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Introduction

& Given manifold M, there are two Hilbert spaces with
diffeomorphism invariant inner products:

o the Hilbert space 7{'/? of complex half-densities on M
o [?(M,dy.), where dji. is the counting measure on M.

& | will present two Hilbert spaces §) and £ such that

@ each space will be constructed over the set of all metrics of
fixed but arbitrary signature, defined on M;

@ the inner product on each Hilbert space will be
diffeomorphism invariant;

o $ will be a generalization of HY/2 and £ a generalization of

L2(M, dpuc).
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Potential application

& The configuration or “position” part of the ADM phase space is
the set of all Riemannian metrics on a three-dimensional manifold.

& Therefore one might want to try to apply the Hilbert spaces $
and £ obtained in the case of signature (3,0), to canonical
quantization of the ADM formalism—each space may possibly
serve as a kinematical Hilbert space for the formalism.

& Diffeomorphism invariance of the inner products may be helpful
in taking into account the vector constraint at the quantum level.

& Warning: neither ) nor £ is an [ space over the set of metrics.
The application is not straightforward and further research is
needed...
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Idea of construction

& To construct § and £, fix a manifold M and a signature (p, p’)
such that p + p’ = dim M.

& Let O(M) be the set of all metrics of signature (p, p’) on M.
Construction of a diff. invariant measure on O(M) is not easy...

& [, = the set of all scalar products of signature (p, p’) on T M.

& Suppose that for every x we have a measure dji, on [',. Then
we could try to merge all Hilbert spaces

H, := L2(Ty, dpy)

into a “large” one over Q(M).

& The measure field x — dji, should be diffeomorphism invariant.
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Diffeomorphism invariant measure field
A Let 0 € Diff(M). If x; = 0(x2), then

0t : TyM — T M, 0% i Ty — Ty,

and (0"),dpu, is a measure on I',,.

& The field x — dpy is diff. invariant if

(0" )xdpg(xy = dpix.

# If 0(x0) = xo, then 0" € GL(T,,M) and

(Gt*)*duxo - d:uXO'

& If x — dpuy is diff. invariant, then each dy, must be invariant
w.r.t. the action of GL(T,M). Does such a measure exist on [,?
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Invariant measures on [

& [, with the action of GL( T, M) is a homogeneous space.

& There exists a theorem on existence and uniqueness of
quasi-invariant measures on homogeneous spaces. lts application
to [, shows that there exists an invariant (regular Borel) measure
on [y, which is unique up to a positive multiplicative constant.

# If () are components of scalar products in [, then
Q :=7*dv; @ dyu

is an invariant metric on [ .

o (V)= (7ij)i<j are global coordinates on ', and

dug = /| det Qyl d“,/ldﬂ,/2 o dﬂ,/dim Mx

is an invariant measure on [ .
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Diffeomorphism invariant measure field

& Let [ Ty M — T, M denotes a linear isomorphism and dyi,
be an invariant measure on [,. If

X = dpiy = (L) Al (1)

then
o for every x, dyi, is an inv. measure on [, independent of /, ,;

o for every two points x, x’ € M and for every /.,

dpixr = (Lo )x dpix.

& The field (1) is diffeomorphism invariant.

& For any two fields (1) there exists ¢ > 0 such that:

Vx e M dfix = cduy.
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How to merge the spaces {H,}?

& Let {H, } e be defined by a diff. inv. measure field (1), and
let (-|-)» denote the inner product on H,.

# If W, U are sections of the bundle-like set | J, .\, Hx, then
x = (W)W (X)) (2)
is a complex function on M, which, once integrated over M,

defines an inner product on a set of such sections.

® To get a diffeomorphism invariant inner product one can
@ use the counting measure on M;

e “densitize” the function (2).
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Half-densities valued in a Hilbert space

& Let V be a real vector space of finite dimension, and « € R.
& o-density over V valued in a vector space W is a map

w : { all bases of V } — W,
such that

(N jer) = | det(A')|* iw(e).

