

Hilbert spaces built over metrics of fixed signature

Andrzej Okołów

Institute of Theoretical Physics, University of Warsaw

Seminar of the Chair of Theory of Relativity and Gravitation,
December 10, 2021

Introduction

♠ Given manifold \mathcal{M} , there are two Hilbert spaces with diffeomorphism invariant inner products:

- the Hilbert space $\mathcal{H}^{1/2}$ of complex half-densities on \mathcal{M} ;
- $L^2(\mathcal{M}, d\mu_c)$, where $d\mu_c$ is the counting measure on \mathcal{M} .

Introduction

♠ Given manifold \mathcal{M} , there are two Hilbert spaces with diffeomorphism invariant inner products:

- the Hilbert space $\mathcal{H}^{1/2}$ of complex half-densities on \mathcal{M} ;
- $L^2(\mathcal{M}, d\mu_c)$, where $d\mu_c$ is the counting measure on \mathcal{M} .

♠ I will present two Hilbert spaces \mathfrak{H} and \mathfrak{K} such that

- each space will be constructed over the set of all metrics of fixed but arbitrary signature, defined on \mathcal{M} ;
- the inner product on each Hilbert space will be diffeomorphism invariant;
- \mathfrak{H} will be a generalization of $\mathcal{H}^{1/2}$, and \mathfrak{K} a generalization of $L^2(\mathcal{M}, d\mu_c)$.

Potential application

- ♠ The configuration or “position” part of the ADM phase space is the set of all Riemannian metrics on a three-dimensional manifold.

Potential application

- ♠ The configuration or “position” part of the ADM phase space is the set of all Riemannian metrics on a three-dimensional manifold.
- ♠ Therefore one might want to try to apply the Hilbert spaces \mathcal{H} and \mathcal{K} obtained in the case of signature $(3, 0)$, to canonical quantization of the ADM formalism—each space may possibly serve as a kinematical Hilbert space for the formalism.

Potential application

- ♠ The configuration or “position” part of the ADM phase space is the set of all Riemannian metrics on a three-dimensional manifold.
- ♠ Therefore one might want to try to apply the Hilbert spaces \mathcal{H} and \mathcal{K} obtained in the case of signature $(3, 0)$, to canonical quantization of the ADM formalism—each space may possibly serve as a kinematical Hilbert space for the formalism.
- ♠ Diffeomorphism invariance of the inner products may be helpful in taking into account the vector constraint at the quantum level.

Potential application

- ♠ The configuration or “position” part of the ADM phase space is the set of all Riemannian metrics on a three-dimensional manifold.
- ♠ Therefore one might want to try to apply the Hilbert spaces \mathfrak{H} and \mathfrak{K} obtained in the case of signature $(3, 0)$, to canonical quantization of the ADM formalism—each space may possibly serve as a kinematical Hilbert space for the formalism.
- ♠ Diffeomorphism invariance of the inner products may be helpful in taking into account the vector constraint at the quantum level.
- ♠ Warning: neither \mathfrak{H} nor \mathfrak{K} is an L^2 space over the set of metrics. The application is not straightforward and further research is needed...

Idea of construction

- ♠ To construct \mathfrak{H} and \mathfrak{K} , fix a manifold \mathcal{M} and a signature (p, p') such that $p + p' = \dim \mathcal{M}$.

Idea of construction

- ♠ To construct \mathfrak{H} and \mathfrak{K} , fix a manifold \mathcal{M} and a signature (p, p') such that $p + p' = \dim \mathcal{M}$.
- ♠ Let $\mathcal{Q}(\mathcal{M})$ be the set of all metrics of signature (p, p') on \mathcal{M} . Construction of a diff. invariant measure on $\mathcal{Q}(\mathcal{M})$ is not easy...

Idea of construction

- ♠ To construct \mathfrak{H} and \mathfrak{K} , fix a manifold \mathcal{M} and a signature (p, p') such that $p + p' = \dim \mathcal{M}$.
- ♠ Let $\mathcal{Q}(\mathcal{M})$ be the set of all metrics of signature (p, p') on \mathcal{M} . Construction of a diff. invariant measure on $\mathcal{Q}(\mathcal{M})$ is not easy...
- ♠ $\Gamma_x :=$ the set of all scalar products of signature (p, p') on $T_x \mathcal{M}$.

Idea of construction

- ♠ To construct \mathfrak{H} and \mathfrak{K} , fix a manifold \mathcal{M} and a signature (p, p') such that $p + p' = \dim \mathcal{M}$.
- ♠ Let $\mathcal{Q}(\mathcal{M})$ be the set of all metrics of signature (p, p') on \mathcal{M} . Construction of a diff. invariant measure on $\mathcal{Q}(\mathcal{M})$ is not easy...
- ♠ $\Gamma_x :=$ the set of all scalar products of signature (p, p') on $T_x \mathcal{M}$.
- ♠ Suppose that for every x we have a measure $d\mu_x$ on Γ_x . Then we could try to merge all Hilbert spaces

$$H_x := L^2(\Gamma_x, d\mu_x)$$

into a “large” one over $\mathcal{Q}(\mathcal{M})$.

Idea of construction

- ♠ To construct \mathfrak{H} and \mathfrak{K} , fix a manifold \mathcal{M} and a signature (p, p') such that $p + p' = \dim \mathcal{M}$.
- ♠ Let $\mathcal{Q}(\mathcal{M})$ be the set of all metrics of signature (p, p') on \mathcal{M} . Construction of a diff. invariant measure on $\mathcal{Q}(\mathcal{M})$ is not easy...
- ♠ $\Gamma_x :=$ the set of all scalar products of signature (p, p') on $T_x \mathcal{M}$.
- ♠ Suppose that for every x we have a measure $d\mu_x$ on Γ_x . Then we could try to merge all Hilbert spaces

$$H_x := L^2(\Gamma_x, d\mu_x)$$

into a “large” one over $\mathcal{Q}(\mathcal{M})$.

