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Plan of the talk

. Review of quasi-local approach to black holes:

A. non-expanding horizons,

B. izolated horizons,

C. near-horizon geometry (NHG) equations.

. Coordinates adapted to tackle the axisymmetric problem. Proper
boundary conditions.

3. Solutions to axisymmetric NHG.

. Embedding in Kerr-(anti)de Sitter spacetime. Doubly-extremal
horizon.

. Extending results.
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Quasi-local framework

Killing horizons have many uses, especially
for typical black hole spacetimes. In
particular in black hole thermodynamics
or in Hawking’s rigidity theorem.

The idea is to relax definition of Killing horizon, while maintaining
conditions necessary to define meaningful physical quantities. It describes
horizon of black hole in exact or approximate equilibrium or in isolation.

While quasi-local approach works in arbitrary number of dimension, we
will be operating in 4-dimensional spacetime, obeying vacuum Einstein
equations:

1
R ~ QR@gW + Mg = 0. o)
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Non-expanding horizon

Let (H, g) be smooth, null hypersurface in spacetime, and let £ be its
tangent (and normal) vector. A is congruence of null geodesics generated
by £. We can define its expansion, which will be vanishing.

It follows, that others optical
scalars (shear and twist) also vanish,
thanks to Raychaudhuri equation.

We will also assume, that vector ¢
satisfies dominant energy /
conditions, that is /
—T140" (2)
b

is future-causal. A
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Horizon is topological product
H=AxR, (3)

where A is closed, 2-dimensional manifold. We are interested in case

A=S,.

Finally, we assume, that Einstein equations are satisfied oz a horizon.

5/24



Isolated horizon

y 8 y

flow of matter

flow... isolated

and energy

2

For black holes in equilibrium it should suffice to set geometry (covariant

derivative) of a horizon to be tzme-independent:

[£¢, D] = 0. (4)
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Rotation one-form and NHG equations

Covariant derivative of ¢
D" = w, (5)

defines rotation one-form w, which is tied to angular momentum of black
hole. The quantity
k) = % = D,* (6)

is called surface gravity. When %) = 0 horizon is called extremal
(degenerate).

Let A be spacelike section of H, transversal to £. Then vacuum Einstein
equations with A induce constraints

1 A
V (4wp) + wawp — ERAB + 54948 = 0, (7)
called near-horizon geometry (NHG) equations.
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By integrating NHG equation over whole A one can be show, that there
must be

S In o " Jn

It can be shown, that the only solution for A with genus G(A) greater
than 0 is

A__fuﬂn*_fgkﬁi_‘fw%7+>4W< G(A))' ®)

K=A w=0. (9)

It explain our interest with A = S, for

which:
A< —. (10)
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Adapted coordinates

We will be considering axisymmetric A, and so we will introduce
coordinates (6, ¢), such that symmetry is generated by 0. Then the
general form of g is

qupdxd:® = $*(0) (40> + sin® 0d¢?) . (11)
We next introduce coordinate x such that

¥2(0) sin

dx = %2

de, / n = 4TR>. (12)

Now metric is given by

4= R (le(x) i+ Pz(x)d¢2> P = 2P g
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Gaussian curvature is

which leads us to
K 1
Jj[nn::}i12 — AR* <1 (15)

Function P must admit following limits:

Plx==41) =0, 0.P*(x=+1)=F2.

(16)
These conditions follow from regularity of
metric and smooth functions on the poles,
and are equivalent to assuming, that circle
of radius 97, about pole x = %1 has length
2107 + o(7).
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We will use Hodge decomposition of rotation one-form
w = *dU + dlog B. 17)

Potentials U and B are functions of x only.
If we substitute decomposition into NHG equations, we end up with 3
difterential equations for U, B and function P

9?B— (0.U)’B=0 (18)
d.(B*0.U) =0 (19)

P2
(8 log B)> + —8,% log B

—ﬁ(a,cU)2 Rz 83P2 +A=0 (20)

From middle equation follows
B*0.U = Q (21)

and we must distinguish two classes of solutions: Q=0,andQ # 0.
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1. In case Q = 0 we get

U = const. = B = Bjx + By, (22)

but decomposition of w forces us to take B; = 0. It follows, that both
potentials are constant.

