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Vaidya Metric

Let us begin with a simple model of the process of black 

hole evaporation:

• The far past is an empty flat space

• At advanced time 𝑣 = 0 a null shockwave with a total

energy 𝑀 is sent in. This infinitely thin collapsing shell of 

matter eventually forms a Schwarzschild black hole of 

mass 𝑀.

• Corresponding metric:

𝑔 = − 1 −
2𝑀

𝑟
𝜃 𝑣 d𝑣2 + 2d𝑣d𝑟 + 𝑟2dΩ2,

where 𝜃 𝑣 is the Heaviside step function.



Scalar perturbations in the Vaidya spacetime

Consider a real massless scalar field Φ 𝑥 in the Vaidya spacetime. The Kelin-Gordon equation, 

∇𝜇∇
𝜇Φ 𝑥 = 0, after the separation of variables:

Φ 𝑥 =
1

𝑟
෍

𝑙,𝑚

න
0

∞

d𝜔 𝑒−𝑖𝜔𝑡 𝑅𝜔𝑙 𝑟∗ 𝑌𝑙𝑚 𝜃, 𝜑 ,

reduces to

−
d2

d𝑟∗
2 + 𝑉 𝑟∗ 𝑅𝜔𝑙 = 𝜔2𝑅𝜔𝑙 ,

where 𝑡 = 𝑣 − 𝑟∗ and 𝑟∗ is the tortoise coordinate, d𝑟∗ =
𝑑𝑟

1−2𝑀/𝑟
in the Schwarzschild region 

𝑣 > 0 ,  and 𝑟∗ = 𝑟 in the flat space region (𝑣 < 0). Effective potential:

𝑉 𝑟∗ = 1 −
2𝑀

𝑟
𝜃 𝑣

𝑙 𝑙 + 1

𝑟2
+
2𝑀

𝑟3
𝜃 𝑣 .



Scalar perturbations in the Vaidya spacetime

• Positive-frequency modes on ℐ−:   𝑝𝜔𝑙𝑚 𝑥
𝑥→ℐ− 1

4𝜋𝜔

𝑒−𝑖𝜔 𝑡+𝑟

𝑟
𝑌𝑙𝑚 𝜃, 𝜑

• Positive-frequency modes on ℐ+:    ℎ𝜔𝑙𝑚 𝑥
𝑥→ℐ+ 1

4𝜋𝜔

𝑒−𝑖𝜔 𝑡−𝑟

𝑟
𝑌𝑙𝑚 𝜃, 𝜑

• We can express the field Φ 𝑥 as a sum of these modes:

Φ 𝑥 = න
0

∞

d𝜔 ෍

𝑙,𝑚

𝐴𝜔𝑙𝑚𝑝𝜔𝑙𝑚 𝑥 + 𝐴𝜔𝑙𝑚
† 𝑝𝜔𝑙𝑚

∗ 𝑥

= න
0

∞

d𝜔 ෍

𝑙,𝑚

𝐵𝜔𝑙𝑚ℎ𝜔𝑙𝑚 𝑥 + 𝐵𝜔𝑙𝑚
† ℎ𝜔𝑙𝑚

∗ 𝑥 +
Part supported
in the BH interior

• Upon quantization, 𝐴𝜔𝑙𝑚, 𝐵𝜔𝑙𝑚 are anihilation operators, which allow us to formulate a definition of 

”particles”.



Review of the Hawking’s argument

Assume that there are no scalar particles on ℐ−, i.e.:

state of the system = 0 , s. t. 𝐴𝜔𝑙𝑚 0 = 0 ∀ 𝜔, 𝑙, 𝑚.

The goal is to find the Bogoliubov transformation between positive-frequency modes on ℐ− and 

ℐ+:

ℎ𝜔 = න
0

∞

d𝜔′ 𝛼𝜔𝜔′𝑝𝜔′ + 𝛽𝜔𝜔′𝑝𝜔′
∗ ,

where we omitted the indices 𝑙, 𝑚 since the angular momentum is conserved. The expectation

value of the particle numer operator on ℐ+ reads:

𝑁𝜔
+ = 0 𝐵𝜔

†𝐵𝜔 0 = න
0

∞

d𝜔′ 𝛽𝜔𝜔′
2 .



