Jakub Gizbert-Studnicki

in collaboration with J. Jurkiewicz⁺, J. Ambjørn, A. Görlich, D. Németh, Z. Drogosz, M. Reitz, D. Coumbe, G. Czelusta

Four-dimensional CDT the status report

Warsaw, 21st April 2023

Research financed by the National Science Centre grant UMO-2019/33/B/ST2/00589

- As early as in 1916 Einstein* pointed out that "quantum theory would have to modify not only Maxwellian electrodynamics, but also the new theory of gravitation"
- After more than 100 years a complete, consistent quantum theory of gravity (QG) is still missing
- The aim: construct a fundamental theory of QG as a unitary, non-perturbative, diffeomorphisminvariant theory of dynamical geometry and study its properties in a Planckian regime
- ♦ We have a number of interesting but incomplete research programs

-1-

- \diamond string theory
- \diamond loop quantum gravity
- \diamond group field theory
- \diamond noncommutative geometry
- ♦ asymptotic safety
- \diamond lattice approaches
- $\diamond \dots$

A. Einstein triangulation by J. Bryan

* Sitzungsber. Preuss. Akad. Wiss. Berlin (1916) 688

- After more than 100 years a complete, consistent quantum theory of gravity (QG) is still missing
- The aim: construct a fundamental theory of QG as a unitary, non-perturbative, diffeomorphisminvariant theory of dynamical geometry and study its properties in a Planckian regime
- We have a number of interesting but incomplete research programs

-1-

- \diamond string theory
- \diamond loop quantum gravity
- ♦ group field theory
- \diamond causal set theory
- \diamond noncommutative geometry
- \diamond asymptotic safety
- \diamond lattice approaches
- ♦ ..

A. Einstein triangulation by J. Bryan

* Sitzungsber. Preuss. Akad. Wiss. Berlin (1916) 688

GR treated as a QFT is perturbatively nonrenormalizable in d > 2 dimensions*

- ♦ But it could be renormalizable in a nonperturbative regime
 - ♦ asymptotic safety idea (S. Weinberg)
 - renormalization group flow can lead to a non-Gaussian UV fixed point
- Lattice formulation would allow to study a unitary, non-perturbative, backgroundindependent and diffeomorphism-invariant quantum gravity
 - \diamond we need a dynamical lattice (DT)
 - UV fixed point should be associated with a 2nd order phase transition

-2-

- one should be able to reproduce semi-classical gravity (IR limit)
- \diamond Causality is an important ingredient
 - ♦ Causal DT (J. Amjørn, J. Jurkiewicz, R. Loll)

*Renormalizable extensions have problems with unitarity

- ♦ GR treated as a QFT is perturbatively nonrenormalizable in d > 2 dimensions*
- ♦ But it could be renormalizable in a nonperturbative regime

 - renormalization group flow can lead to a non-Gaussian UV fixed point
- Lattice formulation would allow to study a unitary, non-perturbative, backgroundindependent and diffeomorphism-invariant quantum gravity
 - $\diamond~$ we need a dynamical lattice (DT)
 - UV fixed point should be associated with a 2nd order phase transition

-2-

- one should be able to reproduce semi-classical gravity (IR limit)
- \diamond Causality is an important ingredient
 - ♦ Causal DT (J. Amjørn, J. Jurkiewicz, R. Loll)

*Renormalizable extensions have problems with unitarity

- ♦ GR treated as a QFT is perturbatively nonrenormalizable in d > 2 dimensions*
- ♦ But it could be renormalizable in a nonperturbative regime
 - ♦ asymptotic safety idea (S. Weinberg)
 - renormalization group flow can lead to a non-Gaussian UV fixed point
- Lattice formulation would allow to study a unitary, non-perturbative, backgroundindependent and diffeomorphism-invariant quantum gravity
 - ♦ we need a dynamical lattice (DT)
 - UV fixed point should be associated with a 2nd order phase transition
 - one should be able to reproduce semi-classical gravity (IR limit)
- \diamond Causality is an important ingredient
 - ♦ Causal DT (J. Amjørn, J. Jurkiewicz, R. Loll)

*Renormalizable extensions have problems with unitarity -2-

- ♦ But it could be renormalizable in a nonperturbative regime
 - ♦ asymptotic safety idea (S. Weinberg)
 - renormalization group flow can lead to a non-Gaussian UV fixed point
- Lattice formulation would allow to study a unitary, non-perturbative, backgroundindependent and diffeomorphism-invariant quantum gravity
 - we need a dynamical lattice (DT)
 - UV fixed point should be associated with a 2nd order phase transition
 - one should be able to reproduce semi-classical gravity (IR limit)
- ♦ Causality-is-an important ingredient

*Renormalizable extensions have problems with unitarity -2-

Outline

- ♦ Causal Dynamical Triangulations (CDT)
- \diamond Phase structure in spherical CDT
- \diamond Semi-classical phase C_{dS}
- \diamond Phase transitions in spherical CDT
- \diamond Search for a continuum limit
- ♦ Toroidal vs spherical topologies

\diamond Conclusions

Semiclassical coordinates & scalar fields in CDT (if time permits)

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

-4-

- Classical mechanics: single trajectory of a particle resulting from E-L equations (Hamilton's principle)
- Quantum mechanics: all trajectories (paths) contribute to transition amplitude (weight/phase factor depends on the action)
- Path integral is defined by a discretization of time (regularization)

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

-4-

- Classical mechanics: single trajectory of a particle resulting from E-L equations (Hamilton's principle)
- Quantum mechanics: all trajectories (paths) contribute to transition amplitude (weight/phase factor depends on the action)
- Path integral is defined by a discretization of time (regularization)

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

- Classical mechanics: single trajectory of a particle resulting from E-L equations (Hamilton's principle)
- Quantum mechanics: all trajectories (paths) contribute to transition amplitude (weight/phase factor depends on the action)
- Path integral is defined by a discretization of time (regularization)

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

-5-

- Einstein's General Relativity: gravity defined through spacetime geometry
- Smooth geometry can be approximated with arbitrary precission (discretized) by multidimensional simplices (triangulation)
- Local curvature is encoded in deficit angle

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

-5-

- Einstein's General Relativity: gravity defined through spacetime geometry
- Smooth geometry can be approximated with arbitrary precission (discretized) by multidimensional simplices (triangulation)
- Local curvature is encoded in deficit angle

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

-5-

- Einstein's General Relativity: gravity defined through spacetime geometry
- Smooth geometry can be approximated with arbitrary precission (discretized) by multidimensional simplices (triangulation)
- Local curvature is encoded in deficit angle

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

-6-

- The path integral trajectory of
 CDT = spacetime geometry
 regularized* by a triangulation
 (2 types of 4-simplices)
- Transition amplitude depends on all admissible trajectories (non-perturbative approach)

ime P space

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

-6-

- The path integral trajectory of
 CDT = spacetime geometry
 regularized* by a triangulation
 (2 types of 4-simplices)
- Transition amplitude depends on all admissible trajectories (non-perturbative approach)

ime P space

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

- ♦ Causality constraint (global hyperbolicity) ⇒ spacetime topology is fixed (time x space: S¹xT³) and cannot change
- The path integral trajectory of CDT = spacetime geometry regularized* by a triangulation (2 types of 4-simplices)
- Transition amplitude depends on all admissible trajectories (non-perturbative approach)