& If W and W/ are half-densities valued in a Hilbert space W with
an inner product (-|-), then

(&) = (W] )(er) == (W(e;)|W'(e)) € C

is a complex density over V/ (a one-density valued in C).

& (W, W) — (w|w') is then a density product.



10/21
Hilbert half-densities on M

& Let H, be the set of all half-densities over T, M valued in H,,
equipped with the density product ().



10/21
Hilbert half-densities on M

& Let H, be the set of all half-densities over T, M valued in H,,
equipped with the density product ().

& A section of the bundle-like set UxeM I:IX = Hilbert half-density.



10/21
Hilbert half-densities on M

& Let H, be the set of all half-densities over T, M valued in H,,
equipped with the density product ().

& A section of the bundle-like set UxeM I:IX = Hilbert half-density.
& If U, U are Hilbert half-densities, then

x = (WU)(x) = () [V (x))

is a complex density on M,



10/21
Hilbert half-densities on M

& Let H, be the set of all half-densities over T, M valued in H,,
equipped with the density product ().

& A section of the bundle-like set UxeM I:IX = Hilbert half-density.
& If U, U are Hilbert half-densities, then
x = (W) (x) == (W)W (x))x

is a complex density on M, and

(@, ) s (B = /'M(W/) cC

is an inner product, provided the integral exists.



10/21
Hilbert half-densities on M

& Let H, be the set of all half-densities over T, M valued in H,,
equipped with the density product ().

& A section of the bundle-like set UxeM I:IX = Hilbert half-density.
& If U, U are Hilbert half-densities, then

x = (WU)(x) = () [V (x))

is a complex density on M, and
(0, 07) s (B0 = / (i) e
JM

is an inner product, provided the integral exists.

# Half-densities of finite norm || V|| := |/ (W|U)??? Too
complicated to prove that they form a Hilbert space..



11/21

Regular Hilbert half-densities
#® When (U|U) is continuous and compactly supported?



11/21
Regular Hilbert half-densities
#® When (U|U) is continuous and compactly supported?

# Suppose that (U, ) is a local chart on M, (x') the
corresponding coordinate system and 7 € ['.. Given Hilbert
half-density V,

V()€ Fh WO EH,  U(x.00.7) €C.



11/21

Regular Hilbert half-densities
#® When (U|U) is continuous and compactly supported?

# Suppose that (U, ) is a local chart on M, (x') the
corresponding coordinate system and 7 € ['.. Given Hilbert
half-density V,

V()€ Fh WO EH,  U(x.00.7) €C.

& Coordinate representation of 12

(Xiar\//l'j) = 77/}(Xiaﬁ/l'j) = \T}(@il(xi)v axiv Vij dXi & dXJ)



11/21

Regular Hilbert half-densities
#® When (U|U) is continuous and compactly supported?

# Suppose that (U, ) is a local chart on M, (x') the
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Regular Hilbert half-densities
#® When (U|U) is continuous and compactly supported?

# Suppose that (U, ) is a local chart on M, (x') the
corresponding coordinate system and 7 € ['.. Given Hilbert
half-density W,

Vel Vo) et Ux0,7) €C

& Coordinate representation of 12

(< 75) = D7) = Bl (x), By, vy b’ @ )

& V is continuous if for every local chart on M its coordinate
representation is continuous.

# Continuity and compact M-support of W, U’ is not sufficient
yet...
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Regular Hilbert half-densities

& Fix a continuous Hilbert half-density V. Its coordinate
representation 1/ given by a chart (U, ¢), defines a function

(75) = Yy () = V(X )

# We say that U is of compact and slowly changing T -support
with respect to the chart (U, ¢) if

U supp 'uiﬁ(xi)
(x)ep(V)
is contained in a compact set.

# We say that U is of compact and slowly changing I-support, if
it is such with respect to charts, which altogether cover the
manifold M.
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Hilbert space H;

& S := the set of all continuous H. half-densities (i) of compact
and slowly changing -support and (ii) of compact M-support.

