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Overview

The Newman-Janis algorithm' originally allowed for the derivation of the Kerr-Newman black
hole and a rederivation of the Kerr black hole

Gurses and Gursey? showed a version of the algorithm can create rotating Kerr-Schild
spacetimes from static spherical Kerr-Schild spacetimes. Popular with nonsingular black hole
research

Drake and Szekeres® examined a further extension which could create rotating spacetimes
from arbitrary spherically symmetric spacetimes

While exact solutions to rotating spacetimes are interesting, the physical nature of the

algorithm and properties of the resultant spacetime are not immediately apparent.

[1] E. T. Newman and A. I. Janis, J. Math. Phys. 6, 915 (1965).
[2]M. Gurses and F. Gursey, J. Math. Phys. 16, 2385 (1975).
[3]S. P. Drake and P. Szekeres, Gen. Rel. Grav. 32, 445 (2000).



Original Newman Janis 1

-Write Schwarzschild or Reissner-Nordstrom metric in advanced null coordinates,

2M | Q?
ds? = — (1 ek %)du? — 2dudr + r*(d6” + sin” 0d¢?),

r

-express g from null tetrads with complex coordinate r
g = —=l*n’ = I"n* + m"m* + mtm”,
" =1(0,1,0,0),
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Original Newman-Janis 2

-Transform r and u coordinates to new r*, u* coordinates,
u* =u—1tacosl, r*=r+iacosl
so that the new tetrads are

" = (0,1,0,0),
o 2
o — (1,_1(1 s P %)UU)

2 2
1 i
m** = iasinf, —iasinf,1, — |,
V2(r* —iacos ) sin 0

where we assume 7*,a, 8 are all real and ¥ = r*? 4 a2 cos? 6.

-Construct a metric such that
gt = =l"*n*™ — "n"* + m*m™ + m™*Fm*,

which is the Kerr-Newman metric in u, 7%, 8, ¢ coordinates.



Open questions

 One finds Schwarzschild — Kerr and Reissner-
Nordstrom - Kerr-Newman. What else can we do?

* The complexification of the M term and the Q term
look rather different at this level. Is there a more
systematic way of doing the complexifications?

* Why did this work?



The Gurses-Gursey Algorithm for Kerr-
Schild systems

Start with a spherically symmetric Kerr-Schild metric in Schwarzschild coordinates

om 2 -
ds® = — (1 e M) di® + (1 = m(*r)) dr? + r?d0?* + r* sin® Gdd)z.

T r

~

Kerr-Schild systems have
metrics that can be written

convert to advanced null coordinates du = dt — (1 — 2m(r)/r) 'dr, obtaining gv=Tw -S Ky Ky
om(r) where S is a scalar function
ds® = — (1 ~ )a!u,2 — 2dudr + r*(d0® + sin® 0d¢?). and k is a null vector with
r
respect to both the
Write in terms of [, m, n as before, but with the appropriately modified n Minkowski metric nj and

full metric g

nt = (1, —%(1 e 2":_(”),0,0)

Complexify the r coordinate such that

| (r + 7)m(=EL) \ /
no_ ] O 2
" (1 2(1 - ),n,u ,




GG Algorithm Continued

Perform the same coordinate change, the generalized n becomes

1 2r*m(r*)
n = (1,—2(1- ).,
" ( v 2 r*2 + a2 cos? ’O'O)

Reconstruct metric using new tetrads, and relabel 7* — r for simplicity, to obtain
-To go backwards, set a=0.
ds® = — (1 - ﬂ) du? — 2dudr + % d6? -a can be thought of as the
T rotation parameter
+ sin® # [2{:. drdo — i dudep + (-1'2 +a2 + it Rl 6) dq_f;z] -Rotating/nonrotating pair of
= spacetimes uniquely specified
where ¥ = r? + a? cos? 0. Convert to Boyer-Lindquist coordinates using by mass function m
4 o . -What can we say about the
du = dt — dr,d¢ = dp — = dr physical content for these
pairs?

with the notation A = r? + a? — 2rm(r), and relabel dp — d¢ to get

. 2r T : S ‘ > {2a%rmsin® 0 f .
gt =—[1-—- rfn dt? + = dr? + £ d#? + sin% 0 a T?T.I,blll +a®+1r? ) d¢’
p 3 A ¥
darmsin? 0
—_—dtdd.
S @




Properties of GG systems: Metric

It is helpful to call rewrite the metric to call attention to the principal directions

A

sin?d . . 9
= :

. 2 X
(dt — asin®fd¢)” + A dr? + ¥ do* + —~ [(r* + a*)d¢ — a dt]

ds® =

We can also write the Kerr-Schild null vector and scalar function

2rm
r2 + a2 cos? )’

» ‘
i, = (1, Z’“’ —asin? 9) .

