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Introduction

♠ Given manifold M, there are two Hilbert spaces with
diffeomorphism invariant inner products:

the Hilbert space H1/2 of complex half-densities on M;

L2(M, dµc), where dµc is the counting measure on M.

♠ I will present two Hilbert spaces H and K such that

each space will be constructed over the set of all metrics of
fixed but arbitrary signature, defined on M;

the inner product on each Hilbert space will be
diffeomorphism invariant;

H will be a generalization of H1/2, and K a generalization of
L2(M, dµc).
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Potential application

♠ The configuration or “position” part of the ADM phase space is
the set of all Riemannian metrics on a three-dimensional manifold.

♠ Therefore one might want to try to apply the Hilbert spaces H
and K obtained in the case of signature (3, 0), to canonical
quantization of the ADM formalism—each space may possibly
serve as a kinematical Hilbert space for the formalism.

♠ Diffeomorphism invariance of the inner products may be helpful
in taking into account the vector constraint at the quantum level.

♠ Warning: neither H nor K is an L2 space over the set of metrics.
The application is not straightforward and further research is
needed...
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Idea of construction

♠ To construct H and K, fix a manifold M and a signature (p, p′)
such that p + p′ = dimM.

♠ Let Q(M) be the set of all metrics of signature (p, p′) on M.
Construction of a diff. invariant measure on Q(M) is not easy...

♠ Γx := the set of all scalar products of signature (p, p′) on TxM.

♠ Suppose that for every x we have a measure dµx on Γx . Then
we could try to merge all Hilbert spaces

Hx := L2(Γx , dµx)

into a “large” one over Q(M).

♠ The measure field x 7→ dµx should be diffeomorphism invariant.
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Diffeomorphism invariant measure field

♠ Let θ ∈ Diff(M). If x1 = θ(x2), then

θt : Tx2M→ Tx1M, θt∗ : Γx1 → Γx2

and (θt∗)?dµx1 is a measure on Γx2 .

♠ The field x 7→ dµx is diff. invariant if

(θt∗)?dµθ(x) = dµx .

♠ If θ(x0) = x0, then θt ∈ GL(Tx0M) and

(θt∗)?dµx0 = dµx0 .

♠ If x 7→ dµx is diff. invariant, then each dµx must be invariant
w.r.t. the action of GL(TxM). Does such a measure exist on Γx?
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Invariant measures on Γx

♠ Γx with the action of GL(TxM) is a homogeneous space.

♠ There exists a theorem on existence and uniqueness of
quasi-invariant measures on homogeneous spaces. Its application
to Γx shows that there exists an invariant (regular Borel) measure
on Γx , which is unique up to a positive multiplicative constant.

♠ If (γij) are components of scalar products in Γx , then

Q := γ ikγjldγij ⊗ dγkl

is an invariant metric on Γx .

♠ (γI ) ≡ (γij)i≤j are global coordinates on Γx and

dµQ =
√
| det QIJ | dγ1dγ2 . . . dγdim Γx

is an invariant measure on Γx .
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Diffeomorphism invariant measure field
♠ Let lxx ′ : Tx ′M→ TxM denotes a linear isomorphism and dµx0

be an invariant measure on Γx0 . If

x 7→ dµx := (l∗x0x)? dµx0 , (1)

then

for every x , dµx is an inv. measure on Γx , independent of lx0x ;

for every two points x , x ′ ∈M and for every lxx ′ ,

dµx ′ = (l∗xx ′)? dµx .

♠ The field (1) is diffeomorphism invariant.

♠ For any two fields (1) there exists c > 0 such that:

∀ x ∈M d µ̌x = c dµx .
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How to merge the spaces {Hx}?

♠ Let {Hx}x∈M be defined by a diff. inv. measure field (1), and
let 〈·|·〉x denote the inner product on Hx .

♠ If Ψ,Ψ′ are sections of the bundle-like set
⋃

x∈MHx , then

x 7→ 〈Ψ(x)|Ψ′(x)〉x (2)

is a complex function on M, which, once integrated over M,
defines an inner product on a set of such sections.

