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<> Asearly as in 1916 Einstein* pointed out that
,quantum theory would have to modify not only
Maxwellian electrodynamics, but also the new
theory of gravitation”

<> After more than 100 years a complete,
consistent quantum theory of gravity (QG)
is still missing

<> The aim: construct a fundamental theory of QG
as a unitary, non-perturbative, diffeomorphism-
invariant theory of dynamical geometry and
study its properties in a Planckian regime

A. Einstein triangulation by J. Bryan

* Sitzungsber. Preuss. Akad. Wiss. Berlin (1916) 688



<> Asearly as in 1916 Einstein* pointed out that
,quantum theory would have to modify not only
Maxwellian electrodynamics, but also the new
theory of gravitation”

<> After more than 100 years a complete,
consistent quantum theory of gravity (QG)
is still missing

<> The aim: construct a fundamental theory of QG
as a unitary, non-perturbative, diffeomorphism-

invariant theory of dynamical geometry and
study its properties in a Planckian regime

<> We have a number of interesting but incomplete
research programs

string theory

loop quantum gravity

group field theory

causal set theory

noncommutative geometry * Sitzungsber. Preuss. Akad. Wiss. Berlin (1916) 688

asymptotic safety

lattice approaches

A. Einstein triangulation by J. Bryan
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<> GR treated as a QFT is perturbatively non-
renormalizable in d > 2 dimensions *

*Renormalizable extensions have problems with unitarity
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Irrelevant coupling

<> GR treated as a QFT is perturbatively non-
renormalizable in d > 2 dimensions*
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<> But it could be renormalizable in a non- 1 Rellakcouping
perturbative regime \@ o
<> asymptotic safety idea (S. Weinberg) .
<> renormalization group flow can lead to a non- %

Gaussian UV fixed point

*Renormalizable extensions have problems with unitarity
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<> GR treated as a QFT is perturbatively non- ||| |~
renormalizable in d > 2 dimensions* / / 17
<> But it could be renormalizable in a non- v
perturbative regime

<> asymptotic safety idea (S. Weinberg)
<> renormalization group flow can lead to a non-

Gaussian UV fixed point 0.3
<> Lattice formulation would allow to study a 06 |
unitary, non-perturbative, background-

independent and diffeomorphism-invariant = |
quantum gravity

<> we need a dynamical lattice (DT)

<> UV fixed point should be associated with a 2nd order 0 i > 3 1 5
phase transition

<> one should be able to reproduce semi-classical
gravity (IR limit)

*Renormalizable extensions have problems with unitarity

2D-



<> GR treated as a QFT is perturbatively non- || ||~
renormalizable in d > 2 dimensions* ydvdvdy

<> But it could be renormalizable in a non-
perturbative regime
<> asymptotic safety idea (S. Weinberg)
<> renormalization group flow can lead to a non-
Gaussian UV fixed point
<> Lattice formulation would allow to study a 06 |
unitary, non-perturbative, background-
independent and diffeomorphism-invariant ~ .|
quantunrdravity T T T =o_ N 0
L 2 weneeda dynamical lattice (DT) .

4 < UV fixed point should be associated with a 2nd order N i > 3 1 5
( phase transition !

\ <> one should be able to reproduce semi-classical /
~ . .. Ve
~ _ gravity (IR limit) _-
< Causdlity~is-an important ingrediert™

<> Causal DT (J. Amjgrn, J. Jurkiewicz, R. Loll)

-
Z

*Renormalizable extensions have problems with unitarity
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Outline

<>Causal Dynamical Triangulations (CDT)
<>Phase structure in spherical CDT
<>Semi-classical phase C

<>Phase transitions in spherical CDT
<>Search for a continuum limit
<Toroidal vs spherical topologies
<>Conclusions
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<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity approach based on the path integral formalism

<> Classical mechanics: single
trajectory of a particle
resulting from E-L equations
(Hamilton’s principle) N\ A

A Classical
__trajectory

time

< Quantum mechanics:all | S

trajectories (paths) contribute e N

to transition amplitude g LN N

(weight/phase factor depends N
on the action) . A

<~ Path integral is defined by a
discretization of time N
(regularization)
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<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity approach based on the path integral formalism