B —

the remaining portion

Y (a® —4rm +12)

Nuwdztdx’ = K A2

dr? + X d0? + (a® + r?) sin® 0 dp*+

darmsin® 0 4rm

A d?‘dﬂb— Td’f’dt

has a fully 0 Riemann tensor, so it is the required Minkowski metric.

We label these
directions
1,2,3,4
respectively




Properties of GG systems: EMT1

!

S "
+ sin“ 0 m
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[(r* + a® cos® @)rm” — 2(r® — a® cos® B)m’]
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Properties of GG systems: EMT?2

* Eigenvalues:
2, .1
r“m
— 0 =P = ﬁ — A ay = — -
P =P = 8 = @) 132 =3
rm”  a®cos®O0m/
) = Ngy = Ay = — — : -
ol (3) () 8y 42

Segre type [(11)(1,1)] or degenerates to [(111,1)]

Eigenvalue degeneracy — freedom with eigenvectors

v,? = A(—1,0,0,asin®0) + B(0,1,0,0),

1 w L} &
nﬁziﬂﬁ+w{muﬂy+ETmJJun
gl a
%,_CUULLM+J)(1§+TTQUJ),
Wy = g({] 0,1,0) + (a, 0,0, csc” 0)

34 > s Wy Ly (1,2 ™ '}"2 s U, U, C

—m/

Arr?’
—m”

8mr /

N

Overview of Segre Type
- Notation of the eigenvalue/
eigenvector structure of a
matrix
-In GR, typically use Segre
types to examine T*, and R*,
-[(11)(1,1)] refers to a pair of
degenerate “space-space”
eigenvalues and second
degenerate “space-time”
pair, [(111,1)] is four

@generate eigenvalues /
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Properties of GG systems: EMT3

Symmetry of 12 directions — boosts, Symmetry of 34 directions — rotations

Normalized, timelike version of v*1, — family of 4 velocities

uf = ﬁzﬁh(I/V)(m +172,0,0, a) + sinh(W) 1} (U, 1,0,0),

VIAZ

“Angular velocity” of “matter” can be found
S
0P o _W__ 6 s
ot &£ ot a247? .
oT
note: no dependence on m, same for all GG systems

08
06
0.4}
02

0.0/

1.0

rla



12

GG systems: Equations of State 1

Consider an EOS written in the form F(p,p,T,...)=0
Segre [(11)(1,1)] automatically satisfies P=—M| 2= FP3= Pl-
We are particularly interested in
F(p,p1) =0
For spherical systems, if either eigenvalue is monotonic in r, an F can be derived

It is usually NOT preserved when we pass into a rotating system, but under certain
circumstances it is



GG systems: Equations of State 2

F(p,p,) =0 implies (A +12A)?

OF 0p  OF Op, = 8mA(r?2 + a? cos? 0)?’

dp Or + ap, Or (A 4+ r2A) (X — r2A — 2a%A cos? H)
OF dp OF 0p, 8w A(r? + a? cos? 0)? '
3,90 . 3pL 60
dp. Op & dp, Op B

— 0,

PL=

={).
The null energy condition p + p; > 0 requires

0 a < @max = VA/A = (2K/A)*

or 00 00 or
r2m!” (r)? — 2rm/(r) (m"(r) + rm® (r)) + 4m/(r)? = 0,
Reminiscent of
Schwarzschild term, Reisnner-Nordstrom term, string cloud term, de Sitter term
K 1

m(r)=M — — + Xr + gmﬁ with A\? = 2KA.
(8



GG systems: Equatlons of State 3

(A +12A)?
8mA(r? + a? cos? 0)?’
(A 4+ r2A) (X — r2A — 2a2%A cos? 0) )
8w A(r? + a? cos? 6)? ' “z

P =

GGEOS:
A Vacuum energy like
at p=pa =/\/8m,
electromagnetic
8?]- like at p>>A

(p—pL)’ =4p—

_/




m=Ar%6, - de
Sitter in nonrotating
case

Previously studied,
name used in'*

has inhomogeneous
anisotropic
properties in
rotating case

Does not follow
vacuum energy
EQOS, does follow
GGEOS

Violates NEC,
except on equator

GG “Rotating de Sitter”

[~

n

={).2

FE I a

[1]N. Ibohal, Gen. Rel. Grav. 37, 19 (2005),
[2] |. Dymnikova, Physics Letters B 639, 368 (2006)
[3] E. J. Gonzalez de Urreta and M. Socolovsky, arXiv:1504.01728 (2015



GG Recap

Kerr-Schild nature, [(11)(1,1)] Segre type preserved

Eigenvalue degeneracy — freedom in eigenvectors. 4 velocity can be constructed, implies
same angular velocity for all m functions.

