  
 

Recall: 
 

R(t,r) = [M/(-2E)] (1 – cos η), 
 

η – sin η = [(-2E)3/2/M] [t – tB(r)].                                                                                                                            (3.5)                                                                                 
 

Writing (3.5) at t = tC(r) where η = 2π we find 
 

-2E = [2πM/(tC – tB)]3/2 = [2πM/(aM3 + bM2 + T0)]3/2. 

 
This model is recollapsing (E < 0),  
 

but spatially infinite (R → ∞ when M → ∞),  
 

and becomes spatially flat (E → 0) at M → ∞.  
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The t(M) profiles of the BB, BC, both R 
= 2M sets and of the future R = 3M set 
in the LT model given by (6.1) – (6.2). 

Contours of constant R in (6.1) – (6.2).  
The R = 0 contour consists of the BB, 
the line M = 0 and the BC.  

The subspace θ = π/2 of this model can be imagined by rotating any panel around the M = 0 axis. 

tB(M) = - bM2 + tB0 tC(M) = aM3 + tB0 + T0  (6.2)  (6.1) 
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In this model we find the locus of extrema of R along bundles of future-directed rays 
emitted from the observer world line at (M, φ) = (0.012, 0).  
 
The rays in the figures run in the θ = π/2 hypersurface. 
 
There are 16 emission points separated by Δt = 0.0014, the first one at t = 5.075. 
 
At each emission point 512 rays are emitted in directions separated by π/256.  
 
Rays 0 and 256 are radial (outgoing and ingoing). 
 
Rays 257 to 511 are mirror-reflections of 1 to 255, so are omitted in most figures. 

tB(M) = - bM2 + tB0 tC(M) = aM3 + tB0 + T0  (6.2)  (6.1) 
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Loci of R maxima for 16 ray bundles  
emitted at M = 0.012, projected on a t = 
constant surface. There are no R minima. 
 

On rays that go off with kr ≤ 0 there are no 
maxima either. 
 

The projections are along world lines of 
the cosmic dust 
 

As predicted, all maxima are in R ≥ 2M. 

The emitter 
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Projections of selected contours of 
R maxima on the surface φ = 0.  
 

The ray ``out'' escapes to R = ∞ with no R extrema. 

Projections of the same contours on 
the surface φ = {π/2, 3π/2}. 

We considered rays running in the θ = π/2 hypersurface, but:  
 
A bundle of rays emitted from a fixed initial point consists of sub-bundles, each containing rays that run in a 
different θ' = π/2 hypersurface, with θ' related to θ by a rotation around a point.  
 
The complete projection of the whole set of R maxima on a 3-dimensional space of constant t can be imagined 
by rotating the left figure in the previous slide around the φ = 0 semiaxis. 
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The situation gets more complicated when the comoving emitter is closer to M = 0. 
 
Then, some rays going off with decreasing R pass near M = 0. 
 
On them, R goes through a minimum and then through a maximum. 
 
The next figures show extrema of R along bundles of rays emitted at M = 0.005,  
still in the θ = π/2 hypersurface. 
 
As the emission instant progresses toward the future, the contours of R extrema 
undergo an interesting evolution.  
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R maxima (continuous lines) R minima (dotted lines) 

View direction in the next slide. 

The emitter 

Center (M = 0) 

On the largest contours, the maxima and minima are separate loops.  
 

On smaller contours, each loop contains both maxima and minima. 
 

On rays that go off between the smaller loops R decreases monotonically to 0 at the BC. 
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A 3d view of loci of R extrema on contours 1, 2, 6, ..... , 12. 
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The graphs of t(M) along selected rays originating at (M, t) = (0.005, 5.05).  
 

Dots mark (M, t) coordinates of R maxima.  
 

On Rays 128, ...., 256 R has also minima marked by crosses.  
 

Note that 2M ≤ R < 3M for all maxima and R > 3M for all minima. 
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Projections of rays of the earliest bundle on 
a surface of constant t along the flow lines 
of the cosmic dust. 
Large dots – R maxima. 
Crosses – R minima. 