♠ To get a diffeomorphism invariant inner product one can

use the counting measure on M;

“densitize” the function (2).
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Half-densities valued in a Hilbert space

♠ Let V be a real vector space of finite dimension, and α ∈ R.

♠ α-density over V valued in a vector space W is a map

w̃ : { all bases of V } →W ,

such that
w̃(Λi

jei ) = | det(Λi
j)|α w̃(ei ).

♠ If w̃ and w̃ ′ are half-densities valued in a Hilbert space W with
an inner product 〈·|·〉, then

(ei ) 7→ (w̃ |w̃ ′)(ei ) := 〈w̃(ei )|w̃ ′(ei )〉 ∈ C

is a complex density over V (a one-density valued in C).

♠ (w̃ , w̃ ′) 7→ (w̃ |w̃ ′) is then a density product.
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Hilbert half-densities on M
♠ Let H̃x be the set of all half-densities over TxM valued in Hx ,
equipped with the density product (·|·)x .

♠ A section of the bundle-like set
⋃

x∈M H̃x ≡ Hilbert half-density.

♠ If Ψ̃, Ψ̃′ are Hilbert half-densities, then

x 7→ (Ψ̃|Ψ̃′)(x) := (Ψ̃(x)|Ψ̃′(x))x

is a complex density on M, and

(Ψ̃, Ψ̃′) 7→ 〈Ψ̃|Ψ̃′〉 :=

∫
M

(Ψ̃|Ψ̃′) ∈ C

is an inner product, provided the integral exists.

♠ Half-densities of finite norm ||Ψ̃|| :=
√
〈Ψ̃|Ψ̃〉??? Too

complicated to prove that they form a Hilbert space..
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Regular Hilbert half-densities
♠ When (Ψ̃|Ψ̃′) is continuous and compactly supported?

♠ Suppose that (U, ϕ) is a local chart on M, (x i ) the
corresponding coordinate system and γ ∈ Γx . Given Hilbert
half-density Ψ̃,

Ψ̃(x) ∈ H̃x , Ψ̃(x , ∂x i ) ∈ Hx , Ψ̃(x , ∂x i , γ) ∈ C.

♠ Coordinate representation of Ψ̃:

(x i , γij) 7→ ψ(x i , γij) := Ψ̃(ϕ−1(x i ), ∂x i , γij dx i ⊗ dx j)

♠ Ψ̃ is continuous if for every local chart on M its coordinate
representation is continuous.

♠ Continuity and compact M-support of Ψ̃, Ψ̃′ is not sufficient
yet...
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(γij) 7→ ψ(x i )(γij) := ψ(x i , γij).

♠ We say that Ψ̃ is of compact and slowly changing Γ-support
with respect to the chart (U, ϕ) if⋃

(x i )∈ϕ(U)

suppψ(x i )

is contained in a compact set.

♠ We say that Ψ̃ is of compact and slowly changing Γ-support, if
it is such with respect to charts, which altogether cover the
manifold M.
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Hilbert space H1

♠ Hc
1 := the set of all continuous H. half-densities (i ) of compact

and slowly changing Γ-support and (ii ) of compact M-support.

♠ If Ψ̃, Ψ̃′ ∈ Hc
1, then the complex density (Ψ̃|Ψ̃′) is continuous

and compactly supported on M:

(Ψ̃|Ψ̃′)(ϕ−1(x i ), ∂x i ) =

∫
Γx

Ψ̃(ϕ−1(x i ), ∂x i )Ψ̃′(ϕ−1(x i ), ∂x i ) dµx .

♠ Hc
1 equipped with 〈·|·〉 is a pre-Hilbert space. The completion

H1 := Hc
1

is then a Hilbert space.

♠ H1 is a generalization of the Hilbert space H1/2 of complex
half-densities on M, but it is not yet the generalization H of H1/2

announced in the introduction.
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Tensor products of {Hx}

♠ Given metric q on M, its values qx and qx ′ at distinct points
x , x ′ ∈M are independent.

♠ Thus Hx and Hx ′ represent independent quantum d.o.f.
Therefore a physically acceptable Hilbert space should contain
tensor products of {Hx}x∈M.

