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² As early as in 1916 Einstein* pointed out that
„quantum theory would have to modify not only
Maxwellian electrodynamics, but also the new
theory of gravitation”

² After more than 100 years a complete, 
consistent quantum theory of gravity (QG) 
is still missing

² The aim: construct a fundamental theory of QG 
as a unitary, non-perturbative, diffeomorphism-
invariant theory of dynamical geometry and 
study its properties in a Planckian regime

² We have a number of interesting but incomplete
research programs
² string theory
² loop quantum gravity
² group field theory
² causal set theory
² noncommutative geometry
² asymptotic safety
² lattice approaches
² ...
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² GR treated as a QFT is perturbatively non-
renormalizable in d > 2 dimensions*

² But it could be renormalizable in a non-
perturbative regime
² asymptotic safety idea (S. Weinberg)
² renormalization group flow can lead to a non-

Gaussian UV fixed point

² Lattice formulation would allow to study a 
unitary, non-perturbative, background-
independent and diffeomorphism-invariant
quantum gravity
² we need a dynamical lattice (DT)
² UV fixed point should be associated with a 2nd order 

phase transition
² one should be able to reproduce semi-classical

gravity (IR limit) 

² Causality is an important ingredient 
² Causal DT (J. Amjørn, J. Jurkiewicz, R. Loll) 
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*Renormalizable extensions have problems with unitarity
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Outline
²Causal Dynamical Triangulations (CDT)
²Phase structure in spherical CDT
²Semi-classical phase CdS

²Phase transitions in spherical CDT
²Search for a continuum limit
²Toroidal vs spherical topologies
²Conclusions
²Semiclassical coordinates & scalar fields in CDT

(if time permits)
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²Causal Dynamical Triangulations (CDT) is a Quantum 
Gravity approach based on the path integral formalism

CDT
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space

² Classical mechanics: single 
trajectory of a particle
resulting from E-L equations
(Hamilton’s principle)

² Quantum mechanics: all
trajectories (paths) contribute
to transition amplitude
(weight/phase factor depends
on the action)

² Path integral is defined by a 
discretization of time
(regularization)



-4-

tim
e

Quantum
trajectory

CDT

space

Classical
trajectory

² Classical mechanics: single 
trajectory of a particle
resulting from E-L equations
(Hamilton’s principle)

² Quantum mechanics: all
trajectories (paths) contribute
to transition amplitude
(weight/phase factor depends
on the action)

² Path integral is defined by a 
discretization of time
(regularization)

²Causal Dynamical Triangulations (CDT) is a Quantum 
Gravity approach based on the path integral formalism



tim
e

-4-

CDT
²Causal Dynamical Triangulations (CDT) is a Quantum 

Gravity approach based on the path integral formalism
² Classical mechanics: single 

trajectory of a particle 
resulting from E-L equations 
(Hamilton’s principle)

² Quantum mechanics: all 
trajectories (paths) contribute 
to transition amplitude 
(weight/phase factor depends 
on the action)

² Path integral is defined by a 
discretization of time 
(regularization)

space

Quantum
trajectory

Classical
trajectory



CDT

-5-

²Causal Dynamical Triangulations (CDT) is a Quantum 
Gravity approach based on the path integral formalism
² Einstein’s General Relativity: 

gravity defined through
spacetime geometry 

² Smooth geometry can be 
approximated with arbitrary
precission (discretized) by 
multidimensional simplices
(triangulation)

² Local curvature is encoded in 
deficit angle
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CDT
²Causal Dynamical Triangulations (CDT) is a Quantum 

Gravity approach based on the path integral formalism

space

² Causality constraint (global 
hyperbolicity) Þ spacetime 
topology is fixed (time x space: 
S1xS3) and cannot change

² The path integral trajectory of 
CDT = spacetime geometry 
regularized* by a triangulation
(2 types of  4-simplices)

² Transition amplitude depends on 
all admissible trajectories
(non-perturbative approach)

*We do not a priori assume that spacetime is discrete !
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²Causal Dynamical Triangulations (CDT) is a Quantum 
Gravity approach based on the path integral formalism
² We will consider pure gravity model 

(G) with positive cosmological
constant (Λ)

² CDT is formulated in a coordinate
free way (Regge calculus)

² Three coupling constants: k0 , K4 , Δ
² After Wick’s rotation: „random” 

geometry system 
² Background geometry emerges

dynamically: interplay between bare
action (SR) and entropy

Z = D[gµν ]exp(iSHE[gµν ])
trajectories
∫
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²4-dim CDT can be investigated using Monte Carlo 
techniques

