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Vaidya Metric

Let us begin with a simple model of the process of black
hole evaporation:

* The far past is an empty flat space
* At advanced time v = 0 a null shockwave with a total
energy M is sent in.This infinitely thin collapsing shell of

matter eventually forms a Schwarzschild black hole of
mass M.

* Corresponding metric:

2M
g=- (1 — TG(v)) dv? + 2dvdr + r2dQ?,

where 6(v) is the Heaviside step function.



Scalar perturbations in the Vaidya spacetime

Consider a real massless scalar field ®(x) in the Vaidya spacetime.The Kelin-Gordon equation,
V,VED(x) = 0, after the separation of variables:

1 > .
2 =) [ dw e Ry Yin(6,0).
m "9

reduces to

d2
( T V(r*)> Rwl — ZRwl!

dr2
dr

1-2M/r
(v > 0), and 1, = r in the flat space region (v < 0). Effective potential:

V(n) = (1 - Z—MH(U)> [l(l DM ).
r r r

where t = v — 1, and 1, is the tortoise coordinate, dr, = in the Schwarzschild region




Scalar perturbations in the Vaidya spacetime

x-=J7 1 elw(t+r)

2 \/m r Ylm(g) (p)

Positive-frequency modes on 77: p 1 (X)

x—J%t 1 e—ia)(t—r)

* Positive-frequency modes on 7*:  h;,(x) — T Y, (6, @)

r

* We can express the field ®(x) as a sum of these modes:

d(x) = j dw Z ApimPoim(X) + Awlmpa)lm(x))

Part supported
f dw z wlm a)lm(x) + Ba)lm wlm(x)) T ( pI') ] )

in the BH interior

* Upon quantization, A ,;;,, Byim are anihilation operators, which allow us to formulate a definition of
“’particles”.



Review of the Hawking’s argument

Assume that there are no scalar particles on 77, i.e.:
|state of the system) = |0), s. t. Ayiml|0) =0 Vo,l,m.

The goal is to find the Bogoliubov transformation between positive-frequency modes on 3~ and
J*:

R :J dw,(aa)a)’pa)’ +:8wa)’pz)’)'
0

where we omitted the indices [, m since the angular momentum is conserved. The expectation
value of the particle numer operator on J* reads:

(N}) = (0|B] B, |0) = J dw'|B,,,12%.
0



Review of the Hawking’s argument

Focus on wavepackets localized near the horizon. Since there is an infinite
blueshift near the horizon, such wavepackets can be relatively well localized
also in the momentum space, so on their suport they can be approximated

by h,,.

By a general ray-tracing argument Hawking argued that the Bogoliubov
coefficient satisfy

|aww’| — enw/Kllgww’ |;

where k = 1/4M is the Surface gravity of the Schwarzschild black hole.
Then, completeness relation:

D (2P = 1B = 1,
(1)’

implies:

<N+> — ZLB(U(U 627-[(1)/]( —1




Hawking quanta far away from the horizon

* For high frequencies w > M~! we can solve the radial equation
without the near-horizon limit:

l dr2

* In the case of Vaidya spacetime we can infer the relations between
him and D m from a continuity condition across the shockwave

{v =0}

R, = w?R,; = R, ()= eii“”*(l + O(a)‘l)).

he

= do' (a,, . p,. + TN
o= | 90 @ v B P,

z 1)+ zero — frequency
=L dw(wwrp + Buo’ p())v_0+< part )

where p,, = p(g)l) p(z) + pf) ,p(gl) =p, 0wy —v)and § - 0.




Hawking quanta far away from the horizon

N\1/2 oo i
1/w T 4iMw ,
) = — | — d (__ 1) 2i(w+w’)r
Paw n(a)) LM " \2m °

and a,, ' = B, _,'- The relation |a /| = exp( ) |8, is not satisfied!

* We obtain:

* Expectation value of the number operator is logarithmically divergent at UV, so we need to
introduce a UV-cutoff A > w. Then:

+\ A / 2 _ 2M 1 0
N5 = | Ao Bt = " g loB (/) + 0]

where Sy = 8M is the inverse Hawking temperature.