Equation of state preserved for Schwarzschild - Kerr and Reissner/Nordstrom —
Kerr/Newman

Vacuum energy equation of state, general nonlinear electrodynamics/nonsingular black holes:
alterations of equation of state, possible violation of NEC.

We derived the particular equation of state that is preserved GGEQOS, this can be examined

further, or in other contexts like Cosmology!

[1] P. Beltracchi JCAP 09 (2023) 010

1€



Drake-Szekeres for general systems

Write the metric of the general static spherically symmetric spacetime as

2
ds® = —f(r) dt* + % + 12 df* + r? sin® 0 dep?,
(r
with
2m(r) h(r)
hf )= l = . r)= . 1
() r 1) li(r))?

and j(r) defined in such a way that it is positive and real.
The corresponding rotating metric is

a®cos? 0 + r’h (h — j)r?ax

. . . . .
ds* = —% — dt* + 2sin* 0 - dt dp + — dr* + ¥ d6*+
Lf L? A
R R Y
Esingﬁ(a + jr )22 a*A sin o,
)

where ¥; = r%j(r) + a® cos? 0. As before, rewrite in terms of principal directions

TA 5 > sin? 0
ds? = —<5 (dt — asin’ 0dg)* + 5 dr® + T df” + S;; [(a® + jr?)d¢ — adt]’.
J J

-

N

-Again, a can be thought

of as the rotation
parameter

-When j=1, the systems
are Kerr-Schild and the
Gurses-Gursey metric is

recovered

J
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DS properties: EMT 1

The actual expressions for the EMT components are too long to fit on a slide, but using
the principal direction we can define tetrads and analyze the STRUCTURE in a Local

Lorentz frame

a?+jr? asinf
( \/ﬁ 0 = (B0 0 0 —&3p) -G.eneral property of\
0 1al g 0 . 0 i e6 0 ax1symmet.r1c EMT:
g% = x 1 — TV, = " 1 . R Block diagonal
0 0 \/; 0 0 012 g2 O structure with t¢ block
2 0 0 - ; \ £ &3[] 0 0 [13 } and 1‘9 blOCk
A7 sin 0v/% =
\ S ' -Tetrad does not
We assume A # 0 and ¢, = sign(A). The metric in this orthornormal frame is generally diagonalize
EMT, but we later
955 = Gape’a€’; = diag(—¢,, €4, 1, 1), show doing so is not

\ always possible /




DS properties: EMT2

The eigenvalues are

1/ 5 1/ -
,\fﬂ:E(Bmi Dm)? ,\3:5(3301 D30).

using the discriminants D and traces B the blocks, which are

Dys = (fiy — jio)? + 4¢,62,, Bz = iy + fis,

D3y = (i3 — jio)®> — 4€,63,  Bsp = iz + fio.

One expression of the eigenvectors in (0, 1,2, 3) is

V' = (630, 0, 0, A — o) Vi =

ﬁl: 0)

(Mg — fiz, 0, 0, £,030)

Vi = (0, 4612, My — V' = (0, Ay — fia, 612, 0).

A0
t¢ block r# block
D3y >0{ D=0 |D3y<0[Dig=0{Diy#0
030 = 0|30 #0
(L1 (L] 2 | [Z2Z] | [(A1)] | [11]
A<O0
rf block t¢ block
Di3>0 Di2=0 |Dy2<0[D3y=0{D3y #0
a12 = 0]d12 #0
L1 (| @ | 22 | o) | [

Complex conjugate and double null
eigenvector cases do not diagonalize
with a timelike LLF

\

/
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DS: “Spinning Minkowski”

In general, DS systems are very complex
One system where direct analysis is possible is using the spherical seed metric

ds* = —= dt? + dr? + r* df* + r* sin® 0 d¢?,
J
which corresponds to Minkowski space with a scaled time coordinate

If either a=0 (no rotation) or j=1 (typical time scaling), the Riemann tensor for the DS
“spinning” metric vanishes and it remains Minkowski space, but for arbitrary a, j there is
typically nontrivial curvature and an EMT



DS: “Spinning Minkowski” D,B

The Drake-Szekeres “spinning Minkowski” spacetime results in the following

expressions for the invariants Bis, B3y, D2, and Djg,

5 _“2(j_1) 242 2y 4 204,32 O Ok N |
By = m[—n (4r° + a”)x" — r*(457r° — 3ja” + 3a”)x" + jr ],
A — 1)? _ : _ - P
N = %:TEF‘E)E [nf’ [(J —1)(j —13)r* — 2(j + 11)a®r? -i-a"])(B Impprtapt prop.e.rtles.
i -a(J-1) in coefficient,
+2d°?[(j — 1)’ + (2° — 7§ — T)a’r® — 2(j — 5)a’]x° conditions for flat,
+74[(G — 1)(135 — 1)r* 4+ 2(752 + 75 — 2)a®r® + 2(25% + 115 + 2)a?] x* vacuum spacetime

-Terms in square

+ 2578 [(115 + D) + 2(55 — Da?]x? + 528, :
[ ] ] brackets are polynomial

. 23— 5,. - ' ' . . .

By = % [n,z(jrz — 72— a®)x* — (j — V)r¥(r? — 2a%)x? -i-jr“], in r, X, determine Segre
a®(j ;)2 type

r - — 6¢..2 2y 8 4.2¢1.2..2 2.2 2 B 24,6

D3y = m [r.r. (r* + a®)x® + a*r®(45°r* — 1857° + 13r* — 6ja” + 4a*)x°

+ a®r* (13522 — 1852 + 4r2 + 55%a% — 5a)x? + jr(jir? — 4ja® + 6a)x? — j%'“].

where we use the shorthand y = cos#.
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DS: “Spmmng Mmkowsk;” Segre types

[(11)1 1§

Notice when\

cos?(0)=1 we
ALWAYS have

some Cross-

block
degeneracy, we
look at which
in the next

cos
cos

-05/ j=1/10

=10 AN o— figure /
00 05 10 15 20 25 30

ria

Plots showing Segre types for values j = 1/10 on the left and j = 3 on the right. The
gray regions are where ﬁ;;g < 0 and the Segre type of the t¢ block is [Z 2]. The white regions are
where f)gn > 0 and the Segre type of the t¢ block is [11]. The boundary between the two regions
(shown as black) with Dsp = 0 are generally have Segre type [2] for the t¢ block. The blue line

shows the location where there is a cross block degeneracy.
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DS: “Spinning Minkowski” On axis cross
block degeneracy

Ate=Aip

Alo=Aip

Are=Atg

Arg=Atg

ria

Figure 2: This figure illustrates the particular cross-block degeneracies at x? = cos?6 = 1 for
various r/a,j. We have At"b = A, in light orange and ,\t'¢ = Afa in dark orange, both of these
indicate a [(1,1)] type degeneracy. We have Af, = A% in dark blue and A, = A, in light blue,

both of which are [(11)] cross block degeneracies.
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DS: “Spinning Minkowski” Non—appearing2
Segre types

* Segre types [31] and [(31)], i.e. triple null eigenvector types, can not occur for
any DS system due to the block structure of the EMT.

* [2(11)] and [(211)], i.e. one block with a double null eigenvector and the second
with degenerate eigenvalues, or with a double null eigenvector and all
degenerate eigenvalues, could in theory occur for a DS system but did not
appear here



DS Recap

Rotating DS systems can have widely variable behavior
Sorts of Matter or Fields described unclear

The only globally perfect fluid rotating NJ system is the vacuum Kerr solution, perfect fluid
may appear at isolated points

While this is more general than the GG version, the complexity makes it less used



2€

Conclusion

Newman-Janis algorithm and its generalizations allow for creation of rotating spacetimes from
non-rotating spacetimes

Rotating system generated may not correspond to something that can be easily interpreted as a
rotating version of the spherical system: Equations of state distortion, possible complex
eigenvalues...

One needs to analyze the EMTs of the spherical and corresponding generated rotating system
to determine the correspondance

Possible future: More recent work on alternate forms of the algorithm (e.g.! ) are similar to DS
but have different notation, this may lead to more usable expressions. Alternatively, further
examinations of systems using the algorithm (e.g."*-) may increase intuitive understanding of
how these systems may behave.