Review of the Hawking’s argument

Focus on wavepackets localized near the horizon. Since there is an infinite

blueshift near the horizon, such wavepackets can be relatively well localized

also in the momentum space, so on their suport they can be approximated

by ℎ𝜔.

By a general ray-tracing argument Hawking argued that the Bogoliubov

coefficient satisfy

𝛼𝜔𝜔′ = 𝑒𝜋𝜔/𝜅 𝛽𝜔𝜔′ ,

where 𝜅 = 1/4𝑀 is the Surface gravity of the Schwarzschild black hole.  

Then, completeness relation:

෍

𝜔′

𝛼𝜔𝜔′
2 − 𝛽𝜔𝜔′

2 = 1,

implies:

𝑁𝜔
+ =෍

𝜔′

𝛽𝜔𝜔′
2 =

1

𝑒2𝜋𝜔/𝑘 − 1



Hawking quanta far away from the horizon

• For high frequencies 𝜔 ≫ 𝑀−1 we can solve the radial equation

without the near-horizon limit:

−
d2

d𝑟∗
2
+ 𝑉 𝑟∗ 𝑅𝜔𝑙 = 𝜔2𝑅𝜔𝑙 ⇒ 𝑅𝜔𝑙 𝑟 = 𝑒±𝑖𝜔𝑟∗ 1 + 𝒪 𝜔−1 .

• In the case of  Vaidya spacetime we can infer the relations between

ℎ𝜔𝑙𝑚 and 𝑝𝜔𝑙𝑚 from a continuity condition across the shockwave

𝑣 = 0 :

ℎ𝜔 ቚ
𝑣=0

= න
0

∞

d𝜔′ 𝛼𝜔𝜔′ 𝑝𝜔′ + 𝛽𝜔𝜔′ 𝑝𝜔′
∗ ቚ

𝑣=0

= න
𝛿

∞

d𝜔′ 𝛼𝜔𝜔′ 𝑝
𝜔′
1
+ 𝛽𝜔𝜔′ 𝑝

𝜔′
1 ∗

ቚ
𝑣=0

+
zero − frequency

part
,

where 𝑝𝜔 = 𝑝𝜔
1
+ 𝑝𝜔

2
+ 𝑝𝜔

3
, 𝑝𝜔

1
= 𝑝𝜔 ⋅ 𝜃 𝑣0 − 𝑣 and 𝛿 → 0.



Hawking quanta far away from the horizon

• We obtain:

𝛽𝜔𝜔′ =
1

𝜋

𝜔′

𝜔

1/2

න
2𝑀

∞

d𝑟
𝑟

2𝑀
− 1

4𝑖𝑀𝜔

𝑒2𝑖 𝜔+𝜔
′ 𝑟

and 𝛼𝜔𝜔′ = 𝛽𝜔,−𝜔′ .  The relation 𝛼𝜔𝜔′ = exp
𝜋𝜔

𝜅
𝛽𝜔𝜔′ is not satisfied! 

• Expectation value of the number operator is logarithmically divergent at UV, so we need to 

introduce a UV-cutoff Λ ≫ 𝜔.Then:

𝑁𝜔
+ = න

0

Λ

d𝜔′ 𝛽𝜔𝜔′
2 =

2𝑀

𝜋

1

𝑒𝛽𝐻𝜔 − 1
log Λ/𝜔 + 𝒪 Λ0 ,

where 𝛽𝐻 = 8𝜋𝑀 is the inverse Hawking temperature. 

• We have a non-thermal dependence ∝ log Λ/𝜔 .



Thermodynamic interpretation

𝑁 modes localized in position space. Together they form the wave ℎ𝜔.

Think of ℎ𝜔 as 𝑁 boxes with photon gas. Let 𝛿𝑉 be the volume of the 

box at position 𝑟𝑖.  Assume that the box at position 𝑟𝑖 has temperature

𝑇𝑖 =
ℏ

2𝜋

𝑀

𝑟2
1 −

2𝑀

𝑟

1/2

=
ℏ𝛼𝑖
2𝜋

,

where 𝛼𝑖 is the acceleration of an observer who sits at constant 𝑟 = 𝑟𝑖. 
Take constant density of states:  𝛿𝜌𝑖 𝜔 d𝜔 = 𝐶 ⋅ 𝛿𝑟 ⋅ d𝜔.