* We have a non-thermal dependence « log(A/w).



Thermodynamic interpretation

N modes localized in position space.Together they form the wave h,.

Think of h,, as N boxes with photon gas. Let 6V be the volume of the
box at position 7;. Assume that the box at position 7; has temperature

o _AM( 2M\" ke,
b 2mr? r -2’

where «; is the acceleration of an observer who sits at constant r = 7;.
Take constant density of states: §dp;(w)dw = C - 6r - dw.

Free energy:

A hC (% A
F = —Z Tij dw §p;(w) log(1 — e=Fi@) = ——f dw log (_) log(1 — e~Fuhe)
. 0 21 ), w

l



Thermodynamic interpretation

A hc * A
F = —Z Tl-j dw §p;(w) log(1 — e Fih®) = —— | dwlog <_> log(1 — e~PHhe)
: 0 21 J, W

Effectively, we have a thermodynamic system at temperature T, with density of states:

A
p(w)dw ~ log <5> dw

To derive this result we took the limit N — oo, with Y. §7; — | dr and changed the order integration.Then the UV
cutoff in momentum space translates into a position-space cutoff:

0o A 00 0e) W 2
j drj dw ~ j dwj dr > b=2M (—) + O(A™3).
oM Jo 0 2M+b A

If we fix the position-space UV-cutoff, then log (%) = %log(ZM/b) is independent of w.
Entropy: S = — %F x log (%), resembles the formula for the entanglement entropy of a system in the 2d CFT.
H



Simple model of backreaction — is formation of a non-extremal black hole possible?

iO

Dynamical part of the spacetime.
A little bit of Hawking radiation is
created here, at early times

Energy of the shockwave is

decreased:
M- M-—06U




Simple model of backreaction — is formation of a non-extremal black hole possible?

iO

Dynamical part of the spacetime.
A little bit of Hawking radiation is
created here, at early times

Energy of the shockwave is

decreased:
M- M-—06U

Large number of Hawking quanta is created at later times:

Uy awking ~ M

Semi-classical horizon is shifted to 1y, = Z(M — UHawking)




Simple model of backreaction — is formation of a non-extremal black hole possible?

i+

Classical event horizon,
r=2M

Region where large
number of Hawking
quanta is created.




Simple model of backreaction — is formation of a non-extremal black hole possible?

Region where large
number of Hawking
quanta is created.

l

:+

Energy of the shockwave gradually decreases.
When the shockwave reaches r = 0, its
energy vanishes. No singularity is formed.

Classical event horizon,
r=2M




Simple model of backreaction — is formation of a non-extremal black hole possible?

it Energy of the shockwave gradually decreases.
When the shockwave reaches r = 0, its
energy vanishes. No singularity is formed.

3+
. . Classical event horizon,
. /
Region where large , r=2M
number of Hawking 4
quanta is created. ., iY

- Because of backreaction, no event horizon is
formed and there is no sigularity. We are left
with an ordinary scattering problem in an
asymptotically flat spacetime!




Simple model of backreaction — is formation of a non-extremal black hole possible?

Divide a surface v = const. > 0 into small compartments of fixed affine length §7, and assume that the
compartment at v = 7; is filled with an ideal gas at Unruh temperature T;.

Free energy of the system at position 7;:

® w
5Ui — 5Ti : f dw p(a))
0

exp(hw/T;) — 1

Primitive model of backreaction:

w
exp(hw/T;) — 1

M(r) = M(o0) + fo:dr’ jooo dw p(w)

For p(w) = ¢y - w, with suitable ¢, we can make the whole black hole evaporate
M(r=0) =0,

and recover the Bekenstein-Hawking formula for the black hole entropy from the standard thermodynamic

formula:

s=-28 _ 4am?
= aTH—n :



Hawking radiation of an extremal Reissner-Nordstrom black hole

Consider an extremal Reissner-Nordstrom-Vaidya metric:
M 2
g=- (1 — 70(1})) dv? + 2dvdr + r?dQ2.