- ♠ The measure field $x \mapsto d\mu_x$ should be diffeomorphism invariant.

Diffeomorphism invariant measure field

♠ Let $\theta \in \text{Diff}(\mathcal{M})$. If $x_1 = \theta(x_2)$, then

$$\theta^t : T_{x_2} \mathcal{M} \rightarrow T_{x_1} \mathcal{M}, \quad \theta^{t*} : \Gamma_{x_1} \rightarrow \Gamma_{x_2}$$

and $(\theta^{t*})_* d\mu_{x_1}$ is a measure on Γ_{x_2} .

Diffeomorphism invariant measure field

♠ Let $\theta \in \text{Diff}(\mathcal{M})$. If $x_1 = \theta(x_2)$, then

$$\theta^t : T_{x_2} \mathcal{M} \rightarrow T_{x_1} \mathcal{M}, \quad \theta^{t*} : \Gamma_{x_1} \rightarrow \Gamma_{x_2}$$

and $(\theta^{t*})_* d\mu_{x_1}$ is a measure on Γ_{x_2} .

♠ The field $x \mapsto d\mu_x$ is diff. invariant if

$$(\theta^{t*})_* d\mu_{\theta(x)} = d\mu_x.$$

Diffeomorphism invariant measure field

♠ Let $\theta \in \text{Diff}(\mathcal{M})$. If $x_1 = \theta(x_2)$, then

$$\theta^t : T_{x_2} \mathcal{M} \rightarrow T_{x_1} \mathcal{M}, \quad \theta^{t*} : \Gamma_{x_1} \rightarrow \Gamma_{x_2}$$

and $(\theta^{t*})_* d\mu_{x_1}$ is a measure on Γ_{x_2} .

♠ The field $x \mapsto d\mu_x$ is diff. invariant if

$$(\theta^{t*})_* d\mu_{\theta(x)} = d\mu_x.$$

♠ If $\theta(x_0) = x_0$, then $\theta^t \in GL(T_{x_0} \mathcal{M})$ and

$$(\theta^{t*})_* d\mu_{x_0} = d\mu_{x_0}.$$

Diffeomorphism invariant measure field

♠ Let $\theta \in \text{Diff}(\mathcal{M})$. If $x_1 = \theta(x_2)$, then

$$\theta^t : T_{x_2} \mathcal{M} \rightarrow T_{x_1} \mathcal{M}, \quad \theta^{t*} : \Gamma_{x_1} \rightarrow \Gamma_{x_2}$$

and $(\theta^{t*})_* d\mu_{x_1}$ is a measure on Γ_{x_2} .

♠ The field $x \mapsto d\mu_x$ is diff. invariant if

$$(\theta^{t*})_* d\mu_{\theta(x)} = d\mu_x.$$

♠ If $\theta(x_0) = x_0$, then $\theta^t \in GL(T_{x_0} \mathcal{M})$ and

$$(\theta^{t*})_* d\mu_{x_0} = d\mu_{x_0}.$$

♠ If $x \mapsto d\mu_x$ is diff. invariant, then each $d\mu_x$ must be invariant w.r.t. the action of $GL(T_x \mathcal{M})$. Does such a measure exist on Γ_x ?

Invariant measures on Γ_x

♠ Γ_x with the action of $GL(T_x\mathcal{M})$ is a *homogeneous space*.

Invariant measures on Γ_x

- ♠ Γ_x with the action of $GL(T_x M)$ is a *homogeneous space*.
- ♠ There exists a theorem on existence and uniqueness of quasi-invariant measures on homogeneous spaces. Its application to Γ_x shows that there exists an invariant (regular Borel) measure on Γ_x , which is unique up to a positive multiplicative constant.

Invariant measures on Γ_x

- ♠ Γ_x with the action of $GL(T_x M)$ is a *homogeneous space*.
- ♠ There exists a theorem on existence and uniqueness of quasi-invariant measures on homogeneous spaces. Its application to Γ_x shows that there exists an invariant (regular Borel) measure on Γ_x , which is unique up to a positive multiplicative constant.
- ♠ If (γ_{ij}) are components of scalar products in Γ_x , then

$$Q := \gamma^{ik} \gamma^{jl} d\gamma_{ij} \otimes d\gamma_{kl}$$

is an invariant metric on Γ_x .

Invariant measures on Γ_x

- ♠ Γ_x with the action of $GL(T_x \mathcal{M})$ is a *homogeneous space*.
- ♠ There exists a theorem on existence and uniqueness of quasi-invariant measures on homogeneous spaces. Its application to Γ_x shows that there exists an invariant (regular Borel) measure on Γ_x , which is unique up to a positive multiplicative constant.
- ♠ If (γ_{ij}) are components of scalar products in Γ_x , then

$$Q := \gamma^{ik} \gamma^{jl} d\gamma_{ij} \otimes d\gamma_{kl}$$

is an invariant metric on Γ_x .

- ♠ $(\gamma^I) \equiv (\gamma_{ij})_{i \leq j}$ are global coordinates on Γ_x and

$$d\mu_Q = \sqrt{|\det Q_{IJ}|} d\gamma^1 d\gamma^2 \dots d\gamma^{\dim \Gamma_x}$$

is an invariant measure on Γ_x .

Diffeomorphism invariant measure field

♠ Let $I_{xx'} : T_{x'} \mathcal{M} \rightarrow T_x \mathcal{M}$ denotes a linear isomorphism and $d\mu_{x_0}$ be an invariant measure on Γ_{x_0} . If

$$x \mapsto d\mu_x := (I_{x_0 x}^*)_* d\mu_{x_0}, \quad (1)$$

then

- for every x , $d\mu_x$ is an inv. measure on Γ_x , independent of $I_{x_0 x}$;
- for every two points $x, x' \in \mathcal{M}$ and for every $I_{xx'}$,

$$d\mu_{x'} = (I_{xx'}^*)_* d\mu_x.$$

Diffeomorphism invariant measure field

♠ Let $I_{xx'} : T_{x'} \mathcal{M} \rightarrow T_x \mathcal{M}$ denotes a linear isomorphism and $d\mu_{x_0}$ be an invariant measure on Γ_{x_0} . If

$$x \mapsto d\mu_x := (I_{x_0 x}^*)_* d\mu_{x_0}, \quad (1)$$

then

- for every x , $d\mu_x$ is an inv. measure on Γ_x , independent of $I_{x_0 x}$;
- for every two points $x, x' \in \mathcal{M}$ and for every $I_{xx'}$,

$$d\mu_{x'} = (I_{xx'}^*)_* d\mu_x.$$

♠ The field (1) is diffeomorphism invariant.