♠ But H1 does not contain any tensor product of {Hx}x∈M and,
consequently, H1 alone cannot be used for quantization.

♠ So there is a need for an extension of the construction.
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Hilbert space H
♠ Let MN be the set of all N-element subsets of M. MN is a
manifold locally diffeomorphic to MN .

♠ The same measure field x 7→ dµx allows to define for every
y = {x1, . . . , xN} ∈ MN a Hilbert space

Hy
∼= Hx1 ⊗ . . .⊗ HxN .

♠ Now it is (almost) straightforward to repeat the procedure
which led to H1—this results is a Hilbert space HN built of Hilbert
half-densities on MN .

♠ The generalization of H1/2 announced in the introduction:

H :=
∞⊕

N=1

HN .
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Action of Diff(M) on H1

♠ Let θ ∈ Diff(M). If x ′ = θ(x), then

θt : TxM→ Tx ′M, θt∗ : Γx ′ → Γx , θt∗? : Hx → Hx ′ .

♠ Given Ψ̃ ∈ H1 and a basis (ei ) of TxM, a pull-back

(θ∗Ψ̃)(x , ei ) := (θ−1)t∗?Ψ̃
(
θ(x), θtei

)
.

♠ Owing to diff. invariance of the field x 7→ dµx , the map

Ψ̃→ θ∗Ψ̃ ≡ U1(θ−1)Ψ̃

is unitary on H1 and θ 7→ U1(θ) is a unitary representation of
Diff(M).
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Action of Diff(M) on H

♠ Given θ ∈ Diff(M),

y ≡ {x1, . . . , xN} 7→ Θ(y) := {θ(x1), . . . , θ(xN)}

is a diffeomorphism on MN .

♠ The pull-back
Ψ̃ 7→ Θ∗Ψ̃ ≡ UN(θ−1)Ψ̃

is a unitary map on HN and θ 7→ UN(θ) is a unitary representation.

♠ Consequently,

θ 7→
∞⊕

N=1

UN(θ)

is a unitary representation of Diff(M) on H.
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Uniqueness of H

♠ Suppose that a Hilbert space Ȟ is obtained from a diff. invariant
measure field x → d µ̌x by the same way.

♠ Since there exists c > 0 such that for every x , d µ̌x = c dµx ,
then

HN 3 Ψ̃ 7→ uN(Ψ̃) :=
Ψ̃√
cN
∈ ȞN

is a distinguished unitary map.

♠ Therefore
∞⊕

N=1

uN : H→ Ȟ

is also a distinguished unitary map.

♠ Thus H is unique up to distinguished isomorphisms.
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♠ Suppose that a Hilbert space Ȟ is obtained from a diff. invariant
measure field x → d µ̌x by the same way.

♠ Since there exists c > 0 such that for every x , d µ̌x = c dµx ,
then

HN 3 Ψ̃ 7→ uN(Ψ̃) :=
Ψ̃√
cN
∈ ȞN
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Hilbert space K
♠ Let K1 be a set of sections of the bundle-like set

⋃
x∈MHx :

Ψ ∈ K1 iff ∫
M
〈Ψ(x)|Ψ(x)〉x dµc <∞,

where 〈·|·〉x is the inner product on Hx .

♠ K1 equipped with the inner product

〈Ψ|Ψ′〉 :=

∫
M
〈Ψ(x)|Ψ′(x)〉x dµc

is a Hilbert space.

♠ Similarly, a Hilbert space KN is built of sections of
⋃

y∈MN
Hy ,

which are “square integrable” w.r.t. the counting measure on MN .

♠ The generalization of L2(M, dµc) announced earlier:

K :=
∞⊕

N=1

KN .
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Properties of H and K

♠ On K there exists a unitary representation of Diff(M).

♠ K is unique up to distinguished isomorphisms.

♠ Every Hilbert space K is non-separable, while the Hilbert spaces
{H} built over M = R are separable.

♠ Conjecture: every H is separable.

♠ Open question: is H or K constructed for signature (3, 0)
applicable to quantization of the ADM formalism?

♠ I managed to define on K a representation of the so-called affine
commutation relations for the ADM formalism. Unfortunately, this
representation turned out to be highly reducible.
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