[1] M. Azreg-Ainou, Phys. Rev. D 90, 064041 (2014)
[2] A. Smailagic and E. Spallucci, Phys. Lett. B688, 82 (2010)
[3]C. Bambi and L. Modesto, Phys. Lett. B721, 329 (2013)



Thank You
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Backup 1: Kerr-Schild, [(11)(1,1)], and
nonsingular black holes

e The Anisotropic TOV can be loosely thought of as a static force balance equation

dp, _ (m+4mr’p,) (p + py) , 2pr - pr)

Pressure r e (] — %) | T " | Anisotropy
gradient Gravity

* 2m=r- denominator in gravity term goes to 0, “horizon condition”. Forces are unbalanced, or a
singularity exists.

e If p=-p, gravity term vanishes identically everywhere. Can have “balanced forces” on horizon (see
Reissner-Nordstrom for most basic example), popular with nonsingular black holes

e Segre type [(11)(1,1)] is the general type for spherically symmetric spacetimes which satisfy
pr=-p
* Spherically symmetric Kerr-Schild is Segre [(11)(1,1)], GG method generates a rotating spacetime



Backup 2: DS Expressions

N 24752 2y 2 3y
jlo = JQWEJEEI[ 8riuyim’ + (1 — x*)a*r’X%(4j + rj')y’
+8(j — 1)027"2 [(1 = x*)(r! = a'x") = 3rx*(Z + Z)m]
+4(j — 12228 [(1 — ) + r2(1 4X2)]]] (A.1a)
A 1 2552 2,401 _ L 2\52( 12
i = 32?TESEEI[ 8riEim’ + a®*r’(1 — x*)X5(5")

— 4r3%5' [2(1,2)(2((12 +1?) + (22 + (0% +r3)(r? - uZ)(z))j - 4mr2j] +

8a’r?y(j — l)[()(2 —5) +6r3(1 — x2) + 21‘)(2?’:1]—

4a®r?(j — 1)* [6?‘4()(2 —1D+r256+4) + 23072 1) - 61“3)(2m]]l (A.1b)
1

fia = m I[ — 4r2?8im" — 8a®)*E’m! — 4’8, (r? + @® — 2rm) 7+
T ;

riS2[7(a® + %) + £ — 16rm] (j')? + 4S5 {rm [—jr* (5a®x* + r?) + 15a*r*x? + 11a’x"
+37? [a*r® (2¢* +1) +a'x* (" +8) — '] — a®x* [0’ (7TX* + 6) + 4a’x* + 9r] + 3r*8%;m'}
+8(j — Datx*{E [m'r? (a®x* + 2jr* — %) = 5a%r* (3 — 1) — a'x* + '] + rm[3a’r’x* + 5a’x*
14— 3j(aPr®x + 2] } 40 - 123t + 1% + 5a'x® — 207 + a*x)a?r’x?

(A.1c)



Backup 2: DS Expressions 2

1 NORT 5 i & 4
i3 = PESESY I[ — 4r¥?Lim" — 8a®*x*LE;(3T — 2%;)m’ + 12r*E%5;5'm/
J

— 16r°%%m(5')? + 8r3828,mj" — 4r?X[jir? — a'x* + 5a%x%(Z; — 3%)Imj’
+8a’ry*(j — )[r* — a*x* — 3a®r*x2(j — 1) — 6(jr* — a*x")Jm — 4r%(a® + r?)Z2L;5"
+rE%[5a%(1 — x*) + 8E](5')?

— 4rE(6a’r?x? + 9a®r'x? + 4a®x* + Ta'r*x* + a®r'j + %5 — a'ir¥x® — 4a®r'x%j — 3a'r?x")5’
— 4a%%x%(j — 1)(a®r? + r* + 2a*%® + 5a’rix? — 3a®jr? — 3rtj — 3a2r2x2j)]l (3.11)
V/|Alsin 6 . o . . Bl et em
G = —Hﬂ—alﬁLrEl;;; I[— 2r(r’Z; + 22a%x2)j’ + =ri(§')? — BX;r%" — 2(j — 1)(r* — a®x2)(jr? - a‘axz)]]
J
(3.12)
X 3a’r cosOsqrt|Alsinf [, . : .
G12 = sﬂzzizL | [[2(3 —1)(a*x* —4r*) + Ezrj‘]] (3.13)
]

3C



