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Plan of the talk

1. Review of quasi-local approach to black holes:
A. non-expanding horizons,
B. izolated horizons,
C. near-horizon geometry (NHG) equations.

2. Coordinates adapted to tackle the axisymmetric problem. Proper
boundary conditions.

3. Solutions to axisymmetric NHG.
4. Embedding in Kerr-(anti)de Sitter spacetime. Doubly-extremal

horizon.
5. Extending results.
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Quasi-local framework

Killing horizons have many uses, especially
for typical black hole spacetimes. In
particular in black hole thermodynamics
or in Hawking’s rigidity theorem.

The idea is to relax de�nition of Killing horizon, while maintaining
conditions necessary to de�ne meaningful physical quantities. It describes
horizon of black hole in exact or approximate equilibrium or in isolation.

While quasi-local approach works in arbitrary number of dimension, we
will be operating in 4-dimensional spacetime, obeying vacuum Einstein
equations:

R(g)
µν −

1
2
R(g)gµν + Λgµν = 0. (1)
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Non-expanding horizon

Let (H , q) be smooth, null hypersurface in spacetime, and let ` be its
tangent (and normal) vector. H is congruence of null geodesics generated
by `. We can de�ne its expansion, which will be vanishing.

It follows, that others optical
scalars (shear and twist) also vanish,
thanks to Raychaudhuri equation.

We will also assume, that vector `
satis�es dominant energy
conditions, that is

−T a
b`

b (2)

is future-causal. ∆

H

dS̃

`
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. . .

Horizon is topological product

H ∼= ∆× R, (3)

where ∆ is closed, 2-dimensional manifold. We are interested in case
∆ ∼= S2.

Finally, we assume, that Einstein equations are satis�ed on a horizon.
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Isolated horizon

�ow . . . isolated
�ow of matter

and energy

For black holes in equilibrium it should su�ce to set geometry (covariant
derivative) of a horizon to be time-independent:

[L`,D] = 0. (4)
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Rotation one-form and NHG equations

Covariant derivative of `
Da`

b = ωa`
b, (5)

de�nes rotation one-form ω, which is tied to angular momentum of black
hole. The quantity

κ(`) = ωa`
a = Da`

a (6)

is called surface gravity. When κ(`) = 0 horizon is called extremal
(degenerate).

Let ∆ be spacelike section of H , transversal to `. Then vacuum Einstein
equations with Λ induce constraints

∇(AωB) + ωAωB −
1
2
RAB +

Λ

2
qAB = 0, (7)

called near-horizon geometry (NHG) equations.
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By integrating NHG equation over whole ∆ one can be show, that there
must be

Λ =

∫
ω2η∫
η

+

∫
∆ Kη∫
η

=

∫
ω2η∫
η

+
4π∫
η

(
1− G (∆)

)
. (8)

It can be shown, that the only solution for ∆ with genus G(∆) greater
than 0 is

K = Λ, ω = 0. (9)

It explain our interest with ∆ ∼= S2, for
which:

Λ ≤ 4π∫
η
. (10)
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Adapted coordinates

We will be considering axisymmetric ∆, and so we will introduce
coordinates (θ, φ), such that symmetry is generated by ∂φ. Then the
general form of q is

qABdxAdxB = Σ2(θ)
(
dθ2 + sin2 θdφ2) . (11)

We next introduce coordinate x such that

dx =
Σ2(θ) sin θ

R2 dθ,
∫
η = 4πR2. (12)

Now metric is given by

q = R2
(

1
P2(x)

dx2 + P2(x)dφ2
)
, P2(x) =

Σ2(θ) sin2 θ

R2 . (13)
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Gaussian curvature is
K = − 1

2
1
R2∂

2
xP

2, (14)

which leads us to ∫
Kη∫
η

=
1
R2 =⇒ ΛR2 ≤ 1. (15)

x = 1

x = −1

Function P must admit following limits:

P(x = ±1) = 0, ∂xP2(x = ±1) = ∓2.
(16)

These conditions follow from regularity of
metric and smooth functions on the poles,
and are equivalent to assuming, that circle
of radius δr, about pole x = ±1 has length
2πδr + o(r).
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We will use Hodge decomposition of rotation one-form

ω = ?dU + d log B. (17)

Potentials U and B are functions of x only.
If we substitute decomposition into NHG equations, we end up with 3
di�erential equations for U , B and function P:

∂2
xB−

(
∂xU

)2B = 0 (18)

∂x
(
B2∂xU

)
= 0 (19)

2
PP,x

R2 ∂x log B +
P2

R2 (∂x log B)2 +
P2

R2 ∂
2
x log B

−P2

R2 (∂xU )2 +
1
2

1
R2 ∂

2
xP

2 + Λ = 0 (20)

From middle equation follows

B2∂xU = Ω̃ (21)

and we must distinguish two classes of solutions: Ω̃ = 0, and Ω̃ 6= 0.
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1. In case Ω̃ = 0 we get

U = const. =⇒ B = B1x + B0, (22)

but decomposition of ω forces us to take B1 = 0. It follows, that both
potentials are constant.

