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A short retrospection
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A short retrospection

Variation principle:
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Special configuration — respecting of the Euler-Lagrange equation:
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Final result — on shell philosophy:
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The equivalence between variational principles

Metric picture:
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The equivalence between variational principles

Concepts/Conclusions

@ It is possible to analyse the general relativity theory in all those
pictures equivalently,

@ It is a unique way to rewrite the theory from the one way of
description to others,

@ Main assumption: The connection has to be symmetric!!!




Scheme of proof
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Variation of the Hilbert Lagrangian
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Scheme of proof

The metric picture
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Variation of the matter Lagrangian

OL matt
o¢!,

(o)
+77A‘,‘Q T a, +

0Lmate = [ - Vu P/J“] 3l + 0 (P/Ju 5¢IJ) *

8£ matt

7%

og




Scheme of proof
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Crucial part
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Scheme of proof

The metric picture
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Scheme of proof

Variation of the metric Lagrangian on shell
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Appearance of the non-metricity tensor
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Scheme of proof
Variation of the metric Lagrangian on shell
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Conclusion:

o if the Lagrangian of matter does not depend on the covariant
derivative of the matter field, then the connection stays metric,

o for the matter Lagrangian which depends on the first covariant
derivative of the matter field exist an unique way to define a
general symmetric connection,




Scheme of proof

Metric Lagrangian — variables
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Scheme of proof

Palatini picture
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Palatini Lagrangian — variables
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Scheme of proof

Transformation of the Palatini Lagrangian
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Scheme of proof

Transformation of the variation §Lp
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Connection character equation
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Scheme of proof
Transformation of the variation Lp on shell
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Connection character equation
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Scheme of proof

Comments/Conclusions

@ there is a very strength relation between matter fields and
non-metricity of the connection,

@ we cannot randomly assume the non-metric character of the
connection and the structure of matter Lagrangian
simultaneously,

@ the non-metricity tensor N is uniquely defined by the matter
Lagrangian.




Scheme of proof

Palatini picture
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Metric as a pathological degree of freedom in the Palatini picture

If the metric had been an independent degree of freedom it has had
a non-vanishing momenta:
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Scheme of proof

Analogue from classical mechanic
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Elimination of the metric tensor

Euler-Lagrange equation (Einstein equation):
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Scheme of proof

Elimination of the metric tensor
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Euler-Lagrange equation (Einstein equation):
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Scheme of proof

Affine picture
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Einstein equation:
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Whole idea in a nutshell
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Why is it useful?

@ possibility to rewrite and analyze theories in other pictures,
@ new options of generalisation well-known theories,

@ verification of theories which have some "extra" assumptions,



Example — gravitation with cosmological constant

Metric picture
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Einstein Equation:
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Derivative over the metric connection:
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Example — gravitation with cosmological constant
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Einstein equation
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Connection character equation:

Lp o aw
orr, ~ T
Ap
VoM = 0=, =%y,




Example — gravitation with cosmological constant

Affine picture
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Generalisation
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Properties of generalised theory

@ skew-symmetric part of Ricci tensor could be interpret as an
electromagnetism: F,,, has the same properties as a Faraday
2-form f,,,, moreover:

Fuy = £\/87|A| fu

@ Non-metric connection:
F”‘)\H ="\, £1/87[A| (5; a, + 5; ay—-3a" gAH) ,
e Equation for electromagnetic potential a, in unified theory:
0 a, =5\ ay,
@ Einstein equation:
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Properties of generalised theory — approximation

o Covariant derivative of a metric;
Va8uv = £2/87|\| (ap av + 8av ap — 8uv 3a)

@ Cosmological constant A<0 ,

@ such theory generate (as an approximation for weak
electromagnetic field) the generalised (and also pure)
Born-Infeld theory:
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e Finally we have (as an approximation) the well-known
Einstein-Maxwell theory with cosmological constant A:
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Weyl conformal gravity

Covariant derivative
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Connection
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Palatini picture

Connection character equation:
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Weyl conformal gravity

Palatini picture

Matter Lagrangian
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The nontrivial example

Proca theory with a little perturbation

Lagrangian:
1 v ° v 1 2 v
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Proca equation:




The nontrivial example

Proca theory with a little perturbation

Einstein equation:
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Covariant derivative:
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The nontrivial example

Proca theory with a little perturbation

Matter Lagrangian in Palatini picture:
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Palatini Lagrangian on shell:




