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Typical gravitational wave signal

Inspiral Ringdown
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Image: LIGO
GWs provide direct information from strong dynamical regions of spacetime




100 detections until today and more to come!

Masses in the Stellar Graveyard




Many open questions

Astrophysics:
Black hole population properties
Binary black hole formation channels
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My research experience Tests of General
Relativity with GWs
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Gravitational-wave lensing

Gravitational waves as a probe of
matter distribution in the Universe



Observational evidence for dark matter
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Observations at different scales provide compelling evidence for dark matter

A. Liu



What do we know about dark matter?

We know that dark matter is: We don't know yet:
e Massive and collisionless e Nature of dark matter
e Interacts via gravity — lensing e Formation process
e ~84% of matter in the universe e Non-gravitational interactions
e Not a Standard Model particle

The unknown nature of dark matter is one of the key open questions in
astrophysics & cosmology



Dark matter halos as gravitational lenses

distorted light-rays

A. Liu
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Gravitational-wave lensing regimes

Strong lens (massive)

Detected signal

g oo

Separate signals
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Unlensed GW hy,(f)

Lensed GWs 1, (f)

Unlensed GW hy,(f) Ll GV D with large time delay
Millilens (small mass) Detected signal
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Millilensed GWs overlap
producing beating pattern




Typical lensing analyses

Point-mass lens Singular isothermal sphere (SIS)  Singular isothermal ellipsoid (SIE)

All the models assume isolated lens & well-defined symmetries

which is physically not realistic

Alternative: phenomenological approach without prior assumption on lens mass

arxiv: 2302.09870 A. Liu 12



Phenomenological framework to study milillensed GWs

phase shift n
lensed GW 4 I
» ~ U
hL<f7 HL) :F(f7 HL)h’(f7 9) magnification
Lensing effect
time delay t

e Each signal characterised by 3 parameters

e Arbitrary number of overlapping signals .A_t,WWNV\W
e Trans-dimensional sampling MWN\/\I\I\W -

[AL, Wong, Leong et al. (2023) MNRAS]




Millilensed gravitational waveform

o°
hi(f;00) =F(f;0L)h(f;0) # 2 lens

Lensing effect

Sum of component lensed signals arriving at the detector |[Jetected signal

F(f;01) = X;|u,|"? exp2mift; — inn;] "

magnification time delay phase shift




Parameter estimation

i MILLILENS
1. Inject overlapping ‘ 10°M,
millilensed GW signal ) \
into O3 detectors . ‘D, u,=1.2
“L7, t,= 0.005s
2. Perform full parameter ““l,
estimation 7

3. Obtain BBH source &
lensing parameters

Overlap at the detector
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Analysing GW data GW200208
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Advantages of the phenomenological approach

Unknown lens mass

e No lens model assumed - distribution
arbitrary lens configuration MN\/\/\IWW\*

e More realistic than widely ® 7 V\/\/\/\/\N\{\W
used isolated lens models J -

B
e Any number of GW \/\/\/\/\/\/\/WWW»

millisignals

Lensed GWs h; (f)




Limitations of the phenomenological approach

e Valid for lenses 2100 M,
(geometric optics approximation)

e Limited to single lens scenarios
(future work)

e No lens model - physical picture
not immediately clear
— lens mapping

M > 100 MQ

Field of lenses?
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Extracting physics from the data

Systematic biases and model confusion
challenges in gravitational-wave data analysis



How to tell if it's lensing?

Eccentric binary orbits Head-on mergers Precessing binaries
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[Chowdhury & Khlopov, 2022] [P. Schmidt et al., 2012]

[J. Calderon Bustillo et al., 2021]

Different physical effects can mimic lensing signatures in GW signals



Precessing or millilensed?

Unlensed Millilensed Millilensed Parameter
precessing nonprecessing precessing Estimation Can we correctly
g .
g and SNR o cover lensing and
“ computation orecession
H o :> parameters
gho ) .' J in the presence of
§3O~|_5 -1.0 -0.5 0.0 -1.5 -1.0 -0.5 0.0 -5 -1.0 -05 0.0 ’\‘() One Or bOth
i Time [s] Time [s] ~ Time ['s] | = effects?