<> Einstein’s General Relativity:
gravity defined through
spacetime geometry
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approximated with arbitrary
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multidimensional simplices
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CDT

<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity approach based on the path integral formalism

<> Einstein’s General Relativity:
gravity defined through
spacetime geometry

<> Smooth geometry can be
approximated with arbitrary
precission (discretized) by
multidimensional simplices
(triangulation)

< Local curvature is encoded in
deficit angle



CDT

<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity approach based on the path integral formalism

<> Causality constraint (global
hyperbolicity) = spacetime
topology is fixed (time x space:
S$1xS?) and cannot change
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CDT

<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity approach based on the path integral formalism

<> Causality constraint (global
hyperbolicity) = spacetime
topology is fixed (time x space:
SIxT3) and cannot change
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CDT

<> Causal Dynamical Triangulations (CDT) is a Quantum

Gravity approach based on the path integral formalism

{4.1}

<> Causality constraint (global
hyperbolicity) = spacetime
topology is fixed (time x space:
SIxT3) and cannot change

<> The path integral trajectory of
CDT = spacetime geometry
reqgularized* by a triangulation
(2 types of 4-simplices)

*We do not a priori assume that spacetime is discrete !

time
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CDT

<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity approach based on the path integral formalism

<> We will consider pure gravity model |
(G) with positive cosmological Sup = TenC f d*x\-g (R = 2A)
constant (/) T I

< CDT is formulated in a coordinate . e x TS
free way (Regge calculus) S, = —ko(iygﬁ K4(1Y4/l+ A(\Nj; = 6£V9)

# vertices # 4-simplices # (4,1) 4-simplices

Z = exp(iS,[T])
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<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity approach based on the path integral formalism

<> We will consider pure gravity model | )
(G) with positive cosmological Sup = 162G f d"x+\|-g (R 2/\)
constant (/) & I
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CDT

<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity approach based on the path integral formalism

<> We will consider pure gravity model | )
(G) with positive cosmological Sup = 162G f d"x+\|-g (R 2/\)
constant (/) & I

<> CDT is formulated in a coordinate )
free way (Regge calculus) Sy = —é,NO + %N4 +i(N4 V- 6N0)

< Three coupling constants: k,, K,, A 1G A o (I2=al?)
<> After Wick’s rotation: ,random”

geometry system Z= EGXP(—S LT
<> Background geometry emerges ' t
dynamically: interplay between bare S =InQ

e

action (Sg) and entropy



CDT

<>4-dim CDT can be investigated using Monte Carlo
techniques

Z = Yexp(=S,[T])
T
S, ==k, N+ KN, + AN -6N, |

P(T)= %e_SR[T]



CDT

<>4-dim CDT can be investigated using Monte Carlo
techniques

<> The algorithm performs random
walk in the space of triangulations Z= EGXP(—S <L TD
T

S, ==k, N+ KN, + AN -6N, |

P(T)= %e_SR[T]



CDT

<>4-dim CDT can be investigated using Monte Carlo
techniques

<> The algorithm performs random
walk in the space of triangulations

<> The walk consists of a series of local
moves* (4 moves + 4 antimoves)

* Example of a move in 2-dim
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CDT

<>4-dim CDT can be investigated using Monte Carlo
techniques

<> The algorithm performs random
walk in the space of triangulations

<> The walk consists of a series of local
moves* (4 moves + 4 antimoves)

™
£ N
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<> The moves are causal (preserve
local & global topology) ...

<> ... and ergodic (any triangulation is
achievable by a sequence of moves)
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<>4-dim CDT can be investigated using Monte Carlo
techniques

<> The algorithm performs random
walk in the space of triangulations Z= ECXP(—S <L TD
T

<> The walk consists of a series of local
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CDT

<>4-dim CDT can be investigated using Monte Carlo
techniques

<> The algorithm performs random
walk in the space of triangulations Z= ECXP(—S <L TD
T

<> The walk consists of a series of local

moves* (4 moves + 4 antimoves) "
<> The moves are causal (preserve Sp=—kyNg+ KN, + A(N4 B 6N0)
local & global topology) ...