Free energy:

𝐹 = −෍

𝑖

𝑇𝑖න
0

Λ

d𝜔 𝛿𝜌𝑖 𝜔 log 1 − 𝑒−𝛽𝑖ℏ𝜔 = −
ℏ𝐶

2𝜋
න
0

∞

d𝜔 log
Λ

𝜔
log 1 − 𝑒−𝛽𝐻ℏ𝜔



Thermodynamic interpretation

𝐹 = −෍

𝑖

𝑇𝑖න
0

Λ

d𝜔 𝛿𝜌𝑖 𝜔 log 1 − 𝑒−𝛽𝑖ℏ𝜔 = −
ℏ𝐶

2𝜋
න
0

∞

d𝜔 log
Λ

𝜔
log 1 − 𝑒−𝛽𝐻ℏ𝜔

Effectively, we have a thermodynamic system at temperature 𝑇𝐻, with density of states:

𝜌 𝜔 d𝜔 ∼ log
Λ

𝜔
d𝜔

To derive this result we took the limit 𝑁 → ∞, with σ𝑖 𝛿𝑟𝑖 →∫ d𝑟 and changed the order integration. Then the UV 

cutoff in momentum space translates into a position-space cutoff:

න
2𝑀

∞

d𝑟න
0

Λ

d𝜔 ∼ න
0

∞

d𝜔න
2𝑀+𝑏

∞

dr ⇒ 𝑏 = 2𝑀
𝜔

Λ

2

+ 𝒪 Λ−3 .

If we fix the position-space UV-cutoff, then log
Λ

𝜔
=

1

2
log 2𝑀/𝑏 is independent of 𝜔.

Entropy: 𝑆 = −
𝜕

𝜕𝑇𝐻
𝐹 ∝ log

2𝑀

𝑏
, resembles the formula for the entanglement entropy of a system in the 2d CFT.  



Simple model of backreaction – is formation of a non-extremal black hole possible?  

Σ
𝑣 = 0

Dynamical part of the spacetime.

A little bit of Hawking radiation is

created here, at early times

Energy of the shockwave is

decreased:

𝑀 → 𝑀 − 𝛿𝑈



Simple model of backreaction – is formation of a non-extremal black hole possible?  

Σ
𝑣 = 0

Dynamical part of the spacetime.

A little bit of Hawking radiation is

created here, at early times

Energy of the shockwave is

decreased:

𝑀 → 𝑀 − 𝛿𝑈

𝑣 = 0

Σ′

Large number of Hawking quanta is created at later times:

𝑈𝐻𝑎𝑤𝑘𝑖𝑛𝑔 ∼ 𝑀

Semi-classical horizon is shifted to 𝑟𝐻
′ = 2 𝑀 − 𝑈𝐻𝑎𝑤𝑘𝑖𝑛𝑔
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Simple model of backreaction – is formation of a non-extremal black hole possible?  
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Energy of the shockwave gradually decreases.  

When the shockwave reaches 𝑟 = 0, its

energy vanishes. No singularity is formed.



Simple model of backreaction – is formation of a non-extremal black hole possible?  

Region where large

number of Hawking 

quanta is created.

Classical event horizon,

𝑟 = 2𝑀

Energy of the shockwave gradually decreases.  

When the shockwave reaches 𝑟 = 0, its

energy vanishes. No singularity is formed.

Because of backreaction, no event horizon is

formed and there is no sigularity.  We are left

with an ordinary scattering problem in an 

asymptotically flat spacetime!



Simple model of backreaction – is formation of a non-extremal black hole possible?  

Divide a surface 𝑣 = const. > 0 into small compartments of fixed affine length 𝛿𝑟, and assume that the 

compartment at 𝑟 = 𝑟𝑖 is filled with an ideal gas at Unruh temperature 𝑇𝑖 .

Free energy of the system at position 𝑟𝑖 :

𝛿𝑈𝑖 = 𝛿𝑟𝑖 ⋅ න
0

∞

d𝜔 𝜌 𝜔
𝜔

exp ℏ𝜔/𝑇𝑖 − 1
Primitive model of backreaction:

𝑀 𝑟 = 𝑀 ∞ +න
∞

𝑟

d𝑟′න
0

∞

d𝜔 𝜌 𝜔
𝜔

exp ℏ𝜔/𝑇𝑖 − 1
.