Same contour 

R = 2M on Ray 0 View direction in the next slide 

Ray projections end at (M, φ) of crossing the Big Crunch.  
 

The contour of small dots will be explained further on. 
 

Note: the transition from nonradial to radial rays is discontinuous.  
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A 3d view of selected rays from here in the (M cos φ, M sin φ, t) coordinate space. 
 
The large dots mark the loci of R maxima. 
 
Rays end at the Big Crunch; it has shape similar to R = 2M and lies inside the latter. 

This branch is  
further from you. 
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7. The set θ = kμ;μ = 0 in a general LT model 
 

For rays that run in a θ = π/2 hypersurface we have, after some manipulation 
 
 
                                                                                                                                            (7.1) 
 
On radial rays C = 0, so the loci of θ = 0 and of maximum R coincide and are at R = 2M. 
 

On nonradial rays C ≠ 0, so R,t k
t + R,r k

r = 0 does not fulfil (7.1) identically.  
 

→ The loci of θ = 0 and of R-extrema are in general different. 
 

The derivative kr,r in (7.1) goes across the bundle.  
 

To calculate it numerically two rays are needed: G1 – the main ray, and G2 – a nearby 
one that  goes off the initial point in a slightly different direction.  
 

kr,r must be calculated at constant t, so for each point p1 on G1 we find p2 on G2 with 
the same t, at which r = r2 and kr = k2

r.  
 

Then 
 

kr,r ≈ (k2
r – k1

r) /(r2 – r1).                                                                                                   (7.2) 
 

All other quantities in (7.1) are intrinsic to a single geodesic.  

(3.2) 
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At points where r2 = r1 but k2
r ≠ k1

r, |kr,r| → ∞ and may jump between +∞ and –∞.   
 
In particular, θ → ∞ at the initial point (the rays go off from a common origin in 
different directions, so r2 = r1 but k2

r ≠ k1
r). 

 
A jump may be a real effect or a numerical artifact.  
 
A real jump of kr,r and θ may only be from –∞ to +∞ (homework for you).  
 
This has geometrical interpretation: the jump from θ = –∞  to θ = +∞ means that the 
bundle was focussed to a caustic and then disperses; the opposite is hard to imagine. 

kr,r ≈ (k2
r – k1

r) /(r2 – r1).         (7.2) 
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8. The set θ = kμ;μ = 0 in the exemplary LT model 
 
The emitter positions are the same as for R maxima, but the number of emitted ray 
bundles is smaller. 
 
The numer of main rays in each bundle  is 512 as before. 
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Loci of θ = 0 on rays emitted on the world 
line (M, φ) = (0.012, 0), projected on a 
surface of constant t.  
 

Numbers label the ray bundles. 
 

Outermost ends of the dotted lines 
approach the Big Crunch. 
 

On most rays, θ has two zeros: the first 
one marked f, the second one marked s. 
 

On rays emitted in directions between the 
central blob and the long dotted arcs θ has 
no zeros. 
 

Rays with a single θ = 0 in bundle 1 are 
between 78 and 79, and again between 
178 and 179.  
 

In the same bundle there are no θ zeros 
on Rays 79 – 178  and 334 – 433, and on 
the inward radial ray. 

A closeup view on the central blob 
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A closeup view on the area where the "f" arcs go over into the "s" arcs. 
 

Numbers label the ray bundles. 
 

On the boundary ray between each "f" arc and the corresponding "s" arc there is a 
ray on which θ has a single zero.  
 

Also on the outward radial ray there is just one zero of θ. 
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View from below on contours 1, 3 and 5 

Approach the BC 

View from the right side on contour 5 
(only the M sin φ ≥ 0 half) 

Approaches the BC 
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The graphs of θ(t) along some rays 
of the earliest-emitted bundle. 
 

Numbers are ray labels. 
 

On outward radial Ray0, θ = +∞ at 
emission point, has only one zero 
and θ → –∞ at BC. 
 