P(T ) = 1
Z
e−SR [T ]
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² The algorithm performs random 
walk in the space of triangulations

² The walk consists of a series of local 
moves* (4 moves + 4 antimoves)

² The moves are causal (preserve 
local & global topology) …

² ... and ergodic (any triangulation is 
achievable by a sequence of moves)

² Probability of a move is determined
by a detailed balance condition

² One can compute expectation
values or correlators of observables

²4-dim CDT can be investigated using Monte Carlo 
techniques

P(T ) = 1
Z
e−SR [T ]
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² The observable:  3-volume of spatial
layers (foliation leaves of the global
proper time): V3(ti) µ ni º N4(4,1)(i)

² Four phases (A, B, CdS, Cb) of various
geometry were discovered

² In order to distinguish between the 
CdS and Cb phases one can measure

² the Hausdorff dimension: dH

² the Spectral dimension: dS

Phase structure in S3 CDT
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² the Hausdorff dimension: dH
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SR = −k0N0 + K4N4 +Δ N4
(4,1) −6N0( )

1/G L a (lt2 = als2)We perform MC simulations with fixed lattice volume N4
The cosmological constant K4 is tuned to N4

We effectively have two coupling constants: k0 and Δ
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Phase structure in S3 CDT

𝜕
𝜕𝜎 𝐾(𝑥, 𝑥'; 𝜎) = Δ(𝐾(𝑥, 𝑥'; 𝜎)

𝑃) 𝜎 =
1
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Semi-classical phase CdS
² Phase CdS (de Sitter phase) has good

semi-classical properties (IR limit)
² Hausdorff dim.: 4 , 

Spectral dim.: 2 Þ 4
² Scale factor is consistent with a 

background geommetry of a 4-dim 
sphere Þ Euclidean de Sitter
universe (positive cosmol. const.)

² This is clasically obtained for a 
homogenous and isotropic metric

² For which the GR action takes a 
form of the minisuperspace action
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² The effective action for the ni
observable …

² ... can be analyzed by looking at
quantum fluctuations around the 
semiclassical solution

² The (inverse of) covariance matrix
P =C-1 provides information about
second derivatives of the effective
action

² The measured covariance matrix is
consistent with MS action (with 
reversed overall sign) ! 

² The semiclassical description is 
obtained  from “first principles” !
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² The effective action for the ni
observable …

² ... can be analyzed by looking at
quantum fluctuations around the 
semiclassical solution

² The (inverse of) covariance matrix
P =C-1 provides information about
second derivatives of the effective
action

² The measured covariance matrix is
consistent with MS action (with 
reversed overall sign) ! 

² The semiclassical description is 
obtained  from “first principles” !

Semi-classical phase CdS

Agrees with Hartle–Hawking „noboundary” proposal !
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Phase transitions in S3 CDT
² To analyze phase transitions one 

needs to define a suitable order 
parameter OP (e.g. N0 / N4 , …)

² (Pseudo)critical point is signaled by 
max. of susceptibility

² Two-states jumping of OP (double
peak structure of measured
histograms)  may signal a 1st order 
transition

² But one must be careful and check
N4 ®¥ limit 

² B-Cb transition is 2-nd order
² The CdS-Cb trans. is also 2-nd order
² Common points: UV limit candidates
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Search for a continuum limit

2nd order

1st   order

² We observe a semiclassical
behaviour inside phase CdS
² Due to the Hausdorf dimension dH=4 we 

observe universal scaling of the spatial
volume ni and its fluctuations

² which are well described by the 
(discretized) MS effective action

² Identifying (dimensionless) lattice and 
(dimensionfull) physical quantities one 
can compute the lattice spacing ls

² For fixed G and (k0 ,Δ) (constant 9Γ , ;𝜔) 
the lattice spacing ls is constant

² Taking N4 ®¥ for fixed (k0 ,Δ) 
corresponds to the limit V4 ®¥
with const.  ls >0 where (relative) 
quantum fluct. vanish (IR limit ?)