For 𝜌 𝜔 = 𝑐0 ⋅ 𝜔, with suitable 𝑐0 we can make the whole black hole evaporate

𝑀 𝑟 = 0 = 0,

and recover the Bekenstein-Hawking formula for the black hole entropy from the standard thermodynamic

formula:

𝑆 = −
𝜕𝐹

𝜕𝑇𝐻
= 4𝜋𝑀2.



Hawking radiation of an extremal Reissner-Nordstrom black hole
Consider an extremal Reissner-Nordstrom-Vaidya metric:

𝑔 = − 1 −
𝑀

𝑟
𝜃 𝑣

2

d𝑣2 + 2d𝑣d𝑟 + 𝑟2dΩ2.

From a simple generalization of the procedure of gluing scalar modes (in the WKB approximation) across the 

shockwave 𝑣 = 0 one can calculate Bogoliubov coefficients between:

ℎ𝜔 =
𝜃 𝑟 − 𝑟𝐻

4𝜋𝜔

𝑒−𝑖𝜔𝑣+2𝑖𝜔𝑟∗

𝑟
, with d𝑟∗ =

d𝑟

1 −𝑀/𝑟 2
for 𝑣 > 0

and

𝑝𝜔 =
1

4𝜋𝜔

𝑒−𝑖𝜔𝑣

𝑟
on ℐ−.

Then:

𝛽𝜔𝜔′ = −
4𝑖𝑀

𝜋
𝑒4𝑖𝑀 𝜔+𝜔′ −𝜔

𝜔 + 𝜔′

1
2
+4𝑖𝑀𝜔

𝐾1+4𝑖𝑀𝜔 8𝑀 𝜔 𝜔 + 𝜔′

𝑁𝜔
+ = න

0

∞

d𝜔 𝛽𝜔𝜔′
2 < ∞



Kerr-Vaidya black hole

Simplest model of formation of a Kerr black hole:

𝑔 = −
Δ

Σ
d𝑣 − 𝑎 sin2 𝜃 d𝜙 2 + 2d𝑟 d𝑣 − 𝑎 sin2 𝜃 d𝜙 +

+Σd𝜃2 +
sin2 𝜃

Σ
𝑟2 + 𝑎2 d𝜙 − 𝑎d𝑣

2

where Δ = 𝑟2 − 2𝑀 𝑣 𝑟 + 𝑎2 with 𝑀 𝑣 = 𝑀 ⋅ 𝜃 𝑣 . 

Problems with Kerr-Vaidya:

• Corresponding stress tensor does not satisfy the Null Energy 

Condition.

• For 𝑀 = 0 we have a singularity at 𝑟 = 0 and 𝜃 = 𝜋/2.

Ring singularity

ℐ−

𝑖0

𝑖+

ℐ+

𝑖−

Nevertheless, for 𝑀 𝑣 = 𝑀 ⋅ 𝜃 𝑣 we can solve

equations of motion in the WKB approximation in 

separately in regions 𝑣 < 0 and 𝑣 > 0.



Two approximations
Klein-Gordon equation in Kerr spacetime, after a separation of variables:

Φ 𝑡, 𝑟, 𝜃, 𝜑 = 𝑒−𝑖𝜔𝑡𝑒𝑖𝑚𝜑𝑆𝑙𝑚𝜔 𝜃 𝑅𝜔𝑙𝑚 𝑟 ,
reduces to a Heun equation:

d

d𝑟
Δ
d

d𝑟
+

2𝑀𝑟+ − 𝑎𝑚 2

𝑟 − 𝑟+ 𝑟+ − 𝑟−
−

2𝑀𝑟−𝜔 − 𝑎𝑚 2

𝑟 − 𝑟− 𝑟+ − 𝑟−
+ 𝑟2 + 2𝑀 𝑟 + 2𝑀 𝜔2 𝑅 𝑟 = 𝐾𝜔𝑙𝑚𝑅 𝑟 .

To get some analytical expressions, we need to do approximations:

1. WKB approximation: 𝜔 ≫ 1/𝑀

2. Low-energy approximation:        𝜔𝑟 ≪ 1 or 𝑟 ≫ 𝑀.

Hypergeometric equation Bessel equation

𝑅𝜔𝑙𝑚 𝑟 =
1

𝑟
exp 𝑖𝜔𝑟∗ , d𝑟∗ =

d𝑟

Δ 𝑟

Can be glued together at such 𝑟 that both

conditions 𝜔𝑟 ≪ 1 and 𝑟 ≫ 𝑀 are satisfied.