On all nonradial rays θ → +∞ at the 
BC → the bundles diverge there. 
 

On nonradial rays with θ ≠ 0, the 
bundle diverges (θ > 0), but θ is not 
monotonic, see graphs 85 and 168. 

There is a discontinuity between Ray 0 (on which θ has one zero) and the first 
nonradial ray, on which θ has two zeros.  
 

One more discontinuity is between the last nonradial ray and the inward radial Ray 
256, on which θ < 0 all along.  

Emission time of bunle 1 
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The t coordinates of various events on rays  
of the earliest bundle. 

The ray-number j is related to the 
initial angle αj by 
 

αj = jπ/256.  
 

The "BC" curve is tBC at the M of 
the second θ = 0. 
 

Not to be confused with t where the ray hits 
the BC!  
 

The locus of second θ = 0 
approaches BC when αj → 0, π. 
 

The time-ordering of θ = 0 and R = 
2M changes from ray to ray. 
 

This has consequences, to which 
we will come back. 
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For ray bundles emitted at M = 0.005 
(closer to the center) the images are still 
more entangled. 
 

This is because on rays passing near the 
center θ may have up to 6 zeros. 
 

So, I show only one picture, without 
much explanation. 

Loci of 3rd, 4th, 5th and 6th θ-zeros. 
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9. Conclusions 
 

The locus of θ = 0 may lie earlier or later than R 
= 2M and than the maximum of R, depending 
on the initial direction of the ray.  
 

θ = 0 lies earlier than maximum R on some rays in bundles 
emitted close to M = 0; I did not show these figures. 
 

At a point where t = tθ=0 < tR=2M, an outward 
radial ray will go some distance toward larger R. 
 

Points with tR=2M ≤ t < t tθ=0 had isolated from 
larger R before θ became zero.  

→ For noncentral observers R = 2M rather than θ = 0 is a one-way membrane.  
 

The locus of maximum R has tmaxR < tR=2M on all nonradial rays → points in the 
segment tmaxR < t < tR=2M are not yet isolated from the communication with the 
region of larger R. 
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The trapped surfaces lie between 
the zeros of θ, where θ < 0. 
 

But θ < 0 on finite segments of rays.  
 

→ If a trapped surface were evolved 
to the future along the rays, it would 
become untrapped after finite time.  
 

Along many rays θ > 0 all the way.  
 

On nonradial rays where θ < 0 for a 
while, θ turns > 0 eventually, going 
to +∞ at the BC.  
 

This signifies infinite divergence of 
the rays at the BC. 

Convergence at the BC occurs only on outward radial rays. 
 

There exist points on some rays where θ < 0 but R > 2M, so they are visible from 
larger R. 
 

→ The formation of a trapped surface is not the unique signature of a black-hole-in-
the-making. 
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→ R = 2M does have a universal meaning in a collapsing LT model: it signifies the 
presence of a black hole inside it.  
 

This meaning of R = 2M was identified by Barnes [13]and Szekeres [14] by considering 
spherical trapped surfaces surrounding the center of symmetry and the origin. 
 

Events in R < 2M are cut off from communication with the R > 2M part of spacetime.  
 

→ The transition from LT to the Friedmann (F) limit is discontinuous in one more way: 
the individual AHs of noncentral observers appear abruptly.  
 

(The other discontinuity is the abrupt disappearance of blueshifts [15] in the F limit.) 
 
 
 
 
 
 
 
 
 
 
[13] A. Barnes: On gravitational collapse against a cosmological background, J. Phys. A3, 653 (1970). 
[14] P. Szekeres: Quasispherical gravitational collapse, Phys. Rev. D12, 2941 (1975). 
[15] P. Szekeres: Naked singularities, in: Gravitational Radiation, Collapsed Objects and Exact Solutions. Edited by C. Edwards. Springer (Lecture Notes in 
Physics, vol. 124), New York, p. 477 (1980). 
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Selected radial rays written into the 
spacetime diagram of the exemplary LT 
model. 