<> ... and ergodic (any triangulation is P(T) = le‘SR[T ]
achievable by a sequence of moves) Z

<> Probability of a move is determined
by a detailed balance condition P(T)P(T, ——T,) = P(T))P(T,——T,))

<> One can compute expectation . . I |
values or correlators of observa%/es <0> = }EO[T le ™ = Y O[]
-8- T
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Phase structure in S° CDT

lattice time\A Iattii:ispacing
< The obser\(at?le.' 3-volume of spatial ohysical proper time t; =i - I,
layers (foliation leaves o obal

; # of tetrahedra at lattice fime i
proper time): V(t,) « n;,= N4(4,1)(,-)4/A |

time

physical 3-volume




Phase structure in S° CDT

<> The observable: 3-volume of spatial
layers (foliation leaves of the global

proper time): V(t,) oc n;= N,*V(i) _______ SphericalcDT

< Four phases (A, B, Cy4, C,) of various
geometry were discovered e Cas
041 Thel
) 0'2} Gy \ 4§
0.0} ""“'::\\ ,
T~
o .
-0.2 |
1 2 3 4 5
ko
S =tk

We perform MC simulations with fixed lattice volume N,
The cosmological constant K, is tuned to N,

We effectively have two coupling constants: kyand A
-9-



Phase structure in S> CDT.

<> The observable: 3-volume of spatial
layers (foliation leaves of the global
proper time): V;(t,) « n;= N,4D(i)

< Four phases (A, B, C,, C,) of various
geometry were discovered
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Phase structure in S° CDT

<> The observable: 3-volume of spatial
layers (foliation leaves of the global

proper time): V(t,) oc n;= N,*V(i) _____ SphericalCDT

<~ Four phases (A, B, C,, C,) of various |
geometry were discovered ’
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Phase structure in S° CDT

<> The observable: 3-volume of spatial
layers (foliation leaves of the global
proper time): V;(t,) « n;= N,4D(i)

< Four phases (A, B, C, C,) of various . -

geometry were discovered

04l

<> In order to distinguish between the
C,s and C, phases one can measure

<

<nt> 0.0:

<> the Hausdorff dimension: dy {ne) - N41—1/dH

t

1/dy
N, 7

t -

Rescaled average
volume profiles (n;)
(scaling for d;; = 4)

_Spherical CDT_

Phase Cy4s and C,, 1




Phase structure in S° CDT

<> The observable: 3-volume of spatial
layers (foliation leaves of the global
proper time): V;(t,) « n;= N,4D(i)

< Four phases (A, B, C, C,) of various . -

geometry were discovered

04l

<> In order to distinguish between the
C,s and C, phases one can measure

<

(nt> 0.0: -
<~ the Hausdorff dimension: d (ne) = yi-vam |
-0.2+

4
t
t -

<~ the Spectral dimension: d N/

0
gK(X;XOJ 0) = AgK(x,xg; 0)

1
Pr(o) = Vf dx\/gK (x,x; o)

dlog P.(0)
dlog o _9-

ds(O') = —2

_Spherical CDT_

Phase Cy4s and C,,

dg(o)




Semi-classical phase C

< Phase C4 (de Sitter phase) has good
semi-classical properties (IR limit)

< Hausdorff dim.: 4, Spherical CDT
Spectral dim.: 2 = 4 |

<> Scale factor is consistent with a
background geommetry of a 4-dim
sphere = Euclidean de Sitter
universe (positive cosmol. const.)

<

<> This is clasically obtained for a
homogenous and isotropic metric

<> For which the GR action takes a
form of the minisuperspace action

-10-
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<> Scale factor is consistent with a
background geommetry of a 4-dim
sphere = Euclidean de Sitter
universe (positive cosmol. const.)

<> This is clasically obtained for a
homogenous and isotropic metric

<> For which the GR action takes a
form of the minisuperspace action
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Spherical CDT

r)
dy

dg(o — 0o) = 4.02 4+ 0.03,

dy = 3.98 £0.10. b dg{o — 0) = 1.95 £ 0.10.