& If U, 0" € 7, then the complex density (W|U’) is continuous
and compactly supported on M:

(\T’\T”)(sol(xi)ﬁxf)/r‘ V(1 (x7), )W (¢~ (x'). 8i) dpx.

& 745 equipped with (-|-) is a pre-Hilbert space. The completion
Hy = Hif

is then a Hilbert space.

& 71 is a generalization of the Hilbert space #!/? of complex
half-densities on M, but it is not yet the generalization ) of 7{1/2
announced in the introduction.
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Tensor products of {H,}

& Given metric g on M, its values g, and g,/ at distinct points
x, x' € M are independent.

& Thus H, and H, represent independent quantum d.o.f.
Therefore a physically acceptable Hilbert space should contain
tensor products of {H, }.enr.

& But #; does not contain any tensor product of {H, }.c( and,
consequently, 71 alone cannot be used for quantization.

# So there is a need for an extension of the construction.
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Hilbert space $

& Let My be the set of all N-element subsets of M. My is a
manifold locally diffeomorphic to M.

& The same measure field x — d, allows to define for every
y ={x1,....xy} € My a Hilbert space

Hy & Hy @ ... 0 Hy,.

& Now it is (almost) straightforward to repeat the procedure
which led to 71—this results is a Hilbert space H  built of Hilbert
half-densities on M .

# The generalization of /2 announced in the introduction:

= EB Hy.
N=1
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Action of Diff(M) on H;
# Let 0 € Diff(M). If X" = 0(x), then

0t TlM — TyM, 0% i Ty — Ty, 0% H, — H,.

& Given U € 7, and a basis (e;) of Ty M, a pull-back

(0*W)(x, &) == (7)™ V(0(x),0").

& Owing to diff. invariance of the field x — dy, the map
U — 0"V = Uy (0~ Y)W

is unitary on 77 and ¢ — U;(0) is a unitary representation of
Diff(M).
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Action of Diff(M) on $

& Given 0 € Diff (M),

y={x1,....,xn} = O(y) :={0(x1),...,0(xn)}

is a diffeomorphism on M.



17/21

Action of Diff(M) on

& Given 0 € Diff (M),

is a diffeomorphism on M.
& The pull-back . . .
U= 00 = Uy v

is a unitary map on Hy and 0 — Up(0) is a unitary representation.



17/21

Action of Diff(M) on

& Given 0 € Diff (M),

is a diffeomorphism on M.

& The pull-back . . .
U= 00 = Uy v

is a unitary map on Hy and 0 — Up(0) is a unitary representation.

& Consequently,
0 P Un(9)
N=1

is a unitary representation of Diff(M) on $.
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Uniqueness of £

& Suppose that a Hilbert space $) is obtained from a diff. invariant
measure field x — d[i, by the same way.

& Since there exists ¢ > 0 such that for every x, dji, = ¢ djiy,
then

y - v .
Hy DV — uy(V) = € Hy
W)= Ve
is a distinguished unitary map.
& Therefore
@ uy:$H — fj
N=1

is also a distinguished unitary map.

& Thus 9 is unique up to distinguished isomorphisms.
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Hilbert space K

# Let Oy be a set of sections of the bundle-like set |, ., Hx:
Ve Ky iff

[ W) die < o
JM
where (-|-), is the inner product on H,.

& 1 equipped with the inner product

W) = [ (W) e
is a Hilbert space.

# Similarly, a Hilbert space Ky is built of sections of ., Hy.

which are “square integrable” w.r.t. the counting measure on M.

# The generalization of [%(M, dji.) announced earlier:

R:= (éE; K:Ap
N=1
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Properties of $ and K

& On R there exists a unitary representation of Diff(/M).
& £ is unique up to distinguished isomorphisms.

& Every Hilbert space £ is non-separable, while the Hilbert spaces
{9} built over M = R are separable.

& Conjecture: every §) is separable.

& Open question: is $ or & constructed for signature (3,0)
applicable to quantization of the ADM formalism?

#® | managed to define on R a representation of the so-called affine
commutation relations for the ADM formalism. Unfortunately, this
representation turned out to be highly reducible.
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