From a simple generalization of the procedure of gluing scalar modes (in the WKB approximation) across the
shockwave v = 0 one can calculate Bogoliubov coefficients between:

0(7, _ TH) e—ia)v+2ia)r* . dr
h, = T ” , with dr, = A= M/r)? for v>0
and i
Pow = = on J.
Then: 1
aa’ %e‘”’”(wf“") (w:_ww,)iHlM“’ Kiiaivo (8M\/a)(a) + a)’))

(NE) = | der |Buul? < oo
0



Kerr-Vaidya black hole

Simplest model of formation of a Kerr black hole:

A
g=-= (dv — asin? 8 d¢)? + 2dr(dv — asin? 6 do) +
sin” 0

5 ((r? + a®)d¢ — adv)2

+>d6? +

where A = 2 — 2M(V)r + a? with M(v) = M - 0 (v).

Problems with Kerr-Vaidya:

* Corresponding stress tensor does not satisfy the Null Energy
Condition.

* For M = 0 we have a singularity at 7 = 0 and 6 = /2.

Nevertheless, for M(v) = M - 8(v) we can solve Ring singularity
equations of motion in the WKB approximation in
separately in regions v < 0 and v > 0. .



Two approximations

Klein-Gordon equation in Kerr spacetime, after a separation of variables:

o(t,7,0,¢0) = e_iwteim(pslmw (O)Ryim (1),
reduces to a Heun equation:

d A d (2Mr, — am)? (2Mr_w — am)?
dr dr T (r—r)(0y —1) - (r—r)(ry—1r)

+ (r2 4 2M(r + 2M))w?|R(r) = K1 R().

To get some analytical expressions, we need to do approximations:

r 1 dr
|.  WKB approximation: w > 1/M =y R . (1) = ;exp(iw’r*), dr, = AT
2. Low-energy approximation: wr<1l or r>M.

» R
Hypergeometric equation Bessel equation

p | ¥

Can be glued together at such 7 that both
conditions wr <K 1 and r > M are satisfied.



High-energy quanta in Kerr

D —e LWwVY+21lwT: ’ ha) ~—p LWV+21wT: ’
T r
Since p( ) e TlWVH2I0Y {51 certain coordinate y, the Bogoliubiv

T'
coefficients are given by Fourier coefficients of 7 - h, (=0} treated as a

function of y.

1 imQ,
1 (w"\2 (® 7 = wlm/o‘)2 r—ry Ky im arctan(r) " rlz - lem/(")2
r=—(— dr [ 1+ / + | & [—2m )] x
Puw 21r<a)) _L r( r2 + a? rT—1 ¢ exp |iw'| 7 _L r r'2 +a?

1 1 r "4y a2r'(r' 4+ 2M) — A(rDK 2
iw' <T+2—10g<i—1>+;10g<1—1>+f d’r"\/r a’r'(r ) (T‘) wim/® )"
o - T

i T ) r'—-r)@" —r)

X exp

Contribution from the near-horizon region (which gives the logarithmically

divergent part of the particle number on 77):
1

"\2 L _tmi, iw imQ+>

Bww' ~ <£> (2ir+(a) + a)’))1+ Ky 2K4 [‘(1 + _

W Ky 2K,

A 27 ma, -
(N}) ~ log (Z) Iexp (Z <a) =— )) — 1]




High-energy quanta in Kerr

D —e LWwVY+21lwT: ’ ha) ~—p LWV+21wT: ’
T r
Since p( ) e TlWVH2I0Y {51 certain coordinate y, the Bogoliubiv

T'
coefficients are given by Fourier coefficients of 7 - h, (=0} treated as a

function of y.