?
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Search for a continuum limit

2nd order

1st   order

² We would rather like to find the UV 
continuum limit where for N4 ®¥
² the lattice spacing ls® 0
² the physical volume V4=const.
² the „shape” of the universe (𝜔) is fixed
² quantum fluctuations stay constant

² These conditions also imply that the 
renormalized effective couplings in 
the (physical) MS action stay fixed

² We have to find RG flow path(s) of 
constant physics in the bare
couplings space (k0 ,Δ) leading to 
the 2nd order phase transition point

² Finding such a UV fixed point is still 
an open problem in CDT
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² We would rather like to find the UV 
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² the physical volume V4=const.
² the „shape” of the universe (𝜔) is fixed
² quantum fluctuations stay constant

² These conditions also imply that the 
renormalized effective couplings in 
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² We have to find RG flow path(s) of 
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² Finding such a UV fixed point is still 
an open problem in CDT
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Toroidal vs spherical topologies
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topology)
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² We focus again on the spatial 
volume observable: ni º N(4,1)(i)

² The volume profiles for S3 and T3

topologies vary significantly
² For S3 the average profile and 

volume fluctuations were 
perfectly described by a 
(maximally symmetric) MS model

² Using the same for T3 one 
recovers MS action with no 
potential term !
² it explains the flat volume profile
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Toroidal vs spherical topologies

² The effective action can be 
measured in CDT using the 
covariance matrix data
² in toroidal case: ni µN4 /T and one 

can combine a collection of data 
measured for various N4 and T

² one can also use non-standard 
boundary conditions to force ni in 
some range 

² due to a lack of semiclassical 
potential it is easier to observe a 
quantum correction term

S n[ ] = S n[ ]+ 1
2

δnt[C
−1]tt '

t,t '
∑ δnt ' +O(δn

3)

Ctt ' ≡ δntδn "tnt = nt +δnt

Phys. Rev. D 94: 044010
Nucl. Phys. B922: 226
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Toroidal vs spherical topologies
²The phase structure of CDT (T3 vs S3 spatial topology)

² In toroidal CDT there exists a 
semiclasical phase C 

² What about other phases ?
² MC results show that all phases 

previously observed in the S3 spatial 
topology also exist in the T3 case

² Position of the phase transitions …
² we analyse order parameters similar 

to the spherical case
² in search of susceptibility peaks 
² to locate phase transition points

² … is also similar
² small shifts due to finite size effects 
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Toroidal vs spherical topologies
²Phase transitions (T3 vs S3 spatial topology)
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² In T3 CDT we have investigated
the region where all phases meet 
² we observe a direct B-C transition
² the B-C transition was classified to 

be 1st order: visible hysteresis, order 
parameters on both sides do not 
converge with increased lattice 
volume N4

² but with some untypical properties: 
hysteresis shrinks with N4 ®¥ , 
nontrivial scaling exponents

² it is possible that the endpoinds are 
higher order (work in progress) 
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Toroidal vs spherical topologies
²Phase transitions (T3 vs S3 spatial topology)
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² In T3 CDT the A-C transition was 
confirmed to be 1st order (as in S3)
² critical scaling exponent: 𝜈≈1

² but the transition is smoother than 
for the S3 case: no metastable state 
jumping visible in Monte Carlo 
history
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² In T3 CDT the B-Cb transition was 
confirmed to be 2nd order (as in S3)
² critical scaling exponent: 𝜈=2.6 ≠ 1

² no metastable state jumping was 
observed in Monte Carlo history 

² Binder cumulants are approaching 
zero with N4 ®¥
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² In T3 CDT the C-Cb transition is 
most likely 1st order
² one observes strong hysteresis in the 

transition region which makes precise 
phase transition studies very difficult 

² it suggests that the transition is now 
1st order transition (C-Cb transition 
was found to be 2nd order in S3) 

² but one cannot exclude that it is 
an algotythmic issue due to much 
stronger finite size effects in T3 vs S3
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² Phase transitions summary:

² Conjecture: phase transitions 
involving a change of effetive 
topology are 1st order transitions
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Conclusions
² CDT is very well suited to test the asymptotic safety conjecture 
² It is also a promising candidate for describing Quantum Gravity in 

a fully non-perturbative way if asymptotic safety scenario is valid
² CDT has rich phase structure (incl. the semi-classical phase CdS)
² The spatial volume fluctuations inside the CdS phase are very well 

described by the MS action which enables one to define the RG flow
² There exist 2nd order phase transitions + 1st order transitions with 

potentially higher order endpoints (perspective UV limits)
² Most CDT results seem to be universal, independent of the spatial

topology chosen (at least for the toroidal vs spherical cases), 
however the order of the phase transitions may depend on the 
topology (important in the search for a continuum limit !)
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