2. In case Ω̃ 6= 0 we get

B2 = B2
0
[
Ω2 + (x − x0)2] (23)

U = arctan

(
x − x0

Ω

)
+ U0, (24)

where

Ω =
Ω̃

B2
0
. (25)
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Results for Ω̃ = 0
Functions U and B are constant, so:

ω = ?dU + d log B = 0. (26)

Further integration yields

P2 = 1− x2, (27)

which is equivalent to

ΛR2 = 1⇐⇒ Λ = K =
1
R2 , (28)

This case describes non-rotating which corresponds to
spherically-symmetric horizon (x = cos θ):

q = R2 (dθ2 + sin2 θdφ2) . (29)
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Results for Ω̃ 6= 0
Further integration of NHG equations yields:

∂2
xP

2 +
2(x − x0)

(x − x0)2 + Ω2∂xP
2 +

4Ω2

[(x − x0)2 + Ω2]2P
2 = −2ΛR2. (30)

Constants x0 and Ω can be eliminating by boundary conditions for P2:

x0 = 0, Ω2 =
1− 1

3 ΛR2

1− ΛR2 . (31)

It leads to

P2 =
(
x2 − 1

) ΛR2 (ΛR2 − x2(ΛR2 − 1)− 5
)

+ 6
ΛR2 + 3x2(ΛR2 − 1)− 3

, (32)

or

P2 =
ΛR2

Ω2 + x2

{
Ω2 + 1

3
Ω2 − 1

(
Ω2 − x2)− x2

(
Ω2 +

1
3
x2
)}

(33)
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Positivity of Ω2 and P2 constraints parameters in the following way:

ΛR2 ∈ ]−∞, 1[⇐⇒ Λ <
1
R2 = K . (34)

One-form potentials are given by

B2 = B2
0
[
Ω2 + x2] and U = arctan

( x
Ω

)
+ U0, (35)

while rotation one-form is

ω =
x(1− ΛR2)

x2(1− ΛR2) + (1− 1
3 ΛR2)

dx

± P2

√
(1− ΛR2)(1− 1

3 ΛR2)

x2(1− ΛR2) + (1− 1
3 ΛR2)

dφ

(36)
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Kerr-(anti)de Sitter metric

Kerr-(anti)de Sitter metric has the form

g = − ∆r

χ2ρ2

(
dt − a sin2 θdφ

)2
+

∆θ sin2 θ

χ2ρ2

(
adt − (r2 + a2)dφ

)2

+ρ2
(
dr2

∆r
+

dθ2

∆θ

)
(37)

where:
ρ2 = r2 + a2 cos2 θ

∆θ = 1 +
1
3

Λa2 cos2 θ

χ = 1 +
1
3

Λa2

∆r = (r2 + a2)

(
1− 1

3
Λr2
)
− 2Mr

. (38)
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r1 r2 r3

∆r(r)

r = 0

Vanishing of ∆r signi�es horizons ri. Orange and green colors signify
timelike and spacelike parts of spacetime. If two horizons merge (double
root of ∆r), then their surface gravity must vanish – they are extermal.
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r1

r2 = r3

∆r(r)

r = 0

Vanishing of ∆r signi�es horizons ri. Orange and green colors signify
timelike and spacelike parts of spacetime. If two horizons merge (double
root of ∆r), then their surface gravity must vanish – they are extermal.
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Embedding in Kerr-(anti)de Sitter

By comparing metric of Kerr-(anti)de Sitter’s horizon (constant r and t,
∆r(r0) = 0) with our form we get:

P2 = (1− x2)
1 + 1

3 Λa2x2

1 + 1
3 Λa2

r2
0 + a2

r2
0 + a2x2 , R2 =

r2
0 + a2

1 + 1
3 Λa2 . (39)

Vanishing of determinant of ∆r (multiple roots) in our parametrization
yields:

a2 =
3R2(1− ΛR2)

(ΛR2 − 3)(ΛR2 − 2)

M =
2
3

√
R2

2− ΛR2
(3− 2ΛR2)2

(3− ΛR2)(2− ΛR2)

. (40)
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Embedding in Kerr-(anti)de Sitter

Function P2 is given by

P2 =
(
x2 − 1

) ΛR2 (ΛR2 − x2(ΛR2 − 1)− 5
)

+ 6
ΛR2 + 3x2(ΛR2 − 1)− 3

(41)

while parameters are constrained by

ΛR2 ∈]−∞, 1], (42)

where limit ΛR2 = 1 recovers non-rotating case.

These results agree with earlier ones.
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Doubly extremal horizon – triple root

r1 = r2 = r3

∆r(r)

r = 0

We have analysed the case of triple root of ∆r:

ΛR2 =
3−
√

3
2

for r1 = r2 = r3 = R
√√

3− 1 (43)
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Roots

r1 =
−
√
A +

√
B + C

√
A√

2
,

r2 =

√
A−

√
B− C

√
A√

2
,

r3 =

√
A +

√
B− C

√
A√

2
;

(44)

where

A =
(2ΛR2 − 3)2

Λ (ΛR2 − 2) (ΛR2 − 3)
,

B =
3

2Λ
+

R2(ΛR2 + 3)

2(ΛR2 − 3)(ΛR2 − 2)
,

C = 2
√

2
√

R2

2− ΛR2 .

(45)
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Extending results

We could consider electro-vacuum, that is space time obeying

Rµν −
1
2
Rgµν + Λgµν = 8πTµν . (46)

It will change NHG equation in such a way, that previous solution for P2

will be changed by function a describing e-m �eld, and decomposed into
U and B:

P2
(e-m) = P2 + a, (47)

where P2 is given as in (33), but with

Ω2 =
2ΛR2 +

√
4 (3− 2ΛR2)2 − 18a (1− 1ΛR2)

3 (2− 2ΛR2)
. (48)

Parameters still seem to obey the same constraints: ΛR2 ≤ 1.
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Thank You for Your attention.
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