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

-6-

- ♦ Causality constraint (global hyperbolicity) ⇒ spacetime topology is fixed (time x space: S¹xT³) and cannot change
- The path integral trajectory of CDT = spacetime geometry regularized* by a triangulation (2 types of 4-simplices)
- Transition amplitude depends on all admissible trajectories (non-perturbative approach)

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

-6-

- ♦ Causality constraint (global hyperbolicity) ⇒ spacetime topology is fixed (time x space: S¹xT³) and cannot change
- The path integral trajectory of CDT = spacetime geometry regularized* by a triangulation (2 types of 4-simplices)
- Transition amplitude depends on all admissible trajectories (non-perturbative approach)

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

-6-

- ♦ Causality constraint (global hyperbolicity) ⇒ spacetime topology is fixed (time x space: S¹xT³) and cannot change
- The path integral trajectory of CDT = spacetime geometry regularized* by a triangulation (2 types of 4-simplices)
- Transition amplitude depends on all admissible trajectories (non-perturbative approach)

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

We will consider pure gravity model
 (G) with positive cosmological
 Constant (Λ)

$$S_{HE} = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} \left(R - 2\Lambda \right)$$

- CDT is formulated in a coordinate free way (Regge calculus)
- \diamond Three coupling constants: k_0 , K_4 , Δ
- After Wick's rotation: "random" geometry system
- ♦ Background geometry emerges dynamically: interplay between bare action (S_R) and entropy

$$Z = \int_{trajectories} D[g_{\mu\nu}] \exp(iS_{HE}[g_{\mu\nu}])$$

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

- We will consider pure gravity model
 (G) with positive cosmological
 Constant (Λ)
- CDT is formulated in a coordinate free way (Regge calculus)

 \diamond Three coupling constants: k_0 , K_4 , Δ

- After Wick's rotation: "random" geometry system
- ♦ Background geometry emerges dynamically: interplay between bare action (S_R) and entropy

$$S_{HE} = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} \left(R - 2\Lambda \right)$$

$$S_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0 \right)$$

vertices # 4-simplices # (4,1) 4-simplices

$$Z = \sum_{T} \exp(iS_{R}[T])$$

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

- We will consider pure gravity model
 (G) with positive cosmological
 Constant (Λ)
- CDT is formulated in a coordinate free way (Regge calculus)

 \diamond Three coupling constants: k_0, K_4, Δ

- After Wick's rotation: "random" geometry system
- ♦ Background geometry emerges dynamically: interplay between bare action (S_R) and entropy

$$S_{HE} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$\int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

Т

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

- We will consider pure gravity model
 (G) with positive cosmological
 Constant (Λ)
- CDT is formulated in a coordinate free way (Regge calculus)
- \diamond Three coupling constants: k_0 , K_4 , Δ
- After Wick's rotation: "random" geometry system
- ♦ Background geometry emerges dynamically: interplay between bare action (S_R) and entropy

$$S_{HE} = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

Causal Dynamical Triangulations (CDT) is a Quantum Gravity approach based on the path integral formalism

- We will consider pure gravity model
 (G) with positive cosmological
 Constant (Λ)
- CDT is formulated in a coordinate free way (Regge calculus)
- \diamond Three coupling constants: k_0 , K_4 , Δ
- After Wick's rotation: "random" geometry system
- Background geometry emerges dynamically: interplay between bare action (S_R) and entropy

$$S_{HE} = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$K_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4 + \Delta \left(N_4$$

4-dim CDT can be investigated using Monte Carlo techniques

$$Z = \sum_{T} \exp(-S_{R}[T])$$

$$S_{R} = -k_{0}N_{0} + K_{4}N_{4} + \Delta \left(N_{4}^{(4,1)} - 6N_{0} \right)$$
$$P(T) = \frac{1}{Z}e^{-S_{R}[T]}$$

- The algorithm performs random walk in the space of triangulations
- The walk consists of a series of local moves* (4 moves + 4 antimoves)
- The moves are causal (preserve local & global topology) ...
- A sequence of moves)
 A sequence of moves
 A sequence of moves
- Probability of a move is determined by a detailed balance condition
- One can compute expectation values or correlators of observables

$$Z = \sum_{T} \exp(-S_{R}[T])$$

$$S_{R} = -k_{0}N_{0} + K_{4}N_{4} + \Delta \left(N_{4}^{(4,1)} - 6N_{0} \right)$$

$$P(T) = \frac{1}{Z} e^{-S_R[T]}$$

4-dim CDT can be investigated using Monte Carlo
 techniques

- The algorithm performs random walk in the space of triangulations
- The walk consists of a series of local moves* (4 moves + 4 antimoves)
- The moves are causal (preserve local & global topology) ...
- And ergodic (any triangulation is achievable by a sequence of moves)
- Probability of a move is determined by a detailed balance condition
- One can compute expectation values or correlators of observables

* Example of a move in 2-dim

4-dim CDT can be investigated using Monte Carlo
 techniques

- The algorithm performs random walk in the space of triangulations
- The walk consists of a series of local moves* (4 moves + 4 antimoves)
- The moves are causal (preserve local & global topology) ...
- A sequence of moves)
 A sequence of moves
 A sequence of moves
- Probability of a move is determined by a detailed balance condition
- One can compute expectation values or correlators of observables

4-dim CDT can be investigated using Monte Carlo
 techniques

- The algorithm performs random walk in the space of triangulations
- The walk consists of a series of local moves* (4 moves + 4 antimoves)
- The moves are causal (preserve local & global topology) ...
- And ergodic (any triangulation is achievable by a sequence of moves)
- Probability of a move is determined by a detailed balance condition
- One can compute expectation values or correlators of observables

- The algorithm performs random walk in the space of triangulations
- The walk consists of a series of local moves* (4 moves + 4 antimoves)
- The moves are causal (preserve local & global topology) ...
- And ergodic (any triangulation is achievable by a sequence of moves)
- Probability of a move is determined by a detailed balance condition
- One can compute expectation values or correlators of observables

$$Z = \sum_{T} \exp(-S_{R}[T])$$

$$S_{R} = -k_{0}N_{0} + K_{4}N_{4} + \Delta \left(N_{4}^{(4,1)} - 6N_{0} \right)$$

- The algorithm performs random walk in the space of triangulations
- The walk consists of a series of local moves* (4 moves + 4 antimoves)
- The moves are causal (preserve local & global topology) ...
- And ergodic (any triangulation is achievable by a sequence of moves)
- Probability of a move is determined by a detailed balance condition
- One can compute expectation values or correlators of observables

$$Z = \sum_{T} \exp(-S_{R}[T])$$

$$S_{R} = -k_{0}N_{0} + K_{4}N_{4} + \Delta \left(N_{4}^{(4,1)} - 6N_{0} \right)$$

$$P(T) = \frac{1}{Z} e^{-S_R[T]}$$

$$P(T_1)P(T_1 \xrightarrow{M} T_2) = P(T_2)P(T_2 \xrightarrow{M^*} T_1)$$

$$\langle O \rangle = \frac{1}{Z} \sum_{T} O[T] e^{-S_R[T]} \approx \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} O[T^{(i)}]$$