2. In case © # 0 we get

where
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Results for Q = 0
Functions U and B are constant, so:
w = xdU + dlog B = 0. (26)
Further integration yields
PP =1—4", (27)
which is equivalent to

1

AR2:1<:>A:K:ﬁ, (28)

This case describes non-rotating which corresponds to
spherically-symmetric horizon (x = cos 0):

g = R* (d6* + sin® 0d¢?) . (29)
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Results for Q £ 0

Further integration of NHG equations yields:

2(x — xo) 9.0+ 40)?

ovP*+ ———
) (O

P* = —2AR?. (30)

Constants xy and {2 can be eliminating by boundary conditions for P?:

, 1—3AR?
Itleads to
P (1) AR? (AR? — x*(AR* —1) = S) + 6 (32)
AR? + 3x2(AR% —1) — 3 ’
or
Pt — AR? QZ—F% (Qz 2) 2 Qz+l 2 (33)
T2 |01 ) 3"
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Positivity of 2% and P? constraints parameters in the following way:
1
ARZE]—OO,1[<:>A<ﬁ:K. (34)
One-form potentials are given by
B =B; [ +4’] and U = arctan (%) + Uy,  (39)

while rotation one-form is
x(1— AR?)
w = %
x2(1—AR?) + (1 — %ARZ)
1= AR)(1— 1ARY)
x2(1—AR?) + (1 — %ARZ)
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Kerr-(anti)de Sitter metric

Kerr-(anti)de Sitter metric has the form

A, . 9 2> Agsin®0 5 5 2
7= _szz (dt — asin Gdgi)) + W (adt —(r"+a )dqb)
PA\A T A,
(37)
where:
p2 =2 + 4% cos® 0
1

Ag =1+ gAaz cos®

(38)

1
le—}—gAdZ

1
A, = (r* +4%) <1 - 3Ar2> — 2Mr
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Vanishing of A, signifies horizons 7;. Orange and green colors signify
timelike and spacelike parts of spacetime. If two horizons merge (double
root of A,.), then their surface gravity must vanish — they are extermal.
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l l r=20
7 \

Vanishing of A, signifies horizons 7;. Orange and green colors signify
timelike and spacelike parts of spacetime. If two horizons merge (double
root of A,.), then their surface gravity must vanish — they are extermal.
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Embedding in Kerr-(anti)de Sitter

By comparing metric of Kerr-(anti)de Sitter’s horizon (constant  and ¢,
A,(r9) = 0) with our form we get:

1A 2.2
1+ 3Aa°x% 72 + 42 . ro+a?

, _ e (3
1+ 3A2% 7§ +a’x? 14 3Aa? (39)

P* = (1—x%

Vanishing of determinant of A, (multiple roots) in our parametrization

yields:
3R*(1— AR?)
AR? —3)(AR?> - 2)

:<
2 [ R (3—2ARY)*
M=3 2 — AR? (3 — AR?)(2 — AR?)

42

(40)
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Embedding in Kerr-(anti)de Sitter

Function P? is given by

AR? (AR? — x*(AR?> —1) —5) + 6

PP = (* -1 41
N V N Ty Vo (1)

while parameters are constrained by
AR? €] — 00,1], (42)

where limit AR? = 1 recovers non-rotating case.

These results agree with earlier ones.
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Doubly extremal horizon - triple root

A (r)

L 2
~N
I
(=]

n=nr2=rmr;

We have analysed the case of triple root of A,.:

AR2:3_\/§ for rlzr2:r3=R\/\/§—1 (43)

2
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Roots

A+ VB+cvVa

_ v ,

= VA= VE=CVA (44)
Y :

_VA+VB-CV4,

_ - ,

(2AR? — 3)?
A (AR? —2) (AR% —3)’
3 R?*(AR? +3)
T oA T 2(ARZ—3)(ARZ —2)’
R2

C=2V2\| ———.
V2 2 — AR?

7

73

where

A=

B
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Extending results

We could consider electro-vacuum, that is space time obeying
1
Ry — ERgW + Agpy = 87T, (46)

It will change NHG equation in such a way, that previous solution for P?
will be changed by function 2 describing e-m field, and decomposed into
U and B:

P P +a, (47)

em)

where P? is given as in (33), but with

2AR? + \/4 (3 —2AR?)* — 184 (1 — 1AR?)
0? = . (48)
3(2 — 2AR2)

Parameters still seem to obey the same constraints: AR? < 1.

23/24



Thank You for Your attention.
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