Diffeomorphism invariant measure field

♠ Let $I_{xx'} : T_{x'} \mathcal{M} \rightarrow T_x \mathcal{M}$ denotes a linear isomorphism and $d\mu_{x_0}$ be an invariant measure on Γ_{x_0} . If

$$x \mapsto d\mu_x := (I_{x_0 x}^*)_* d\mu_{x_0}, \quad (1)$$

then

- for every x , $d\mu_x$ is an inv. measure on Γ_x , independent of $I_{x_0 x}$;
- for every two points $x, x' \in \mathcal{M}$ and for every $I_{xx'}$,

$$d\mu_{x'} = (I_{xx'}^*)_* d\mu_x.$$

♠ The field (1) is diffeomorphism invariant.

♠ For any two fields (1) there exists $c > 0$ such that:

$$\forall x \in \mathcal{M} \quad d\check{\mu}_x = c d\mu_x.$$

How to merge the spaces $\{H_x\}$?

- ♠ Let $\{H_x\}_{x \in \mathcal{M}}$ be defined by a diff. inv. measure field (1), and let $\langle \cdot | \cdot \rangle_x$ denote the inner product on H_x .

How to merge the spaces $\{H_x\}$?

- ♠ Let $\{H_x\}_{x \in \mathcal{M}}$ be defined by a diff. inv. measure field (1), and let $\langle \cdot | \cdot \rangle_x$ denote the inner product on H_x .
- ♠ If Ψ, Ψ' are sections of the bundle-like set $\bigcup_{x \in \mathcal{M}} H_x$, then

$$x \mapsto \langle \Psi(x) | \Psi'(x) \rangle_x \tag{2}$$

is a complex function on \mathcal{M} , which, once integrated over \mathcal{M} , defines an inner product on a set of such sections.

How to merge the spaces $\{H_x\}$?

- ♠ Let $\{H_x\}_{x \in \mathcal{M}}$ be defined by a diff. inv. measure field (1), and let $\langle \cdot | \cdot \rangle_x$ denote the inner product on H_x .
- ♠ If Ψ, Ψ' are sections of the bundle-like set $\bigcup_{x \in \mathcal{M}} H_x$, then

$$x \mapsto \langle \Psi(x) | \Psi'(x) \rangle_x \tag{2}$$

is a complex function on \mathcal{M} , which, once integrated over \mathcal{M} , defines an inner product on a set of such sections.

- ♠ To get a diffeomorphism invariant inner product one can
 - use the counting measure on \mathcal{M} ;
 - “densitize” the function (2).

Half-densities valued in a Hilbert space

♠ Let V be a real vector space of finite dimension, and $\alpha \in \mathbb{R}$.

Half-densities valued in a Hilbert space

- ♠ Let V be a real vector space of finite dimension, and $\alpha \in \mathbb{R}$.
- ♠ α -density over V valued in a vector space W is a map

$$\tilde{w} : \{ \text{ all bases of } V \} \rightarrow W,$$

such that

$$\tilde{w}(\Lambda^i_j e_i) = |\det(\Lambda^i_j)|^\alpha \tilde{w}(e_i).$$

Half-densities valued in a Hilbert space

- ♠ Let V be a real vector space of finite dimension, and $\alpha \in \mathbb{R}$.
- ♠ α -density over V valued in a vector space W is a map

$$\tilde{w} : \{ \text{all bases of } V \} \rightarrow W,$$

such that

$$\tilde{w}(\Lambda^i{}_j e_i) = |\det(\Lambda^i{}_j)|^\alpha \tilde{w}(e_i).$$

- ♠ If \tilde{w} and \tilde{w}' are half-densities valued in a Hilbert space W with an inner product $\langle \cdot | \cdot \rangle$, then

$$(e_i) \mapsto (\tilde{w} | \tilde{w}')(e_i) := \langle \tilde{w}(e_i) | \tilde{w}'(e_i) \rangle \in \mathbb{C}$$

is a complex density over V (a one-density valued in \mathbb{C}).

Half-densities valued in a Hilbert space

- ♠ Let V be a real vector space of finite dimension, and $\alpha \in \mathbb{R}$.
- ♠ α -density over V valued in a vector space W is a map

$$\tilde{w} : \{ \text{all bases of } V \} \rightarrow W,$$

such that

$$\tilde{w}(\Lambda^i{}_j e_i) = |\det(\Lambda^i{}_j)|^\alpha \tilde{w}(e_i).$$

- ♠ If \tilde{w} and \tilde{w}' are half-densities valued in a Hilbert space W with an inner product $\langle \cdot | \cdot \rangle$, then

$$(e_i) \mapsto (\tilde{w}|\tilde{w}')(e_i) := \langle \tilde{w}(e_i) | \tilde{w}'(e_i) \rangle \in \mathbb{C}$$

is a complex density over V (a one-density valued in \mathbb{C}).

- ♠ $(\tilde{w}, \tilde{w}') \mapsto (\tilde{w}|\tilde{w}')$ is then a *density product*.

Hilbert half-densities on \mathcal{M}

- ♠ Let \tilde{H}_x be the set of all half-densities over $T_x\mathcal{M}$ valued in H_x , equipped with the density product $(\cdot|\cdot)_x$.