-9-

Phase structure in S³ CDT

♦ The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_3(t_i) \propto n_i \equiv N_4^{(4,1)}(i)$

Four phases (A, B, C_{dS}, C_b) of various geometry were discovered

- \diamond In order to distinguish between the C_{ds} and C_b phases one can measure
 - \diamond the Hausdorff dimension: d_{H}
 - \diamond the Spectral dimension: d_S

We perform MC simulations with fixed lattice volume N_4 The cosmological constant K_4 is tuned to N_4 We effectively have two coupling constants: k_0 and Δ

Phase structure in S³ CDT_n

♦ The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_3(t_i) \propto n_i \equiv N_4^{(4,1)}(i)$

Four phases (A, B, C_{ds}, C_b) of various geometry were discovered

- $\Rightarrow In order to distinguish between the$ $C_{dS} and C_b phases one can measure$
 - \diamond the Hausdorff dimension: d_{H}
 - \diamond the Spectral dimension: d_S

Phase structure in S³ CDT

♦ The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_3(t_i) \propto n_i \equiv N_4^{(4,1)}(i)$

Four phases (A, B, C_{dS}, C_b) of various geometry were discovered

- \diamond In order to distinguish between the C_{ds} and C_b phases one can measure
 - \diamond the Hausdorff dimension: d_{H}
 - \diamond the Spectral dimension: d_S

Phase structure in S³ CDT

 \diamond The observable: 3-volume of spatial layers (foliation leaves of the global *proper time):* $V_{3}(t_{i}) \propto n_{i} \equiv N_{4}^{(4,1)}(i)$ **Spherical CDT** \Rightarrow Four phases (A, B, C_{ds} , C_{b}) of various Phase C_{ds} and C_b 0.6 geometry were discovered C_{dS} 0.4 \diamond In order to distinguish between the < А 0.2 2000 C_{ds} and C_{h} phases one can measure C_h $\langle n_t \rangle$ 0.0 $\langle n_t \rangle$ - \diamond the Hausdorff dimension: d_{H} -0.2 3 5 $N^{\overline{1/d_H}}$ \diamond the Spectral dimension: d_s k_0 **Rescaled average** 0.6 volume profiles $\langle n_t \rangle$ 0.4 0.2 (scaling for $d_H = 4$)

Phase structure in S³ CDT

-9-

- ♦ The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_3(t_i) \propto n_i \equiv N_4^{(4,1)}(i)$
- ♦ Four phases (A, B, C_{dS}, C_b) of various geometry were discovered
- \diamond In order to distinguish between the C_{dS} and C_b phases one can measure
 - \diamond the Hausdorff dimension: $d_{\rm H} \stackrel{\langle n_t
 angle
 ightarrow}{
 ightarrow}$
 - \diamond the Spectral dimension: d_s

$$\frac{\partial}{\partial \sigma} K(x, x_0; \sigma) = \Delta_g K(x, x_0; \sigma)$$
$$P_R(\sigma) = \frac{1}{V} \int dx \sqrt{g} K(x, x; \sigma)$$
$$\frac{d_S(\sigma)}{d \log \sigma} = -2 \frac{d \log P_r(\sigma)}{d \log \sigma}$$

- Phase C_{dS} (de Sitter phase) has good semi-classical properties (IR limit)
- ♦ Scale factor is consistent with a background geommetry of a 4-dim sphere ⇒ Euclidean de Sitter universe (positive cosmol. const.)
- This is clasically obtained for a homogenous and isotropic metric
- For which the GR action takes a form of the minisuperspace action

- Phase C_{dS} (de Sitter phase) has good semi-classical properties (IR limit)
- $\begin{array}{l} \Leftrightarrow \text{ Hausdorff dim.: 4,} \\ \text{ spectral dim.: 2} \Rightarrow 4 \end{array}$
- ♦ Scale factor is consistent with a background geommetry of a 4-dim sphere ⇒ Euclidean de Sitter universe (positive cosmol. const.)
- This is clasically obtained for a homogenous and isotropic metric
- For which the GR action takes a form of the minisuperspace action

-10-

- Phase C_{dS} (de Sitter phase) has good semi-classical properties (IR limit)
- ♦ Hausdorff dim.: 4 , spectral dim.: 2 ⇒ 4
- This is clasically obtained for a homogenous and isotropic metric
- For which the GR action takes a form of the minisuperspace action

Nucl. Phys. B849: 144

-10-

- Phase C_{dS} (de Sitter phase) has good semi-classical properties (IR limit)
- ♦ Hausdorff dim.: 4 , spectral dim.: 2 ⇒ 4
- ♦ Scale factor is consistent with a background geommetry of a 4-dim sphere ⇒ Euclidean de Sitter universe (positive cosmol. const.)
- This is clasically obtained for a homogenous and isotropic metric
- For which the GR action takes a form of the minisuperspace action

Nucl. Phys. B849: 144

- Phase C_{dS} (de Sitter phase) has good semi-classical properties (IR limit)
- ♦ Hausdorff dim.: 4 , spectral dim.: 2 ⇒ 4
- ♦ Scale factor is consistent with a background geommetry of a 4-dim sphere ⇒ Euclidean de Sitter universe (positive cosmol. const.)
- This is clasically obtained for a homogenous and isotropic metric
- For which the GR action takes a form of the minisuperspace action

Nucl. Phys. B849: 144

 $V_3(t) \propto a^3(t)$

\Leftrightarrow The effective action for the n_i

- observable ... \diamond ... can be analyzed by looking at $Z = \sum_{T} \exp(-S_R[T]) = \sum_{T} \sum_{T} \exp(-S_R[T]) \exp(-S_R[T])$ quantum fluctuations around the semiclassical solution
- \diamond The (inverse of) covariance matrix $P = C^{-1}$ provides information about second derivatives of the effective action
- \diamond The measured covariance matrix is consistent with MS action (with reversed overall sign) !
- \diamond The semiclassical description is obtained from "first principles" ! $S_{MS} = -\frac{1}{24\pi G} \int dt \left(\frac{V_3(t)^2}{V_2(t)} + \mu V_3(t)^{1/3} - \lambda V_3(t) \right)$

$$\{n_i\}^T[\{n_i\}]$$

$$Z_{ef} = \sum_{\{n_i\}} \exp(-S_{ef}[\{n_i\}])$$

- ♦ The (inverse of) covariance matrix
 P =C⁻¹ provides information about
 second derivatives of the effective
 action
- The measured covariance matrix is consistent with MS action (with reversed overall sign) !

Nucl. Phys. B849: 144

♦ The semiclassical description is
obtained from "first principles" ! S_{MS} = $-\frac{1}{24\pi G} \int dt \left(\frac{\dot{V}_3(t)^2}{V_3(t)} + \mu V_3(t)^{1/3} - \lambda V_3(t) \right)$

$$n_i = \langle n_i \rangle + \delta n_i \quad C_{ij} = \langle \delta n_i \delta n_j \rangle$$

- \diamond The effective action for the n_i observable ...
- ... can be analyzed by looking at quantum fluctuations around the semiclassical solution
- The (inverse of) covariance matrix
 P = C⁻¹ provides information about
 second derivatives of the effective
 action
- The measured covariance matrix is consistent with MS action (with reversed overall sign) !