If detected by LVK detectors,
can we distinguish the three types of signals?

[AL and K. Kim, PRD 110.123008 (2024)]
A. Liu 22



Analysing a lensed precessing signal

Correct recovery of lensing parameters in ~ Preference for high spins when lensing

the presence of precession neglected in the recovery model
— Nonlensed — Lensed — Prior — Injection
> — GNR 18 _ SNR 40
& — SNR 40 Iz J{
5 S 5
> — Injection =
: L -
= g
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Takeaway: Neglected lensing effects can affect spin recovery

[AL and K. Kim, PRD 110.123008 (2024)]




Science Objective:

Tests of General Relativity
with Gravitational Waves



Modifled theories of gravity - why modify at all?

Einstein's theory of General Relativity (GR)

lar m i '
v Solar system tests Quasi-stationary

v Binary pulsars > quasi-linear weak field
regime of General Relativity

v Cosmological tests

In other words, GR works when

Gravitational field weak cf. mass-energy of the system,
characteristic velocities small cf. speed of light,
gravitational field stationary w.r.t. characteristic size of the system



Modified theories of gravity - why modify at all?

Einstein’s theory of General Relativity (GR)

v/ weak gravity regions

x unexplained problems

Modified theories of gravity
v recover GR in the weak field regime
v preserve symmetries (in general)
v can differ in the strong curvature regime — black holes



How to modify GR?

Modified gravity roadmap Constrained by
I:I GW speed
r\élfasj::; e — l:| GW dispersion
General Hg nd RN [ | GW damping
Relativity bb Multi- ‘:I GW oscillations

Tensor 0 gravity
Unique theory ¢
J pv

of massless g,

Additional
Field

Break

Assumptions - Extra
dimensions
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Non-Local \
=g

[Ezquiaga & Zumalacarregui,
Front. Astron. Space Sci. (2018)]



Parameterized test of GW propagation: inspiral phasing

Ringdown
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Science Question:

Can GW millilensing be mistaken as false
positive deviations of General Relativity?



Can ignoring millilensing lead to false positive deviations
of GR?

Parameterized post-Einsteinian (ppE) framework

EppE(f) — EGR(]C) (1 -+ appEua) ¢ PrpEU

e Non-GR corrections added order-by-order at each PN term

e Our study: inspiral-only corrections to GW phase [Yunes & Pretorius, PRD (2009)]
[Yunes, Yagi & Pretorius, PRD (2016)]
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Simulated signals

BH masses Lensing effect strength
(12, 8)M_ (24, 16)M_ y =(0.3, 0.6, 0.9)
_ (small y = large lensing effect)
How does the bias depend on BBH How does the bias change with lensing
masses (signal duration)? effect?
PN orders Detectors and SNR
{-1PN, 1PN, 2PN} O4 (L1, H1, V1): 10, 30, 60
At which PN order is the bias most At what SNR is the systematic bias
prominent? significant?

[AL, R.S. Chandramouli et al., 2410.21738]



How are the parameters biased?

= Small lensing -~ Large lensing = Prior = Injection
2|24, 16)My | =" => Lensing effect builds up for longer
g, LA signals
) . ] -> Systematic bias more prominent for
< E o smaller mass system
E 41"{-’:' 1EL " :
15 20 8.0 8.5 9.0
Chirp mass M .[M ] Chirp mass M .[M |

[AL, R.S. Chandramouli et al., 2410.21738]



Should we worry? Quantifying the biases

Small masses (12, 8)M

- -|PN

0.9 0.6
Source position y

0.3

e \Weak preference for ppE model over GR in

large lensing scenario (small masses, SNR 30)

Significant SNR loss in the recovered signal:
suggests model inaccuracies, rather than actual
GR deviation (recovery model not a good fit for
the signal)

Conclusion: no strong inference of GR deviation

[AL, R.S. Chandramouli et al., 2410.21738]