Hilbert half-densities on \mathcal{M}

- ♠ Let \tilde{H}_x be the set of all half-densities over $T_x\mathcal{M}$ valued in H_x , equipped with the density product $(\cdot|\cdot)_x$.
- ♠ A section of the bundle-like set $\bigcup_{x \in \mathcal{M}} \tilde{H}_x \equiv$ Hilbert half-density.

Hilbert half-densities on \mathcal{M}

- ♠ Let \tilde{H}_x be the set of all half-densities over $T_x\mathcal{M}$ valued in H_x , equipped with the density product $(\cdot|\cdot)_x$.
- ♠ A section of the bundle-like set $\bigcup_{x \in \mathcal{M}} \tilde{H}_x \equiv$ Hilbert half-density.
- ♠ If $\tilde{\Psi}, \tilde{\Psi}'$ are Hilbert half-densities, then

$$x \mapsto (\tilde{\Psi}|\tilde{\Psi}')(x) := (\tilde{\Psi}(x)|\tilde{\Psi}'(x))_x$$

is a complex density on \mathcal{M} ,

Hilbert half-densities on \mathcal{M}

- ♠ Let \tilde{H}_x be the set of all half-densities over $T_x\mathcal{M}$ valued in H_x , equipped with the density product $(\cdot|\cdot)_x$.
- ♠ A section of the bundle-like set $\bigcup_{x \in \mathcal{M}} \tilde{H}_x \equiv$ Hilbert half-density.
- ♠ If $\tilde{\Psi}, \tilde{\Psi}'$ are Hilbert half-densities, then

$$x \mapsto (\tilde{\Psi}|\tilde{\Psi}')(x) := (\tilde{\Psi}(x)|\tilde{\Psi}'(x))_x$$

is a complex density on \mathcal{M} , and

$$(\tilde{\Psi}, \tilde{\Psi}') \mapsto \langle \tilde{\Psi} | \tilde{\Psi}' \rangle := \int_{\mathcal{M}} (\tilde{\Psi} | \tilde{\Psi}') \in \mathbb{C}$$

is an inner product, provided the integral exists.

Hilbert half-densities on \mathcal{M}

- ♠ Let \tilde{H}_x be the set of all half-densities over $T_x\mathcal{M}$ valued in H_x , equipped with the density product $(\cdot|\cdot)_x$.
- ♠ A section of the bundle-like set $\bigcup_{x \in \mathcal{M}} \tilde{H}_x \equiv \text{Hilbert half-density}$.
- ♠ If $\tilde{\Psi}, \tilde{\Psi}'$ are Hilbert half-densities, then

$$x \mapsto (\tilde{\Psi}|\tilde{\Psi}')(x) := (\tilde{\Psi}(x)|\tilde{\Psi}'(x))_x$$

is a complex density on \mathcal{M} , and

$$(\tilde{\Psi}, \tilde{\Psi}') \mapsto \langle \tilde{\Psi} | \tilde{\Psi}' \rangle := \int_{\mathcal{M}} (\tilde{\Psi} | \tilde{\Psi}') \in \mathbb{C}$$

is an inner product, provided the integral exists.

- ♠ Half-densities of finite norm $\|\tilde{\Psi}\| := \sqrt{\langle \tilde{\Psi} | \tilde{\Psi} \rangle}$??? Too complicated to prove that they form a Hilbert space..

Regular Hilbert half-densities

- ♠ When $(\tilde{\Psi}|\tilde{\Psi}')$ is continuous and compactly supported?

Regular Hilbert half-densities

- ♠ When $(\tilde{\Psi}|\tilde{\Psi}')$ is continuous and compactly supported?
- ♠ Suppose that (U, φ) is a local chart on \mathcal{M} , (x^i) the corresponding coordinate system and $\gamma \in \Gamma_x$. Given Hilbert half-density $\tilde{\Psi}$,

$$\tilde{\Psi}(x) \in \tilde{H}_x, \quad \tilde{\Psi}(x, \partial_{x^i}) \in H_x, \quad \tilde{\Psi}(x, \partial_{x^i}, \gamma) \in \mathbb{C}.$$

Regular Hilbert half-densities

- ♠ When $(\tilde{\Psi}|\tilde{\Psi}')$ is continuous and compactly supported?
- ♠ Suppose that (U, φ) is a local chart on \mathcal{M} , (x^i) the corresponding coordinate system and $\gamma \in \Gamma_x$. Given Hilbert half-density $\tilde{\Psi}$,

$$\tilde{\Psi}(x) \in \tilde{H}_x, \quad \tilde{\Psi}(x, \partial_{x^i}) \in H_x, \quad \tilde{\Psi}(x, \partial_{x^i}, \gamma) \in \mathbb{C}.$$

- ♠ Coordinate representation of $\tilde{\Psi}$:

$$(x^i, \gamma_{ij}) \mapsto \psi(x^i, \gamma_{ij}) := \tilde{\Psi}(\varphi^{-1}(x^i), \partial_{x^i}, \gamma_{ij} dx^i \otimes dx^j)$$

Regular Hilbert half-densities

- ♠ When $(\tilde{\Psi}|\tilde{\Psi}')$ is continuous and compactly supported?
- ♠ Suppose that (U, φ) is a local chart on \mathcal{M} , (x^i) the corresponding coordinate system and $\gamma \in \Gamma_x$. Given Hilbert half-density $\tilde{\Psi}$,

$$\tilde{\Psi}(x) \in \tilde{H}_x, \quad \tilde{\Psi}(x, \partial_{x^i}) \in H_x, \quad \tilde{\Psi}(x, \partial_{x^i}, \gamma) \in \mathbb{C}.$$

- ♠ Coordinate representation of $\tilde{\Psi}$:

$$(x^i, \gamma_{ij}) \mapsto \psi(x^i, \gamma_{ij}) := \tilde{\Psi}(\varphi^{-1}(x^i), \partial_{x^i}, \gamma_{ij} dx^i \otimes dx^j)$$

- ♠ $\tilde{\Psi}$ is *continuous* if for every local chart on \mathcal{M} its coordinate representation is continuous.