Nucl. Phys. B849: 144

 $n_i = \langle n_i \rangle + \delta n_i \quad C_{ij} = \langle \delta n_i \delta n_j \rangle$

$$C_{ij}^{-1} = \frac{\partial^2 S_{ef}[n]}{\delta n_i \delta n_j} \bigg|_{n = \langle n \rangle}$$

- The (inverse of) covariance matrix
 P = C⁻¹ provides information about
 second derivatives of the effective
 action
- The measured covariance matrix is consistent with MS action (with reversed overall sign) !

Nucl. Phys. B849: 144

$$n_i = \langle n_i \rangle + \delta n_i \quad C_{ij} = \left\langle \delta n_i \delta n_j \right\rangle$$

$$S_{ef} = \frac{1}{\tilde{\Gamma}} \sum_{i} \left(\frac{(n_{i+1} - n_i)^2}{(n_{i+1} + n_i)} + \tilde{\mu} \ n_i^{1/3} - \tilde{\lambda} \ n_i \right)$$

Agrees with Hartle–Hawking "noboundary" proposal !

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_0/N_4 , ...)
- ♦ (Pseudo)critical point is signaled by max. of susceptibility $\chi_{OP} = \langle OP^2 \rangle - \langle OP \rangle^2$
- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transition
- ♦ But one must be careful and check $N_4 \rightarrow \infty \text{ limit}$
- \diamond *B*-*C*_b transition is 2-nd order
- \diamond The C_{dS} - C_b trans. is also 2-nd order
- ♦ Common points: UV limit candidates

-12- Phys. Rev. D85: 124044 JHEP 1602: 144 Phys. Rev. D 95: 124029

large

small

small

large

medium

large

small

large

large

 OP_2

 OP_3

 OP_{4}

small

medium

small

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_0/N_4 , ...)
- ♦ (Pseudo)critical point is signaled by max. of susceptibility $\chi_{OP} = \langle OP^2 \rangle - \langle OP \rangle^2$
- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transition
- ♦ But one must be careful and check $N_4 \rightarrow \infty \text{ limit}$
- \diamond *B*-*C*_b transition is 2-nd order
- \diamond The C_{dS} - C_b trans. is also 2-nd order
- ♦ Common points: UV limit candidates

-12- Phys. Rev. D85: 124044 JHEP 1602: 144 Phys. Rev. D 95: 124029

small

large

large

large

small

small

large

medium

large

 OP_2

 OP_3

 OP_{4}

small

medium

small

-12-

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_0/N_4 , ...)
- ♦ (Pseudo)critical point is signaled by max. of susceptibility $\chi_{OP} = \langle OP^2 \rangle - \langle OP \rangle^2$
- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transition
- ♦ But one must be careful and check $N_4 \rightarrow \infty \text{ limit}$
- \diamond *B*-*C*_b transition is 2-nd order
- \diamond The C_{dS} - C_b trans. is also 2-nd order
- ♦ Common points: UV limit candidates

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_0/N_4 , ...)
- ♦ (Pseudo)critical point is signaled by max. of susceptibility $\chi_{OP} = \langle OP^2 \rangle - \langle OP \rangle^2$
- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transition
- ♦ But one must be careful and check $N_4 \rightarrow \infty \text{ limit}$
- \diamond *B*-*C*_b transition is 2-nd order
- \diamond The C_{dS} - C_b trans. is also 2-nd order
- ♦ Common points: UV limit candidates

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_0/N_4 , ...)
- ♦ (Pseudo)critical point is signaled by max. of susceptibility $\chi_{OP} = \langle OP^2 \rangle - \langle OP \rangle^2$
- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transition
- ♦ But one must be careful and check $N_4 \rightarrow \infty \text{ limit}$
- \diamond *B*-*C*_b transition is 2-nd order
- \diamond The C_{dS} - C_b trans. is also 2-nd order
- ♦ Common points: UV limit candidat[®]

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_0/N_4 , ...)
- ♦ (Pseudo)critical point is signaled by max. of susceptibility $\chi_{OP} = \langle OP^2 \rangle - \langle OP \rangle^2$
- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transition
- ♦ But one must be careful and check $N_4 \rightarrow \infty \text{ limit}$
- ♦ B-C_b transition is 2-nd order
- \diamond The C_{dS} - C_b trans. is also 2-nd order
- ♦ Common points: UV limit candidat[®]

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_0/N_4 , ...)
- ♦ (Pseudo)critical point is signaled by max. of susceptibility $\chi_{OP} = \langle OP^2 \rangle - \langle OP \rangle^2$
- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transition
- ♦ But one must be careful and check $N_4 \rightarrow \infty \text{ limit}$
- ♦ B-C_b transition is 2-nd order
- \Rightarrow The C_{dS} - C_b trans. is also 2-nd order
- \diamond Common points: UV limit candidat

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_0/N_4 , ...)
- ♦ (Pseudo)critical point is signaled by max. of susceptibility $\chi_{OP} = \langle OP^2 \rangle - \langle OP \rangle^2$
- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transition
- ♦ But one must be careful and check $N_4 \rightarrow \infty \text{ limit}$
- ♦ B-C_b transition is 2-nd order
- \Rightarrow The C_{dS} - C_b trans. is also 2-nd order
- ♦ Common points: UV limit candidates

- ♦ Due to the Hausdorf dimension d_H=4 we observe universal scaling of the spatial volume n_i and its fluctuations
- which are well described by the (discretized) MS effective action
- \diamond Identifying (dimensionless) lattice and (dimensionfull) physical quantities one can compute the lattice spacing l_s
- \Leftrightarrow For fixed G and (k₀,Δ) (constant $\tilde{\Gamma}$, $\tilde{\omega}$) the lattice spacing l_s is constant
- ♦ Taking N₄ → ∞ for fixed (k₀, Δ) corresponds to the limit V₄ → ∞ with const. l_s >0 where (relative) quantum fluct. vanish (IR limit ?)

- ♦ Due to the Hausdorf dimension d_H=4 we observe universal scaling of the spatial volume n_i and its fluctuations
- which are well described by the
 (discretized) MS effective action
- Identifying (dimensionless) lattice and (dimensionfull) physical quantities one can compute the lattice spacing l_s
- \Leftrightarrow For fixed G and (k₀,Δ) (constant $\tilde{\Gamma}$, $\tilde{\omega}$) the lattice spacing l_s is constant
- ♦ Taking N₄ → ∞ for fixed (k₀, Δ) corresponds to the limit V₄ → ∞ with const. l_s >0 where (relative) quantum fluct. vanish (IR limit ?)

- ♦ Due to the Hausdorf dimension d_H=4 we observe universal scaling of the spatial volume n_i and its fluctuations
- which are well described by the (discretized) MS effective action
- Identifying (dimensionless) lattice and (dimensionfull) physical quantities one can compute the lattice spacing l_s
- \Leftrightarrow For fixed G and (k₀,Δ) (constant $\tilde{\Gamma}$, $\tilde{\omega}$) the lattice spacing l_s is constant
- ♦ Taking N₄ → ∞ for fixed (k₀, Δ) corresponds to the limit V₄ → ∞ with const. l_s >0 where (relative) quantum fluct. vanish (IR limit ?)