High-energy quanta in Kerr

𝑝𝜔
1

ℎ𝜔

𝑝𝜔
1
∼
1

𝑟
𝑒−𝑖𝜔𝑣+2𝑖𝜔𝑟∗

<
, ℎ𝜔 ∼

1

𝑟
𝑒−𝑖𝜔𝑣+2𝑖𝜔𝑟∗

>
,

Since 𝑝𝜔
1
∼

1

𝑟
𝑒−𝑖𝜔𝑣+2𝑖𝜔𝑦 for certain coordinate 𝑦, the Bogoliubiv

coefficients are given by Fourier coefficients of 𝑟 ⋅ ℎ𝜔ȁ 𝑣=0 treated as a 

function of 𝑦.

𝛽𝜔𝜔′ =
1

2𝜋

𝜔′

𝜔

1
2

න
𝑟+

∞

d𝑟 1 +
𝑟2 − 𝐾𝜔𝑙𝑚/𝜔

2

𝑟2 + 𝑎2
𝑟 − 𝑟+
𝑟 − 𝑟−

−
𝑖𝑚Ω+
𝜅+

𝑒
𝑖𝑚 arctan

𝑟
𝑎 exp 𝑖𝜔′ 𝑟 + න

𝑟+

𝑟

d𝑟′
𝑟′2 − 𝐾𝜔𝑙𝑚/𝜔

2

𝑟′2 + 𝑎2
×

× exp 𝑖𝜔′ 𝑟 +
1

2𝜅+
log

𝑟

𝑟+
− 1 +

1

2𝜅−
log

𝑟

𝑟−
− 1 +න

𝑟+

𝑟

d𝑟′
𝑟′4 + 𝑎2𝑟′ 𝑟′ + 2𝑀 − Δ 𝑟′ 𝐾𝜔𝑙𝑚/𝜔

2

𝑟′ − 𝑟+ 𝑟′ − 𝑟−
,

Contribution from the near-horizon region (which gives the logarithmically

divergent part of the particle number on ℐ+):

𝛽𝜔𝜔′ ∼
𝜔′

𝜔

1
2

2𝑖𝑟+ 𝜔 + 𝜔′ 1+
𝑖𝜔
𝜅+

−
𝑖𝑚Ω+
2𝜅+ Γ 1 +

𝑖𝜔

𝜅+
−
𝑖𝑚Ω+
2𝜅+

𝑁𝜔
+ ∼ log

Λ

𝜔
exp

2𝜋

𝜅+
𝜔 −

𝑚Ω+
2

− 1

−1



High-energy quanta in Kerr

𝑝𝜔
1

ℎ𝜔

𝑝𝜔
1
∼
1

𝑟
𝑒−𝑖𝜔𝑣+2𝑖𝜔𝑟∗

<
, ℎ𝜔 ∼

1

𝑟
𝑒−𝑖𝜔𝑣+2𝑖𝜔𝑟∗

>
,

Since 𝑝𝜔
1
∼

1

𝑟
𝑒−𝑖𝜔𝑣+2𝑖𝜔𝑦 for certain coordinate 𝑦, the Bogoliubiv

coefficients are given by Fourier coefficients of 𝑟 ⋅ ℎ𝜔ȁ 𝑣=0 treated as a 

function of 𝑦.

𝛽𝜔𝜔′ =
1

2𝜋

𝜔′

𝜔

1
2

න
𝑟+

∞

d𝑟 1 +
𝑟2 − 𝐾𝜔𝑙𝑚/𝜔

2

𝑟2 + 𝑎2
𝑟 − 𝑟+
𝑟 − 𝑟−

−
𝑖𝑚Ω+
𝜅+

𝑒
𝑖𝑚 arctan

𝑟
𝑎 exp 𝑖𝜔′ 𝑟 + න

𝑟+

𝑟

d𝑟′
𝑟′2 − 𝐾𝜔𝑙𝑚/𝜔

2

𝑟′2 + 𝑎2
×

× exp 𝑖𝜔′ 𝑟 +
1

2𝜅+
log

𝑟

𝑟+
− 1 +

1

2𝜅−
log

𝑟

𝑟−
− 1 +න

𝑟+

𝑟

d𝑟′
𝑟′4 + 𝑎2𝑟′ 𝑟′ + 2𝑀 − Δ 𝑟′ 𝐾𝜔𝑙𝑚/𝜔

2

𝑟′ − 𝑟+ 𝑟′ − 𝑟−
,

Contribution from the near-horizon region (which gives the logarithmically

divergent part of the particle number on ℐ+):