Regular Hilbert half-densities

- ♠ When $(\tilde{\Psi}|\tilde{\Psi}')$ is continuous and compactly supported?
- ♠ Suppose that (U, φ) is a local chart on \mathcal{M} , (x^i) the corresponding coordinate system and $\gamma \in \Gamma_x$. Given Hilbert half-density $\tilde{\Psi}$,

$$\tilde{\Psi}(x) \in \tilde{H}_x, \quad \tilde{\Psi}(x, \partial_{x^i}) \in H_x, \quad \tilde{\Psi}(x, \partial_{x^i}, \gamma) \in \mathbb{C}.$$

- ♠ Coordinate representation of $\tilde{\Psi}$:

$$(x^i, \gamma_{ij}) \mapsto \psi(x^i, \gamma_{ij}) := \tilde{\Psi}(\varphi^{-1}(x^i), \partial_{x^i}, \gamma_{ij} dx^i \otimes dx^j)$$

- ♠ $\tilde{\Psi}$ is *continuous* if for every local chart on \mathcal{M} its coordinate representation is continuous.

- ♠ Continuity and compact \mathcal{M} -support of $\tilde{\Psi}, \tilde{\Psi}'$ is not sufficient yet...

Regular Hilbert half-densities

♠ Fix a continuous Hilbert half-density $\tilde{\Psi}$. Its coordinate representation ψ given by a chart (U, φ) , defines a function

$$(\gamma_{ij}) \mapsto \psi_{(x^i)}(\gamma_{ij}) := \psi(x^i, \gamma_{ij}).$$

Regular Hilbert half-densities

♠ Fix a continuous Hilbert half-density $\tilde{\Psi}$. Its coordinate representation ψ given by a chart (U, φ) , defines a function

$$(\gamma_{ij}) \mapsto \psi_{(x^i)}(\gamma_{ij}) := \psi(x^i, \gamma_{ij}).$$

♠ We say that $\tilde{\Psi}$ is of *compact and slowly changing Γ -support* with respect to the chart (U, φ) if

$$\bigcup_{(x^i) \in \varphi(U)} \text{supp } \psi_{(x^i)}$$

is contained in a compact set.

Regular Hilbert half-densities

♠ Fix a continuous Hilbert half-density $\tilde{\Psi}$. Its coordinate representation ψ given by a chart (U, φ) , defines a function

$$(\gamma_{ij}) \mapsto \psi_{(x^i)}(\gamma_{ij}) := \psi(x^i, \gamma_{ij}).$$

♠ We say that $\tilde{\Psi}$ is of *compact and slowly changing Γ -support* with respect to the chart (U, φ) if

$$\bigcup_{(x^i) \in \varphi(U)} \text{supp } \psi_{(x^i)}$$

is contained in a compact set.

♠ We say that $\tilde{\Psi}$ is of *compact and slowly changing Γ -support*, if it is such with respect to charts, which altogether cover the manifold \mathcal{M} .

Hilbert space \mathcal{H}_1

♠ $\mathcal{H}_1^c :=$ the set of all continuous H. half-densities (i) of compact and slowly changing Γ -support and (ii) of compact \mathcal{M} -support.

Hilbert space \mathcal{H}_1

- ♠ $\mathcal{H}_1^c :=$ the set of all continuous H. half-densities (i) of compact and slowly changing Γ -support and (ii) of compact \mathcal{M} -support.
- ♠ If $\tilde{\Psi}, \tilde{\Psi}' \in \mathcal{H}_1^c$, then the complex density $(\tilde{\Psi}|\tilde{\Psi}')$ is continuous and compactly supported on \mathcal{M} :

$$(\tilde{\Psi}|\tilde{\Psi}')(\varphi^{-1}(x^i), \partial_{x^i}) = \int_{\Gamma_x} \overline{\tilde{\Psi}(\varphi^{-1}(x^i), \partial_{x^i})} \tilde{\Psi}'(\varphi^{-1}(x^i), \partial_{x^i}) d\mu_x.$$

Hilbert space \mathcal{H}_1

♠ $\mathcal{H}_1^c :=$ the set of all continuous H. half-densities (i) of compact and slowly changing Γ -support and (ii) of compact \mathcal{M} -support.

♠ If $\tilde{\Psi}, \tilde{\Psi}' \in \mathcal{H}_1^c$, then the complex density $(\tilde{\Psi}|\tilde{\Psi}')$ is continuous and compactly supported on \mathcal{M} :

$$(\tilde{\Psi}|\tilde{\Psi}')(\varphi^{-1}(x^i), \partial_{x^i}) = \int_{\Gamma_x} \overline{\tilde{\Psi}(\varphi^{-1}(x^i), \partial_{x^i})} \tilde{\Psi}'(\varphi^{-1}(x^i), \partial_{x^i}) d\mu_x.$$

♠ \mathcal{H}_1^c equipped with $\langle \cdot | \cdot \rangle$ is a pre-Hilbert space. The completion

$$\mathcal{H}_1 := \overline{\mathcal{H}_1^c}$$

is then a Hilbert space.

Hilbert space \mathcal{H}_1

♠ $\mathcal{H}_1^c :=$ the set of all continuous H. half-densities (i) of compact and slowly changing Γ -support and (ii) of compact \mathcal{M} -support.

♠ If $\tilde{\Psi}, \tilde{\Psi}' \in \mathcal{H}_1^c$, then the complex density $(\tilde{\Psi}|\tilde{\Psi}')$ is continuous and compactly supported on \mathcal{M} :

$$(\tilde{\Psi}|\tilde{\Psi}')(\varphi^{-1}(x^i), \partial_{x^i}) = \int_{\Gamma_x} \overline{\tilde{\Psi}(\varphi^{-1}(x^i), \partial_{x^i})} \tilde{\Psi}'(\varphi^{-1}(x^i), \partial_{x^i}) d\mu_x.$$

♠ \mathcal{H}_1^c equipped with $\langle \cdot | \cdot \rangle$ is a pre-Hilbert space. The completion

$$\mathcal{H}_1 := \overline{\mathcal{H}_1^c}$$

is then a Hilbert space.