-13-

- ♦ Due to the Hausdorf dimension d_H=4 we observe universal scaling of the spatial volume n_i and its fluctuations
- which are well described by the (discretized) MS effective action
- Identifying (dimensionless) lattice and (dimensionfull) physical quantities one can compute the lattice spacing l_s
- \Rightarrow For fixed G and (k₀,Δ) (constant $\tilde{\Gamma}$, $\tilde{\omega}$) the lattice spacing l_s is constant
- ♦ Taking N₄ → ∞ for fixed (k₀, Δ) corresponds to the limit V₄ → ∞ with const. l_s >0 where (relative) quantum fluct. vanish (IR limit ?)

-13-

♦ We observe a semiclassical behaviour inside phase C_{ds}

- ♦ Due to the Hausdorf dimension d_H=4 we observe universal scaling of the spatial volume n_i and its fluctuations
- which are well described by the (discretized) MS effective action
- \diamond Identifying (dimensionless) lattice and (dimensionfull) physical quantities one can compute the lattice spacing l_s
- ↔ For fixed G and (k_0 ,Δ) (constant $\tilde{\Gamma}$, $\tilde{\omega}$) the lattice spacing l_s is constant

♦ Taking N₄ → ∞ for fixed (k₀, Δ) corresponds to the limit V₄ → ∞ with const. l_s >0 where (relative) quantum fluct. vanish (IR limit ?)

-13-

- ♦ Due to the Hausdorf dimension d_H=4 we observe universal scaling of the spatial volume n_i and its fluctuations
- which are well described by the (discretized) MS effective action
- \diamond Identifying (dimensionless) lattice and (dimensionfull) physical quantities one can compute the lattice spacing l_s
- ↔ For fixed G and (k₀,Δ) (constant $\tilde{\Gamma}$, $\tilde{\omega}$) the lattice spacing l_s is constant
- ♦ Taking N₄ → ∞ for fixed (k₀,Δ) corresponds to the limit V₄ → ∞ with const. l_s >0 where (relative) quantum fluct. vanish (IR limit ?)

- ♦ We would rather like to find the UV continuum limit where for $N_4 \rightarrow \infty$
 - \diamond the lattice spacing $l_s \rightarrow 0$
 - \diamond the physical volume V₄=const.
 - \diamond the **"shape**" of the universe (ω) is fixed
 - ♦ quantum *fluctuations* stay constant
- These conditions also imply that the renormalized effective couplings in the (physical) MS action stay fixed
- ↔ We have to find RG flow path(s) of constant physics in the bare couplings space (k₀,Δ) leading to the 2nd order phase transition point
- Finding such a UV fixed point is still an open problem in CDT

-14-

- ♦ We would rather like to find the UV continuum limit where for $N_4 \rightarrow \infty$
 - \diamond the lattice spacing $l_s \rightarrow 0$
 - \diamond the physical volume V₄=const.
 - \diamond the **"shape**" of the universe (ω) is fixed
 - \diamond quantum *fluctuations* stay constant
- These conditions also imply that the renormalized effective couplings in the (physical) MS action stay fixed
- ↔ We have to find RG flow path(s) of constant physics in the bare couplings space (k₀,Δ) leading to the 2nd order phase transition point
- Finding such a UV fixed point is still an open problem in CDT

- ♦ We would rather like to find the UV continuum limit where for $N_4 \rightarrow \infty$
 - \diamond the lattice spacing $l_s \rightarrow 0$
 - \diamond the physical volume V_4 =const.
 - \diamond the **"shape**" of the universe (ω) is fixed
 - \diamond quantum *fluctuations* stay constant
- These conditions also imply that the renormalized effective couplings in the (physical) MS action stay fixed
- ↔ We have to find RG flow path(s) of constant physics in the bare couplings space (k₀, Δ) leading to the 2nd order phase transition point
- Finding such a UV fixed point is still an open problem in CDT

- ♦ We would rather like to find the UV continuum limit where for $N_4 \rightarrow \infty$
 - \diamond the lattice spacing $l_s \rightarrow 0$
 - \diamond the physical volume V_4 =const.
 - \diamond the **"shape**" of the universe (ω) is fixed
 - ♦ quantum *fluctuations* stay constant
- These conditions also imply that the renormalized effective couplings in the (physical) MS action stay fixed
- ♦ We have to find RG flow path(s) of constant physics in the bare couplings space (k₀, Δ) leading to the 2nd order phase transition point
- Finding such a UV fixed point is still an open problem in CDT

 \triangleleft

- ♦ We would rather like to find the UV continuum limit where for $N_4 \rightarrow \infty$
 - \diamond the lattice spacing $l_s \rightarrow 0$
 - \diamond the physical volume V₄=const.
 - \diamond the **"shape**" of the universe (ω) is fixed
 - \diamond quantum *fluctuations* stay constant
- These conditions also imply that the renormalized effective couplings in the (physical) MS action stay fixed
- ↔ We have to find RG flow path(s) of constant physics in the bare couplings space (k₀, Δ) leading to the 2nd order phase transition point
- Finding such a UV fixed point is still an open problem in CDT

- ♦ We would rather like to find the UV continuum limit where for $N_4 \rightarrow \infty$
 - \diamond the lattice spacing $l_s \rightarrow 0$
 - \diamond the physical volume V₄=const.
 - \diamond the **"shape**" of the universe (ω) is fixed
 - \diamond quantum *fluctuations* stay constant
- These conditions also imply that the renormalized effective couplings in the (physical) MS action stay fixed
- ↔ We have to find RG flow path(s) of constant physics in the bare couplings space (k₀, Δ) leading to the 2nd order phase transition point
- Finding such a UV fixed point is still an open problem in CDT

- ♦ We would rather like to find the UV continuum limit where for $N_4 \rightarrow \infty$
 - \diamond the lattice spacing $l_s \rightarrow 0$
 - \diamond the physical volume V₄=const.
 - \diamond the **"shape**" of the universe (ω) is fixed
 - \diamond quantum *fluctuations* stay constant
- These conditions also imply that the renormalized effective couplings in the (physical) MS action stay fixed
- ↔ We have to find RG flow path(s) of constant physics in the bare couplings space (k₀, Δ) leading to the 2nd order phase transition point
- Finding such a UV fixed point is still an open problem in CDT

- ♦ We would rather like to find the UV continuum limit where for $N_4 \rightarrow \infty$
 - \diamond the lattice spacing $l_s \rightarrow 0$
 - \diamond the physical volume V₄=const.
 - \diamond the **"shape**" of the universe (ω) is fixed
 - \diamond quantum *fluctuations* stay constant
- These conditions also imply that the renormalized effective couplings in the (physical) MS action stay fixed
- ↔ We have to find RG flow path(s) of constant physics in the bare couplings space (k₀, Δ) leading to the 2nd order phase transition point
- Finding such a UV fixed point is still an open problem in CDT

★ In CDT the topology of spatial slices is fixed and it is not allowed to change in time (causality condition).

Toroidal vs spherical topologies

In CDT the topology of spatial slices is fixed and it is not allowed to change in time (causality condition).

- The results may in principle depend on the topology chosen
- The question: to what extend CDT results are universal ?
 - \diamond semiclassical background ?
 - \diamond phase structure ?
 - \diamond order of phase transitions ?
- The results presented so far were for spherical topology S³
- Now we want to investigate toroidal topology T³

In CDT the topology of spatial slices is fixed and it is not allowed to change in time (causality condition).