Testing General Relativity
with Black Hole Ringdown



Black hole ringdown Excitation radiated as GWs

(C .\\
Perturbed black hole ﬁ \

oscillates with characteristic
frequencies

Ringdown

Ringdown remnant: stabilizes to equilibrium after merger

Damped normal modes emission (perturbation theory)




Quasinormal modes

Ringdown waveform can be described as superposition of damped sinusoids

h = Z Aémn COS(WEmnt + ¢€mn) ’ e_t/Tgmn
/mn h ﬁ
Characterized by quasinormal modes (QNMs):

(Dﬁmn = Wemn + Z/Témn

Oscillation Damping time u
frequency

In GR (2, 2, 0) is the fundamental (loudest) mode.

Extracting (wagg, To90) from GW data mmmmml> estimate the mass and spin of the final BH (Mp, xy)
N modes memm))> Tests of GR (if can be measured)




Testing GR with BH ringdown

No-hair theorem: In GR, black holes are Kerr and can be
fully characterized by their mass and spin

Womn — wér,(iz)(Mv X)

Tomn = Too) (M, X)

Deviations from Kerr:

Womn = Woe (M, x) (1 + 6wpmmn)

/mn

Ttmn = Téﬁ,}?(M, X) (1 + 5T€mn>

BBH merger as a testing ground for Kerr hypothesis



Black hole spectroscopy = Al
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GW Data QNM frequencies BH mass and spin
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[Carullo et al., PRD 99.12 (2019)]



What has been constrained so far?

Wemn = w(GR) (M7 X) (1 + &Uémn)

Imn

(GR)

Tomn = T (M, %) (1 + 0Tpmn)

2.5 ® GWTC-3
= = GWTC-2
‘7 2.0
Q 1
< S !
= 1.5+ - i
g 1.0 blg :
S & : |
A 05' /QB il E i

OO T p T /Q. Ib" I I I Ib" T - Iby | |b& T .

-1.0 —0.5 0;0\ 0.5 1.0 N /Q‘} R F Q) /Q?: N S ¥ P
5f221 GR 5f1 57‘1

[Abbott et al. (2021), 2112.06861]



More exciting physics soon
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https://observing.docs.ligo.org/plan/

More detections from higher redshifts and wider frequencies predicted in the
coming years
A. Liu



Summary

e GWSs can be used to probe dark matter via GW lensing

e No confident lensed GWs found to date, ongoing search in O4 run

e GWs provide a unique laboratory to test gravity, e.g. with parameterised
inspiral tests and ringdown tests

e No compelling evidence for violations of gravity found to date

e New observations from current and future detectors will reveal more
signals with higher SNRs from a wide range of currently inaccessible
sources

Thank you!
T
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, Singular Isothermal Sphere (SIS) lens
Selecting lens models

© Sampling
> D15 Analytical
(:ta) < (y, Mr.) %
2 0.010-
Phenom. SIS model %
parameters parameters 3
5 0.005 -
(1(y), ta(y, Mrz))
0.000
200 300 400 500

Redshifted lens mass M, [Mg |

We can map results to different lens models to select the most favourable one



Probing small-scale structures

Warm dark matter (WDM): Cold dark matter (CDM):
e Light, fast particles e Massive, slow particles
e Smoothens small structures e Forms small structures, e.g. small
“clump-smoother” DM halos — “clump-builder”

Problem: they do not agree at small scales!

¥

Small-scale DM structures as a ground for testing DM models



Precessing black hole binaries

credit: Vijay Varma
Spin-induced orbital precession leads to GW amplitude and phase modulations


https://docs.google.com/file/d/1SgW3GLxjT8ildiS59ol1cmTnHuhkZWAV/preview

Black hole spectroscopy

h :/i\me—inm—t/nm

‘m
itiol q excitation spin-weighted
multiple modes amplitudes spherical harmonics
of vibration

(wﬁma TEm) One mode - BH mass and spin (Mf, af)

N modes ‘ Tests of GR (if can be measured)