♠ \mathcal{H}_1 is a generalization of the Hilbert space $\mathcal{H}^{1/2}$ of complex half-densities on \mathcal{M} , but it is not yet the generalization \mathfrak{H} of $\mathcal{H}^{1/2}$ announced in the introduction.

Tensor products of $\{H_x\}$

- ♠ Given metric q on \mathcal{M} , its values q_x and $q_{x'}$ at distinct points $x, x' \in \mathcal{M}$ are independent.

Tensor products of $\{H_x\}$

- ♠ Given metric q on \mathcal{M} , its values q_x and $q_{x'}$ at distinct points $x, x' \in \mathcal{M}$ are independent.
- ♠ Thus H_x and $H_{x'}$ represent *independent* quantum d.o.f. Therefore a physically acceptable Hilbert space should contain tensor products of $\{H_x\}_{x \in \mathcal{M}}$.

Tensor products of $\{H_x\}$

- ♠ Given metric q on \mathcal{M} , its values q_x and $q_{x'}$ at distinct points $x, x' \in \mathcal{M}$ are independent.
- ♠ Thus H_x and $H_{x'}$ represent *independent* quantum d.o.f. Therefore a physically acceptable Hilbert space should contain tensor products of $\{H_x\}_{x \in \mathcal{M}}$.
- ♠ But \mathcal{H}_1 does not contain any tensor product of $\{H_x\}_{x \in \mathcal{M}}$ and, consequently, \mathcal{H}_1 alone cannot be used for quantization.

Tensor products of $\{H_x\}$

- ♠ Given metric q on \mathcal{M} , its values q_x and $q_{x'}$ at distinct points $x, x' \in \mathcal{M}$ are independent.
- ♠ Thus H_x and $H_{x'}$ represent *independent* quantum d.o.f. Therefore a physically acceptable Hilbert space should contain tensor products of $\{H_x\}_{x \in \mathcal{M}}$.
- ♠ But \mathcal{H}_1 does not contain any tensor product of $\{H_x\}_{x \in \mathcal{M}}$ and, consequently, \mathcal{H}_1 alone cannot be used for quantization.
- ♠ So there is a need for an extension of the construction.

Hilbert space \mathfrak{H}

♠ Let \mathcal{M}_N be the set of all N -element subsets of \mathcal{M} . \mathcal{M}_N is a manifold locally diffeomorphic to \mathcal{M}^N .

Hilbert space \mathfrak{H}

- ♠ Let \mathcal{M}_N be the set of all N -element subsets of \mathcal{M} . \mathcal{M}_N is a manifold locally diffeomorphic to \mathcal{M}^N .
- ♠ The same measure field $x \mapsto d\mu_x$ allows to define for every $y = \{x_1, \dots, x_N\} \in \mathcal{M}_N$ a Hilbert space

$$H_y \cong H_{x_1} \otimes \dots \otimes H_{x_N}.$$

Hilbert space \mathfrak{H}

- ♠ Let \mathcal{M}_N be the set of all N -element subsets of \mathcal{M} . \mathcal{M}_N is a manifold locally diffeomorphic to \mathcal{M}^N .
- ♠ The same measure field $x \mapsto d\mu_x$ allows to define for every $y = \{x_1, \dots, x_N\} \in \mathcal{M}_N$ a Hilbert space

$$H_y \cong H_{x_1} \otimes \dots \otimes H_{x_N}.$$

- ♠ Now it is (almost) straightforward to repeat the procedure which led to \mathcal{H}_1 —this results in a Hilbert space \mathcal{H}_N built of Hilbert half-densities on \mathcal{M}_N .

Hilbert space \mathfrak{H}

- ♠ Let \mathcal{M}_N be the set of all N -element subsets of \mathcal{M} . \mathcal{M}_N is a manifold locally diffeomorphic to \mathcal{M}^N .
- ♠ The same measure field $x \mapsto d\mu_x$ allows to define for every $y = \{x_1, \dots, x_N\} \in \mathcal{M}_N$ a Hilbert space

$$H_y \cong H_{x_1} \otimes \dots \otimes H_{x_N}.$$

- ♠ Now it is (almost) straightforward to repeat the procedure which led to \mathcal{H}_1 —this results in a Hilbert space \mathcal{H}_N built of Hilbert half-densities on \mathcal{M}_N .
- ♠ The generalization of $\mathcal{H}^{1/2}$ announced in the introduction:

$$\mathfrak{H} := \bigoplus_{N=1}^{\infty} \mathcal{H}_N.$$

Action of $\text{Diff}(\mathcal{M})$ on \mathcal{H}_1

♠ Let $\theta \in \text{Diff}(\mathcal{M})$. If $x' = \theta(x)$, then

$$\theta^t : T_x \mathcal{M} \rightarrow T_{x'} \mathcal{M}, \quad \theta^{t*} : \Gamma_{x'} \rightarrow \Gamma_x, \quad \theta^{t**} : H_x \rightarrow H_{x'}.$$

Action of $\text{Diff}(\mathcal{M})$ on \mathcal{H}_1

♠ Let $\theta \in \text{Diff}(\mathcal{M})$. If $x' = \theta(x)$, then

$$\theta^t : T_x \mathcal{M} \rightarrow T_{x'} \mathcal{M}, \quad \theta^{t*} : \Gamma_{x'} \rightarrow \Gamma_x, \quad \theta^{t**} : H_x \rightarrow H_{x'}.$$

♠ Given $\tilde{\Psi} \in \mathcal{H}_1$ and a basis (e_i) of $T_x \mathcal{M}$, a pull-back

$$(\theta^* \tilde{\Psi})(x, e_i) := (\theta^{-1})^{t**} \tilde{\Psi}(\theta(x), \theta^t e_i).$$