- The results may in principle depend on the topology chosen
- The question: to what extend CDT results are universal ?
 - \diamond semiclassical background ?
 - \diamond phase structure ?
 - \diamond order of phase transitions ?
- The results presented so far were for spherical topology S³
- Now we want to investigate toroidal topology T³

In CDT the topology of spatial slices is fixed and it is not allowed to change in time (causality condition).

- The results may in principle depend on the topology chosen
- The question: to what extend CDT results are universal ?
 - \diamond semiclassical background ?
 - \diamond phase structure ?
 - \diamond order of phase transitions ?
- The results presented so far were for spherical topology S³
- Now we want to investigate toroidal topology T³

In CDT the topology of spatial slices is fixed and it is not allowed to change in time (causality condition).

- The results may in principle depend on the topology chosen
- The question: to what extend CDT results are universal ? <pre
 - \diamond order of phase transitions ?
- The results presented so far were for spherical topology S³
- Now we want to investigate toroidal topology T³

♦ In CDT the topology of spatial slices is fixed and it is not allowed to change in time (causality condition).

- The results may in principle depend on the topology chosen
- ♦ The question: to what extend CDT results are universal ?
 - ♦ semiclassical background ?
 ♦ phase structure ?
 ♦ order of phase transitions ?
- The results presented so far were for spherical topology S³
- Now we want to investigate toroidal topology T³

In CDT the topology of spatial slices is fixed and it is not allowed to change in time (causality condition).

- The results may in principle depend on the topology chosen
- The question: to what extend CDT results are universal ?
 - \diamond semiclassical background ?
 - phase structure ?
 order of phase transitions ?
- The results presented so far were for spherical topology S³
- Now we want to investigate toroidal topology T³

JHEP 1907: 166 Class.Quant.Grav. 36: 224001 JHEP 2005: 030 JHEP 2204: 103

-15-

Toroidal vs spherical topologies ♦ Semiclassical backround inside phase C (T³ vs S³ spatial topology)

-16-

- ♦ We focus again on the spatial volume observable: $n_i \equiv N_{(4,1)}(i)$
- The volume profiles for S³ and T³ topologies vary significantly
- For S³ the average profile and volume fluctuations were perfectly described by a (maximally symmetric) MS model
- Using the same for T³ one recovers MS action with no potential term !

it explains the flat volume profile Phys. Rev. D 94: 044010 Nucl. Phys. B922: 226

Semiclassical backround inside phase C (T³ vs S³ spatial topology)
Spherical (T)

-16-

- ♦ We focus again on the spatial volume observable: $n_i \equiv N_{(4,1)}(i)$
- The volume profiles for S³ and T³ topologies vary significantly
- For S³ the average profile and volume fluctuations were perfectly described by a (maximally symmetric) MS model
- Using the same for T³ one recovers MS action with no potential term !
 - it explains the flat volume profile Phys. Rev. D 94: 044010 Nucl. Phys. B922: 226

Semiclassical backround inside phase C (T³ vs S³ spatial topology)

-16-

- ♦ We focus again on the spatial volume observable: $n_t \equiv N_{(4,1)}(t)$
- The volume profiles for S³ and T³ topologies vary significantly
- For S³ the average profile and volume fluctuations were perfectly described by a (maximally symmetric) MS model
- Using the same for T³ one recovers MS action with no potential term !

it explains the flat volume profile Phys. Rev. D 94: 044010 Nucl. Phys. B922: 226

$$d\Omega_{3} = dx_{1}^{2} + \sin^{2} x_{1} dx_{2}^{2} + \sin^{2} x_{1} \sin^{2} x_{2} dx_{3}^{2}$$
$$S_{MS}^{(S^{3})} = \int dt \left(\frac{1}{\Gamma} \frac{V_{3}(t)^{2}}{V_{3}(t)} + \mu V_{3}(t)^{1/3} - \lambda V_{3}(t) \right)$$

Semiclassical backround inside phase C (T³ vs S³ spatial topology)

-16-

- ♦ We focus again on the spatial volume observable: $n_t \equiv N_{(4,1)}(t)$
- ♦ The volume profiles for S³ and T³ topologies vary significantly
- For S³ the average profile and volume fluctuations were perfectly described by a (maximally symmetric) MS model
- Using the same for T³ one recovers MS action with no potential term !
 - it explains the flat volume profile Phys. Rev. D 94: 044010 Nucl. Phys. B922: 226

$$S_{MS}^{(T^{3})} = \int dt \left(\frac{1}{\Gamma} \frac{V_{3}(t)^{2}}{V_{3}(t)} + \mu V_{3}(t)^{1/3} - \lambda V_{3}(t) \right)$$

$$d\Omega_3 = dx_1^2 + dx_2^2 + dx_3^2$$

$$S_{HE} = \frac{1}{16\pi G} \int d^4x \sqrt{g} \left(R - 2\Lambda \right)$$
$$ds^2 = dt^2 + a^2(t) d\Omega_3^2 \Longrightarrow V_3(t) \propto a^3(t)$$

Semiclassical backround inside phase C (T³ vs S³ spatial topology)

- ♦ We focus again on the spatial volume observable: $n_t \equiv N_{(4,1)}(t)$
- The volume profiles for S³ and T³ topologies vary significantly
- For S³ the average profile and volume fluctuations were perfectly described by a (maximally symmetric) MS model
- Using the same for T³ one recovers MS action with no potential term !
 - it explains the flat volume profile Phys. Rev. D 94: 044010 Nucl. Phys. B922: 226

$$S_{HE} = \frac{1}{16\pi G} \int d^4x \sqrt{g} \left(R - 2\Lambda \right)$$
$$ds^2 = dt^2 + a^2(t) d\Omega_3^2 \Longrightarrow V_3(t) \propto a^3(t)$$

$$d\Omega_{3} = dx_{1}^{2} + \sin^{2} x_{1} dx_{2}^{2} + \sin^{2} x_{1} \sin^{2} x_{2} dx_{3}^{2}$$
$$S_{MS}^{(S^{3})} = \int dt \left(\frac{1}{\Gamma} \frac{V_{3}(t)^{2}}{V_{3}(t)} + \mu V_{3}(t)^{1/3} - \lambda V_{3}(t) \right)$$

 $\Rightarrow Semiclassical backround inside phase C (T³ vs S³ spatial topology)$ $n_t = \overline{n}_t + \delta n_t \quad C_{tt'} \equiv \langle \delta n_t \delta n_{t'} \rangle$

- The effective action can be measured in CDT using the covariance matrix data
 - $♦ in toroidal case: n_i ∝ N_4 / T and one$ can combine a collection of datameasured for various N₄ and T
 - ♦ one can also use non-standard boundary conditions to force n_i in some range
 - due to a lack of semiclassical potential it is easier to observe a quantum correction term

$$n_{t} = \overline{n}_{t} + \delta n_{t} \qquad C_{tt'} \equiv \left\langle \delta n_{t} \delta n_{t'} \right\rangle$$
$$S[n] = S[\overline{n}] + \frac{1}{2} \sum_{t,t'} \delta n_{t} [C^{-1}]_{tt'} \delta n_{t'} + O(\delta n^{3})$$
$$[C^{-1}]_{tt'} \equiv \frac{\partial^{2} S[n]}{\delta n_{t} \delta n_{t'}} \Big|_{n=\overline{n}}$$

$$S_{MS}^{(T^{3})} = \int dt \left(\frac{1}{\Gamma} \frac{V_{3}(t)^{2}}{V_{3}(t)} - \lambda V_{3}(t) \right)$$