1 imQ.,

1 (02 (% ’rz — Koim/w? rerm\ im arctan(Z " , r'? — K yim/w?
wa,:%(;) fmdr<1+ = e e ()exp iw' r+fr+dr W X
. r 1 r T T 2+ 2M) — A Ky @2
iw' r+—log<——1>+—log<__1>+f dr’\/ (’ )’ (r')Keim/ '

2y AT A s . =)@ = 1)

Contribution from the near-horizon region (which gives the logarithmically

divergent part of the particle number on 77):
1

X exp

w' 5 . 1+ lw imQy i imQ+
Pow' ~ <;> (2iry(w + @)+ 2 r<1 t T o
~1
. A 21 m9+\ Contribution from the angular momentum
(N3) ~log|—)|exp| —| w — —1 .
w Ky R does not agree with the standard results!?




Hawking radiation of low-energy quanta

For low-energy modes p,,, h,, we cannot identify h,, = . (@, ,'P, +
Bue’Py’) With an invertible integral transform.

To find 8,/ calculate the symplectic product between h,, and p,,:

Bow = —Burlhy), i j dot(x) @Cx) 3, Bx)
)

shockwave __ . [ 2 (—i)l+1i (2) iw'r, i,
B =if,,drr <—zﬁ ﬁH 2(a) r)e d. el TR, (1) |,

V2w wr\! 2M\ ™M 41 _ _ 2M
Ry(wr €« 1) = ——a—— (—) 1--— it R =14 2iMw, —1 + 2iMw; —21;"—
or(341) \ 2 r r
2
I+2

Note that B5'%*W¢ ~ »""2 - the ,,grayody factor” from the standard

analysis is already encoded in IBShOCkWavg




Hawking radiation of gravitons

Quantize perturbations hy, of an asymptotically flat black hole metric g, .
On J* we have:

2M
g=n + Tduz +r CABdQAdQB + ..

r—>oo v

o = Jim Shap, = Y [T (8" (0ba () + £, (DD (T))
a=%

These quantities are directly related to the Newman-Penrose coefficient ¥, = —W,,, ,,n*m"n’m?:
LIJ—l]V“ mAm? Ny = 02C
4= 50 Apmm-, AB = Oylap,

Hence, for the Kerr background g,,,,, ux (t,7, 8, @) solve the Teukolsky equation — we can separate variables and

label the modes by w, [, m:
uw,l,m(x) = e_ithzSan) (Q)Q_imchwl(T);

d d
AS—At— —V(@)|R(r) =0
dr dr



Can soft hair of black holes modify the spectrum of Hawking quanta?

Supertranslated Schwarzschild black hole metric:

2M
g=(1+%L¢)g, g=- (1 — 7) dv? + 2dvdr + r?y,5d04d65,

1 1
Sp =10y +;DAf d4 _szf 0

h,, solves linearized Einstein ‘ h,, = (1 + Lg)hw solves linearized Einstein
equations in backgroud g

equations in backgroud g = (1 + Lg)g_

In the WKB approximation, Bogoliubov coefficients read:

(“‘))l%m' — jvolsz j dr 4w’ e2iw'r Y 1(64) heyim (x — ff(x))
TH

The only term dependent on the
supertranslation.




Can soft hair of black holes modify the spectrum of Hawking quanta?

In the WKB approximation, Bogoliubov coefficients read:

w Lt — jvolsz j dr 4T’ i@’ Y 1(64) heyim (x — ff(x))
TH

Influence of supertranslations on the Hawking spectrum was investigated in [JHEP02(2021)038, JHEPO1(2019)089],
where it was argued that supertranslations do not modify |5, | at all.

However, because of the r-dependent part of {¢, we in our case |, | is slightly modified.

But the divergent part of fooo dw’|B,,|* is not changed.



Can soft hair of black holes modify the spectrum of Hawking quanta?

In the WKB approximation, Bogoliubov coefficients read:

w Lt — jvolsz j dr 4T’ i@’ Y 1(64) heyim (x — ff(x))
TH

Influence of supertranslations on the Hawking spectrum was investigated in [JHEP02(2021)038, JHEPO1(2019)089],
where it was argued that supertranslations do not modify |5, | at all.

However, because of the r-dependent part of {¢, we in our case |, | is slightly modified.

Can we find a Generalized Gibbs Ensable-like spectrum?

(Ny o) ~ (ePo+iidiai 1)‘1

w,qi
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