𝛽𝜔𝜔′ ∼
𝜔′

𝜔

1
2

2𝑖𝑟+ 𝜔 + 𝜔′ 1+
𝑖𝜔
𝜅+

−
𝑖𝑚Ω+
2𝜅+ Γ 1 +

𝑖𝜔

𝜅+
−
𝑖𝑚Ω+
2𝜅+

𝑁𝜔
+ ∼ log

Λ

𝜔
exp

2𝜋

𝜅+
𝜔 −

𝑚Ω+
2

− 1

−1

Contribution from the angular momentum

does not agree with the standard results!?



Hawking radiation of low-energy quanta

For low-energy modes 𝑝𝜔, ℎ𝜔 we cannot identify ℎ𝜔 = σ𝜔′ሺ
ሻ

𝛼𝜔𝜔′𝑝𝜔′ +
𝛽𝜔𝜔′ ҧ𝑝𝜔′ with an invertible integral transform.

To find 𝛽𝜔𝜔′ calculate the symplectic product between ℎ𝜔 and ҧ𝑝𝜔:

𝛽𝜔𝜔′ = − ҧ𝑝𝜔′ ℎ𝜔 , −𝑖 න
Σ

d𝜎𝜇 𝑥 ത𝛼 𝑥 ി𝜕𝜇 𝛽 𝑥

Contribution to 𝛽𝜔𝜔′ from Σ𝑠ℎ𝑜𝑠𝑘𝑤𝑎𝑣𝑒:

𝛽𝜔𝜔′
𝑠ℎ𝑜𝑐𝑘𝑤𝑎𝑣𝑒 = 𝑖 ∫2𝑀

∞
d𝑟 𝑟2

−𝑖 𝑙+1

2 2

1

𝑟
𝐻
𝑙+

1

2

2
𝜔′𝑟 𝑒𝑖𝜔

′𝑟⋆ി𝜕𝑟 𝑒
𝑖𝜔𝑟∗𝑅ℎ 𝑟 ,

𝑅ℎ 𝜔𝑟 ≪ 1 =
2𝜔

2Γ
3
2
+ 𝑙

𝜔𝑟

2

𝑙

1 −
2𝑀

𝑟

2𝑖𝑀𝜔

𝑖 2
𝑙+1 𝐹1 −𝑙 + 2𝑖𝑀𝜔,−𝑙 + 2𝑖𝑀𝜔;−2𝑙;

2𝑀

𝑟

Note that 𝛽𝜔𝜔′
𝑠ℎ𝑜𝑐𝑘𝑤𝑎𝑣𝑒 ∼ 𝜔𝑙+

1

2 - the „grayody factor” from the standard 

analysis is already encoded in 𝛽𝜔𝜔′
𝑠ℎ𝑜𝑐𝑘𝑤𝑎𝑣𝑒.

ℎ𝜔

𝑝𝜔

Σ



Hawking radiation of gravitons
Quantize perturbations ℎ𝜇𝜈 of an asymptotically flat black hole metric ҧ𝑔𝜇𝜈. 

On ℐ+ we have: 

𝑔 = 𝜂 +
2𝑀

𝑟
d𝑢2 + 𝑟 𝐶𝐴𝐵d𝜃

𝐴d𝜃𝐵 +⋯

𝐶𝐴𝐵 = lim
𝑟→∞

𝜅

𝑟
ℎ𝐴𝐵, ℎ𝜇𝜈 = ෍

𝛼=±

න෪d𝑘 𝜀𝜇𝜈
𝛼 ∗

𝑘 𝑏𝛼 𝑘 𝑢𝑘 𝑥 + 𝜀𝜇𝜈
𝛼 𝑘 𝑏𝛼

† 𝑘 ത𝑢𝑘 𝑥 ,

These quantities are directly related to the Newman-Penrose coefficient Ψ4 = −𝑊𝜇𝜈𝜌𝜎𝑛
𝜇 ഥ𝑚𝜈𝑛𝜌 ഥ𝑚𝜎:

Ψ4 =
1

2𝑟
𝒩𝐴𝐵 ഥ𝑚

𝐴 ഥ𝑚𝐵, 𝒩𝐴𝐵 = 𝜕𝑢
2𝐶𝐴𝐵,

Hence, for the Kerr background ҧ𝑔𝜇𝜈, 𝑢𝑘 𝑡, 𝑟, 𝜃, 𝜑 solve the Teukolsky equation – we can separate variables and 

label the modes by 𝜔, 𝑙,𝑚:

𝑢𝜔,𝑙,𝑚 𝑥 = 𝑒−𝑖𝜔𝑡𝑆𝑙𝑚𝜔
𝑠=2 𝜃 𝑒−𝑖𝑚𝜑𝑅𝜔𝑙 𝑟 ,

Δ−𝑠
d

d𝑟
Δ𝑠+1

d

d𝑟
− 𝑉 𝑟 𝑅 𝑟 = 0



Can soft hair of black holes modify the spectrum of Hawking quanta?
Supertranslated Schwarzschild black hole metric:

𝑔 = 1 + ℒ𝜉 ҧ𝑔, ҧ𝑔 = − 1 −
2𝑀

𝑟
d𝑣2 + 2d𝑣d𝑟 + 𝑟2𝛾𝐴𝐵d𝜃

𝐴d𝜃𝐵 ,

𝜉𝑓 = 𝑓𝜕𝑣 +
1

𝑟
𝐷𝐴𝑓 𝜕𝐴 −

1

2
𝐷2𝑓 𝜕𝑟

ℎ𝜔 solves linearized Einstein 

equations in backgroud ҧ𝑔
ℎ𝜔
′ = 1 + ℒ𝜉 ℎ𝜔 solves linearized Einstein 

equations in backgroud 𝑔 = 1 + ℒ𝜉 ҧ𝑔

In the WKB approximation, Bogoliubov coefficients read:

𝛽𝜔𝑙𝑚
𝜔′𝑙′𝑚′

= නvol𝑆2 න
𝑟𝐻

∞

d𝑟 4𝜋𝜔′𝑒2𝑖𝜔
′𝑟 𝑌𝑙′𝑚′

∗ 𝜃𝐴 ℎ𝜔𝑙𝑚 𝑥 − 𝜉𝑓 𝑥

The only term dependent on the 

supertranslation.



Can soft hair of black holes modify the spectrum of Hawking quanta?

In the WKB approximation, Bogoliubov coefficients read:

𝛽𝜔𝑙𝑚
𝜔′𝑙′𝑚′

= නvol𝑆2 න
𝑟𝐻

∞

d𝑟 4𝜋𝜔′𝑒2𝑖𝜔
′𝑟 𝑌𝑙′𝑚′

∗ 𝜃𝐴 ℎ𝜔𝑙𝑚 𝑥 − 𝜉𝑓 𝑥

Influence of supertranslations on the Hawking spectrum was investigated in [JHEP02(2021)038, JHEP01(2019)089], 

where it was argued that supertranslations do not modify 𝛽𝜔𝜔′ at all.

However, because of the 𝑟-dependent part of 𝜉𝑓, we in our case 𝛽𝜔𝜔′ is slightly modified. 

But the divergent part of ∫0
∞
d𝜔′ 𝛽𝜔𝜔′

2 is not changed. 



Can soft hair of black holes modify the spectrum of Hawking quanta?

In the WKB approximation, Bogoliubov coefficients read:

𝛽𝜔𝑙𝑚
𝜔′𝑙′𝑚′

= නvol𝑆2 න
𝑟𝐻

∞

d𝑟 4𝜋𝜔′𝑒2𝑖𝜔
′𝑟 𝑌𝑙′𝑚′

∗ 𝜃𝐴 ℎ𝜔𝑙𝑚 𝑥 − 𝜉𝑓 𝑥

Influence of supertranslations on the Hawking spectrum was investigated in [JHEP02(2021)038, JHEP01(2019)089], 

where it was argued that supertranslations do not modify 𝛽𝜔𝜔′ at all.

However, because of the 𝑟-dependent part of 𝜉𝑓, we in our case 𝛽𝜔𝜔′ is slightly modified. 

Can we find a Generalized Gibbs Ensable-like spectrum?

𝑁𝜔,𝑞𝑖 ∼ 𝑒𝛽𝜔+σ𝑖 𝜆𝑖𝑞𝑖 − 1
−1
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