Action of $\text{Diff}(\mathcal{M})$ on \mathcal{H}_1

♠ Let $\theta \in \text{Diff}(\mathcal{M})$. If $x' = \theta(x)$, then

$$\theta^t : T_x \mathcal{M} \rightarrow T_{x'} \mathcal{M}, \quad \theta^{t*} : \Gamma_{x'} \rightarrow \Gamma_x, \quad \theta^{t**} : H_x \rightarrow H_{x'}.$$

♠ Given $\tilde{\Psi} \in \mathcal{H}_1$ and a basis (e_i) of $T_x \mathcal{M}$, a pull-back

$$(\theta^* \tilde{\Psi})(x, e_i) := (\theta^{-1})^{t**} \tilde{\Psi}(\theta(x), \theta^t e_i).$$

♠ Owing to diff. invariance of the field $x \mapsto d\mu_x$, the map

$$\tilde{\Psi} \rightarrow \theta^* \tilde{\Psi} \equiv U_1(\theta^{-1}) \tilde{\Psi}$$

is unitary on \mathcal{H}_1 and $\theta \mapsto U_1(\theta)$ is a unitary representation of $\text{Diff}(\mathcal{M})$.

Action of $\text{Diff}(\mathcal{M})$ on \mathfrak{H}

♠ Given $\theta \in \text{Diff}(\mathcal{M})$,

$$y \equiv \{x_1, \dots, x_N\} \mapsto \Theta(y) := \{\theta(x_1), \dots, \theta(x_N)\}$$

is a diffeomorphism on \mathcal{M}_N .

Action of $\text{Diff}(\mathcal{M})$ on \mathfrak{H}

♠ Given $\theta \in \text{Diff}(\mathcal{M})$,

$$y \equiv \{x_1, \dots, x_N\} \mapsto \Theta(y) := \{\theta(x_1), \dots, \theta(x_N)\}$$

is a diffeomorphism on \mathcal{M}_N .

♠ The pull-back

$$\tilde{\Psi} \mapsto \Theta^* \tilde{\Psi} \equiv U_N(\theta^{-1}) \tilde{\Psi}$$

is a unitary map on \mathcal{H}_N and $\theta \mapsto U_N(\theta)$ is a unitary representation.

Action of $\text{Diff}(\mathcal{M})$ on \mathfrak{H}

♠ Given $\theta \in \text{Diff}(\mathcal{M})$,

$$y \equiv \{x_1, \dots, x_N\} \mapsto \Theta(y) := \{\theta(x_1), \dots, \theta(x_N)\}$$

is a diffeomorphism on \mathcal{M}_N .

♠ The pull-back

$$\tilde{\Psi} \mapsto \Theta^* \tilde{\Psi} \equiv U_N(\theta^{-1}) \tilde{\Psi}$$

is a unitary map on \mathcal{H}_N and $\theta \mapsto U_N(\theta)$ is a unitary representation.

♠ Consequently,

$$\theta \mapsto \bigoplus_{N=1}^{\infty} U_N(\theta)$$

is a unitary representation of $\text{Diff}(\mathcal{M})$ on \mathfrak{H} .

Uniqueness of \mathfrak{H}

- ♠ Suppose that a Hilbert space $\check{\mathfrak{H}}$ is obtained from a diff. invariant measure field $x \rightarrow d\check{\mu}_x$ by the same way.

Uniqueness of \mathfrak{H}

- ♠ Suppose that a Hilbert space $\check{\mathfrak{H}}$ is obtained from a diff. invariant measure field $x \rightarrow d\check{\mu}_x$ by the same way.
- ♠ Since there exists $c > 0$ such that for every x , $d\check{\mu}_x = c d\mu_x$, then

$$\mathcal{H}_N \ni \tilde{\Psi} \mapsto u_N(\tilde{\Psi}) := \frac{\tilde{\Psi}}{\sqrt{c^N}} \in \check{\mathcal{H}}_N$$

is a distinguished unitary map.

Uniqueness of \mathfrak{H}

- ♠ Suppose that a Hilbert space $\check{\mathfrak{H}}$ is obtained from a diff. invariant measure field $x \rightarrow d\check{\mu}_x$ by the same way.
- ♠ Since there exists $c > 0$ such that for every x , $d\check{\mu}_x = c d\mu_x$, then

$$\mathcal{H}_N \ni \tilde{\Psi} \mapsto u_N(\tilde{\Psi}) := \frac{\tilde{\Psi}}{\sqrt{c^N}} \in \check{\mathcal{H}}_N$$

is a distinguished unitary map.

- ♠ Therefore

$$\bigoplus_{N=1}^{\infty} u_N : \mathfrak{H} \rightarrow \check{\mathfrak{H}}$$

is also a distinguished unitary map.

Uniqueness of \mathfrak{H}

- ♠ Suppose that a Hilbert space $\check{\mathfrak{H}}$ is obtained from a diff. invariant measure field $x \rightarrow d\check{\mu}_x$ by the same way.
- ♠ Since there exists $c > 0$ such that for every x , $d\check{\mu}_x = c d\mu_x$, then

$$\mathcal{H}_N \ni \tilde{\Psi} \mapsto u_N(\tilde{\Psi}) := \frac{\tilde{\Psi}}{\sqrt{c^N}} \in \check{\mathcal{H}}_N$$

is a distinguished unitary map.

- ♠ Therefore

$$\bigoplus_{N=1}^{\infty} u_N : \mathfrak{H} \rightarrow \check{\mathfrak{H}}$$

is also a distinguished unitary map.

- ♠ Thus \mathfrak{H} is unique up to distinguished isomorphisms.

Hilbert space \mathfrak{K}

♠ Let \mathcal{K}_1 be a set of sections of the bundle-like set $\bigcup_{x \in \mathcal{M}} H_x$:
 $\Psi \in \mathcal{K}_1$ iff

$$\int_{\mathcal{M}} \langle \Psi(x) | \Psi(x) \rangle_x d\mu_c < \infty,$$

where $\langle \cdot | \cdot \rangle_x$ is the inner product on H_x .