 $\Rightarrow Semiclassical backround inside phase C (T^3 vs S^3 spatial topology)$ $n_t = \overline{n}_t + \delta n_t \quad C_{tt'} \equiv \langle \delta n_t \delta n_{t'} \rangle$

- The effective action can be measured in CDT using the covariance matrix data
 - ♦ in toroidal case: $n_i \propto N_4/T$ and one can combine a collection of data measured for various N_4 and T
 - ♦ one can also use non-standard boundary conditions to force n_i in some range
 - due to a lack of semiclassical potential it is easier to observe a quantum correction term

$$n_{t} = \overline{n}_{t} + \delta n_{t} \qquad C_{tt'} = \left\langle \delta n_{t} \delta n_{t'} \right\rangle$$

$$S[n] = S[\overline{n}] + \frac{1}{2} \sum_{t,t'} \delta n_{t} [C^{-1}]_{tt'} \delta n_{t'} + O(\delta n^{3})$$

$$\left[C^{-1}\right]_{tt'} = \frac{\partial^{2} S[n]}{\delta n_{t} \delta n_{t'}} \bigg|_{n=\overline{n}}$$

$$S_{ef}^{(T^{3})} = \sum_{t} \left(\frac{1}{\widetilde{\Gamma}} \frac{\left(n_{t+1} - n_{t}\right)^{2}}{\left(n_{t} + n_{t+1}\right)^{2}} + \widetilde{\mu} n_{t'}^{\gamma} - \widetilde{\lambda} n_{t} \right)$$

$$\left(1 + V_{t}(t)^{2} + V_{t}(t)^{2}\right)$$

$$S_{MS}^{(T^{3})} = \int dt \left(\frac{1}{\Gamma} \frac{V_{3}(t)^{2}}{V_{3}(t)} - \lambda V_{3}(t) \right)$$

 $\diamondsuit Semiclassical backround inside phase C (T³ vs S³ spatial topology)$ $n_t = \overline{n}_t + \delta n_t \quad C_{tt'} \equiv \langle \delta n_t \delta n_{t'} \rangle$

Ł

- The effective action can be measured in CDT using the covariance matrix data
 - ♦ in toroidal case: $n_i \propto N_4/T$ and one can combine a collection of data measured for various N_4 and T
 - ♦ one can also use non-standard boundary conditions to force n_i in some range
 - due to a lack of semiclassical potential it is easier to observe a quantum correction term

$$n_{t} = \overline{n}_{t} + \delta n_{t} \qquad C_{tt'} = \langle \delta n_{t} \delta n_{t'} \rangle$$

$$S[n] = S[\overline{n}] + \frac{1}{2} \sum_{t,t'} \delta n_{t} [C^{-1}]_{tt'} \delta n_{t'} + O(\delta n^{3})$$

$$[C^{-1}]_{tt'} = \frac{\partial^{2} S[n]}{\delta n_{t} \delta n_{t'}} \Big|_{n=\overline{n}}$$

$$S_{ef}^{(T^{3})} = \sum_{t} \left(\frac{1}{\Gamma} \frac{(n_{t+1} - n_{t})^{2}}{(n_{t} + n_{t+1})} + \tilde{\mu} n_{t'}^{\gamma} - \tilde{\lambda} n_{t} \right)$$

$$S_{ef}^{(T^{3})} = \int dt \left(\frac{1}{\Gamma} \frac{V_{3}(t)^{2}}{V_{3}(t)} + \mu V_{3}(t)^{\gamma} + \lambda V_{3}(t) \right)$$

$$\gamma \approx -3/2$$

Phys. Rev. D 94: 044010 Nucl. Phys. B922: 226

Toroidal vs spherical topologies ♦ The phase structure of CDT (T³ vs S³ spatial topology)

In toroidal CDT there exists a semiclasical phase C

- \diamond What about other phases ?
 - ♦ MC results show that all phases previously observed in the S³ spatial topology also exist in the T³ case

 \diamond Position of the phase transitions ...

- we analyse order parameters similar to the spherical case
- \diamond in search of susceptibility peaks
- \diamond to locate phase transition points

\diamond ... is also similar

 \diamond small shifts due to finite size effects -18-

 \diamond The phase structure of CDT (T³ vs S³ spatial topology)

In toroidal CDT there exists a semiclasical phase C

- \diamond What about other phases ?
 - ♦ MC results show that all phases previously observed in the S³ spatial topology also exist in the T³ case

 \diamond Position of the phase transitions ...

- we analyse order parameters similar to the spherical case
- \diamond in search of susceptibility peaks
- \diamond to locate phase transition points

\diamond ... is also similar

♦ small shifts due to finite size effects -18-

 \diamond The phase structure of CDT (T³ vs S³ spatial topology)

- In toroidal CDT there exists a semiclasical phase C
- \diamond What about other phases ?
 - MC results show that all phases previously observed in the S³ spatial topology also exist in the T³ case
- \diamond Position of the phase transitions ...
 - we analyse order parameters similar to the spherical case
 - \diamond in search of susceptibility peaks
 - \diamond to locate phase transition points
- \diamond ... is also similar
 - ♦ small shifts due to finite size effects -18-

 \diamond The phase structure of CDT (T³ vs S³ spatial topology)

- In toroidal CDT there exists a semiclasical phase C
- \diamond What about other phases ?
 - MC results show that all phases previously observed in the S³ spatial topology also exist in the T³ case
- \diamond Position of the phase transitions ...
 - we analyse order parameters similar to the spherical case
 - \diamond in search of susceptibility peaks
 - \diamond to locate phase transition points
- \diamond ... is also similar
 - \diamond small shifts due to finite size effects -18-

- In toroidal CDT there exists a semiclasical phase C
- ♦ What about other phases ?
 - MC results show that all phases previously observed in the S³ spatial topology also exist in the T³ case
- \diamond Position of the phase transitions ...
 - we analyse order parameters similar to the spherical case
 - \diamond in search of susceptibility peaks
 - \diamond to locate phase transition points
- \diamond ... is also similar
 - ♦ small shifts due to finite size effects -18-

- In toroidal CDT there exists a semiclasical phase C
- \diamond What about other phases ?
 - MC results show that all phases previously observed in the S³ spatial topology also exist in the T³ case
- \diamond Position of the phase transitions ...
 - ♦ we analyse order parameters similar to the spherical case
 - \diamond in search of susceptibility peaks
 - \diamond to locate phase transition points
- \diamond ... is also similar
 - \diamond small shifts due to finite size effects -18-

-0.2 L

1

2

3

 κ_0

4

5

- In toroidal CDT there exists a semiclasical phase C
- \diamond What about other phases ?
 - MC results show that all phases previously observed in the S³ spatial topology also exist in the T³ case
- \diamond Position of the phase transitions ...
 - we analyse order parameters similar to the spherical case
 - \diamond in search of susceptibility peaks
 - \diamond to locate phase transition points
- \diamond ... is also similar