Hilbert space \mathfrak{K}

♠ Let \mathcal{K}_1 be a set of sections of the bundle-like set $\bigcup_{x \in \mathcal{M}} H_x$:
 $\Psi \in \mathcal{K}_1$ iff

$$\int_{\mathcal{M}} \langle \Psi(x) | \Psi(x) \rangle_x d\mu_c < \infty,$$

where $\langle \cdot | \cdot \rangle_x$ is the inner product on H_x .

♠ \mathcal{K}_1 equipped with the inner product

$$\langle \Psi | \Psi' \rangle := \int_{\mathcal{M}} \langle \Psi(x) | \Psi'(x) \rangle_x d\mu_c$$

is a Hilbert space.

Hilbert space \mathfrak{K}

♠ Let \mathcal{K}_1 be a set of sections of the bundle-like set $\bigcup_{x \in \mathcal{M}} H_x$:
 $\Psi \in \mathcal{K}_1$ iff

$$\int_{\mathcal{M}} \langle \Psi(x) | \Psi(x) \rangle_x d\mu_c < \infty,$$

where $\langle \cdot | \cdot \rangle_x$ is the inner product on H_x .

♠ \mathcal{K}_1 equipped with the inner product

$$\langle \Psi | \Psi' \rangle := \int_{\mathcal{M}} \langle \Psi(x) | \Psi'(x) \rangle_x d\mu_c$$

is a Hilbert space.

♠ Similarly, a Hilbert space \mathcal{K}_N is built of sections of $\bigcup_{y \in \mathcal{M}_N} H_y$,
which are “square integrable” w.r.t. the counting measure on \mathcal{M}_N .

Hilbert space \mathfrak{K}

♠ Let \mathcal{K}_1 be a set of sections of the bundle-like set $\bigcup_{x \in \mathcal{M}} H_x$:
 $\Psi \in \mathcal{K}_1$ iff

$$\int_{\mathcal{M}} \langle \Psi(x) | \Psi(x) \rangle_x d\mu_c < \infty,$$

where $\langle \cdot | \cdot \rangle_x$ is the inner product on H_x .

♠ \mathcal{K}_1 equipped with the inner product

$$\langle \Psi | \Psi' \rangle := \int_{\mathcal{M}} \langle \Psi(x) | \Psi'(x) \rangle_x d\mu_c$$

is a Hilbert space.

♠ Similarly, a Hilbert space \mathcal{K}_N is built of sections of $\bigcup_{y \in \mathcal{M}_N} H_y$,
which are “square integrable” w.r.t. the counting measure on \mathcal{M}_N .

♠ The generalization of $L^2(\mathcal{M}, d\mu_c)$ announced earlier:

$$\mathfrak{K} := \bigoplus_{N=1}^{\infty} \mathcal{K}_N.$$

Properties of \mathfrak{H} and \mathfrak{K}

- ♠ On \mathfrak{K} there exists a unitary representation of $\text{Diff}(\mathcal{M})$.

Properties of \mathfrak{H} and \mathfrak{K}

- ♠ On \mathfrak{K} there exists a unitary representation of $\text{Diff}(\mathcal{M})$.
- ♠ \mathfrak{K} is unique up to distinguished isomorphisms.

Properties of \mathfrak{H} and \mathfrak{K}

- ♠ On \mathfrak{K} there exists a unitary representation of $\text{Diff}(\mathcal{M})$.
- ♠ \mathfrak{K} is unique up to distinguished isomorphisms.
- ♠ Every Hilbert space \mathfrak{K} is non-separable, while the Hilbert spaces $\{\mathfrak{H}\}$ built over $\mathcal{M} = \mathbb{R}$ are separable.

Properties of \mathfrak{H} and \mathfrak{K}

- ♠ On \mathfrak{K} there exists a unitary representation of $\text{Diff}(\mathcal{M})$.
- ♠ \mathfrak{K} is unique up to distinguished isomorphisms.
- ♠ Every Hilbert space \mathfrak{K} is non-separable, while the Hilbert spaces $\{\mathfrak{H}\}$ built over $\mathcal{M} = \mathbb{R}$ are separable.
- ♠ Conjecture: every \mathfrak{H} is separable.

Properties of \mathfrak{H} and \mathfrak{K}

- ♠ On \mathfrak{K} there exists a unitary representation of $\text{Diff}(\mathcal{M})$.
- ♠ \mathfrak{K} is unique up to distinguished isomorphisms.
- ♠ Every Hilbert space \mathfrak{K} is non-separable, while the Hilbert spaces $\{\mathfrak{H}\}$ built over $\mathcal{M} = \mathbb{R}$ are separable.
- ♠ Conjecture: every \mathfrak{H} is separable.
- ♠ Open question: is \mathfrak{H} or \mathfrak{K} constructed for signature $(3, 0)$ applicable to quantization of the ADM formalism?

Properties of \mathfrak{H} and \mathfrak{K}

- ♠ On \mathfrak{K} there exists a unitary representation of $\text{Diff}(\mathcal{M})$.
- ♠ \mathfrak{K} is unique up to distinguished isomorphisms.
- ♠ Every Hilbert space \mathfrak{K} is non-separable, while the Hilbert spaces $\{\mathfrak{H}\}$ built over $\mathcal{M} = \mathbb{R}$ are separable.
- ♠ Conjecture: every \mathfrak{H} is separable.
- ♠ Open question: is \mathfrak{H} or \mathfrak{K} constructed for signature $(3, 0)$ applicable to quantization of the ADM formalism?
- ♠ I managed to define on \mathfrak{K} a representation of the so-called *affine commutation relations* for the ADM formalism. Unfortunately, this representation turned out to be highly reducible.

References

- Okołów A, 2021 Hilbert spaces built over metrics of fixed signature arXiv:2102.05995.
- Okołów A, 2021 Space of quantum states built over metrics of fixed signature.
Int. J. Geom. Meth. Mod. Phys. **18** 2150110.
arXiv:1911.02954.