JHEP 1806: 111

- In toroidal CDT there exists a semiclasical phase C
- \diamond What about other phases ?
 - MC results show that all phases previously observed in the S³ spatial topology also exist in the T³ case
- \diamond Position of the phase transitions ...
 - ♦ we analyse order parameters similar to the spherical case
 - \diamond in search of susceptibility peaks
 - \diamond to locate phase transition points
- \diamond ... is also similar

◆ Phase transitions (T³ vs S³ spatial topology)

★ Phase transitions (T³ vs S³ spatial topology)

In T³ CDT we have investigated the region where all phases meet

- ♦ we observe a direct B-C transition
- ♦ the B-C transition was classified to be 1st order: visible hysteresis, order parameters on both sides do not converge with increased lattice volume N₄
- ♦ but with some untypical properties: hysteresis shrinks with $N_4 \rightarrow \infty$, nontrivial scaling exponents

Α 0.6 С Α 0.4 \triangleleft 0.2 0.0 -0.22 3 C_b 0 druple point B-0.20 9 3 4 5

 κ_0

 \diamond *Phase transitions* (T^3 vs S^3 spatial topology)

In T³ CDT we have investigated the region where all phases meet

- ♦ we observe a direct B-C transition
- the B-C transition was classified to be 1st order: visible hysteresis, order parameters on both sides do not converge with increased lattice volume N₄
- ♦ but with some untypical properties: hysteresis shrinks with $N_4 \rightarrow \infty$, nontrivial scaling exponents

JHEP 1907: 166 JHEP 2204: 103

 \diamond *Phase transitions* (T^3 vs S^3 spatial topology)

In T³ CDT we have investigated the region where all phases meet

- ♦ we observe a direct B-C transition
- the B-C transition was classified to be 1st order: visible hysteresis, order parameters on both sides do not converge with increased lattice volume N₄
- ♦ but with some untypical properties: hysteresis shrinks with $N_4 \rightarrow \infty$, nontrivial scaling exponents
- it is possible that the endpoinds are higher order (work in progress)

JHEP 1907: 166 JHEP 2204: 103 ★ Phase transitions (T³ vs S³ spatial topology)

♦ In T³ CDT the A-C transition was confirmed to be 1st order (as in S³)

 \diamond critical scaling exponent: $v \approx 1$

 $K_0^c(N_{41}) = K_0^c(\infty) - \alpha N_{41}^{-1/\nu}$

 but the transition is smoother than for the S³ case: no metastable state jumping visible in Monte Carlo history

 κ_0

Toroidal vs spherical topologies

 \diamond Phase transitions (T³ vs S³ spatial topology)

In T³ CDT the A-C transition was confirmed to be 1st order (as in S³)

 ♦ critical scaling exponent: v≈1

 $K_0^c(N_{41}) = K_0^c(\infty) - \alpha N_{41}^{-1/\nu}$

 but the transition is smoother than for the S³ case: no metastable state jumping visible in Monte Carlo history

Toroidal vs spherical topologies

 \diamond Phase transitions (T³ vs S³ spatial topology)

In T³ CDT the A-C transition was confirmed to be 1st order (as in S³)

♦ critical scaling exponent: $v \approx 1$ $K_0^c(N_{41}) = K_0^c(\infty) - \alpha N_{41}^{(1/2)}$

but the transition is smoother than for the S³ case: no metastable state jumping visible in Monte Carlo history

★ Phase transitions (T³ vs S³ spatial topology)

\land In T³ CDT the B-C_b transition was confirmed to be 2nd order (as in S³)

 \Leftrightarrow critical scaling exponent: ν=2.6 ≠ 1 Δ^{c} (N₄₁) = Δ^{c} (∞) - $\alpha N_{41}^{-1/\nu}$

- ho metastable state jumping was
 observed in Monte Carlo history
- ♦ Binder cumulants are approaching zero with $N_4 \rightarrow \infty$

 κ_0

T³ x S¹

Toroidal vs spherical topologies

 \diamond Phase transitions (T³ vs S³ spatial topology)

♦ In T³ CDT the B-C_b transition was confirmed to be 2nd order (as in S³)
♦ critical scaling exponent: v=2.6 ≠ 1 $\Delta^{c} (N_{41}) = \Delta^{c} (\infty) - \alpha N_{41}^{(1/v)}$

- ♦ Binder cumulants are approaching zero with $N_4 \rightarrow \infty$

 \diamond *Phase transitions* (T^3 vs S^3 spatial topology)

In T³ CDT the C-C_b transition is most likely 1st order

- ♦ one observes strong hysteresis in the transition region which makes precise phase transition studies very difficult
- *it suggests that the transition is now 1st order transition (C-C_b transition was found to be 2nd order in S³*)
- but one cannot exclude that it is an algotythmic issue due to much stronger finite size effects in T³ vs S³

Α 0.6 Α 0.4 \triangleleft 0.2 0.0 -0.22 3 C_b 0 druple point B-0.20 3 5

 κ_0

 \diamond Phase transitions (T³ vs S³ spatia)

In T³ CDT the C-C_b transition is most likely 1st order

- one observes strong hysteresis in the transition region which makes precise phase transition studies very difficult
- it suggests that the transition is now 1st order transition (C-C_b transition was found to be 2nd order in S³)
- but one cannot exclude that it is an algotythmic issue due to much stronger finite size effects in T³ vs S³

Toroidal vs spherical topologies ♦ Phase transitions (T³ vs S³ spatial topology)

-23-

\diamond Phase transitions summary:

Transition	Spherical CDT	Toroidal CDT
A - C _{dS}	1 st order	1 st order
B - C _{dS}	???	1 st order
C _{dS} - C _b	2 nd order	1 st order (?)
B - C _b	2 nd order	2 nd order

 Conjecture: phase transitions involving a change of effetive topology are 1st order transitions

> JHEP 1907: 166 Class.Quant.Grav. 36: 224001 JHEP 2005: 030 JHEP 2204: 103

*T*³ x *S*¹

Toroidal vs spherical topologies
♦ Phase transitions (T³ vs S³ spatial topology)

\diamond Phase transitions summary:

Transition	Spherical CDT	Toroidal CDT
A - C _{dS}	1 st order	1 st order
B - C _{dS}	???	1 st order
C _{dS} - C _b	2 nd order	1 st order (?)
B - C _b	2 nd order	2 nd order

Conjecture: phase transitions involving a change of effetive topology are 1st order transitions

 $T^3 \times S^1$

Α

Conclusions

- \diamond CDT is very well suited to test the asymptotic safety conjecture
- It is also a promising candidate for describing Quantum Gravity in a fully non-perturbative way if asymptotic safety scenario is valid
- \diamond CDT has rich phase structure (incl. the semi-classical phase C_{dS})
- The spatial volume fluctuations inside the C_{ds} phase are very well described by the MS action which enables one to define the RG flow
- There exist 2nd order phase transitions + 1st order transitions with potentially higher order endpoints (perspective UV limits)
- Most CDT results seem to be universal, independent of the spatial topology chosen (at least for the toroidal vs spherical cases), however the order of the phase transitions may depend on the topology (important in the search for a continuum limit !)

Thank You !