100 200 300 400 500

= ", 4 dlog P (o)
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Semi-classical phase C

< Phase C (de Sitter phase) has good

semi-classical properties (IR limit)

<> Hausdorff dim.: 4,
spectral dim.: 2 = 4

<> Scale factor is consistent with a
background geommetry of a 4-dim
sphere = Euclidean de Sitter
universe (positive cosmol. const.)

Nucl. Phys. B849: 144

-10-
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Semi-classical phase C

< Phase C (de Sitter phase) has good
semi-classical properties (IR limit)

<> Hausdorff dim.: 4, 9000 g S.pheﬁrica.l
spectral dim.: 2 = 4 o
<> Scale factor is consistent with a f(mé-
background geommetry of a 4-dim o
sphere = Euclidean de Sitter "’iz
universe (positive cosmol. const.) o |

ol aaaa gl
-40 =30 -20 -10

<> This is clasically obtained for a ,
homogenous and isotropic metric
ds? = dt? + a?(t)d0s

-

V() = 2y ——cos? [ —
3(0)) = -V, ——zcos® [ ——
4 a)I/;l/LL a)Vl/4

Nucl. Phys. B849: 144 4
-10- V3(t) o« a3(¢)



Semi-classical phase C

< Phase C (de Sitter phase) has good
semi-classical properties (IR limit)

<> Hausdorff dim.: 4, 9000 g S.pheﬁrica.l
spectral dim.: 2 = 4 o
<> Scale factor is consistent with a 6000
background geommetry of a 4-dim o
sphere = Euclidean de Sitter ﬁz
universe (positive cosmol. const.) o |

ol aaaa gl
-40 =30 -20 -10

<> This is clasically obtained for a ,
homogenous and isotropic metric

<> For which the GR action takes a ds® = dt* + a*(t)d0;
form of the minisuperspace action

-
1 V3(t)?
Sus =~ 55— dt( ;3(2) + p Vs ()3 — Avg(t))

Nucl. Phys. B849: 144
-10- V5(t) o a3(t)



Semi-classical phase C

< The effective action for the n;

observable ...

Nucl. Phys. B849: 144

z ’ S \
/ \
Z=) exp(=Se[TD = [ » exp(=Se[T])
T EnAIE) K
~ - _ 7’
» c----

Zeg = Z exp(—Ser[{n:}])
{ni}

1 Vs(t)?
Sus = mEyr dt( ;3(2) +u V()3 - /1V3(t)>
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Semi-classical phase C

< The effective action for the n;
observable ...

<> ... can be analyzed by looking at
quantum fluctuations around the
semiclassical solution

Sms =

Nucl. Phys. B849: 144
-11-
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Semi-classical phase C

<> The effective action for the n;
observable ...

<> ... can be analyzed by looking at
quantum fluctuations around the
semiclassical solution

<> The (inverse of) covariance matrix
P =C"! provides information about
second derivatives of the effective
action

Sms =

Nucl. Phys. B849: 144
-11-
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Semi-classical phase C

< The effective action for the n;
observable ...

<> ... can be analyzed by looking at
quantum fluctuations around the
semiclassical solution

<> The (inverse of) covariance matrix
P =C"! provides information about
second derivatives of the effective
action

<> The measured covariance matrix is
consistent with MS action (with
reversed overall sign) !

<> The semiclassical description is

1

obtained from “first principles” | s,,5 = xm j dt(

Nucl. Phys. B849: 144

Z <(ni+1—ni)2 i VE >
(nj41+n;)

_|_

o

V3(t)?
V3(t)

+u Vi3 - v, (O)

A_grees with Hartle-Hawking ,,noboundary” proposal !



Phase transitions in S3 CDT

_ Spherical CDT

<> To analyze phase transitions one l
needs to define a suitable order 08 ----o--
parameter OP (e.g. N,/ N,, ...) oaf T

L -

02l

/

(| — S R

| B N
-0.2 I A . W T

k O(OP)
. op, 100 :
B Cb C com, i
e LnOP3 o6 E
OP,4 i
— E
02 05 o5 A : B B *\5"‘ Ko
OP. = No/N OP3 = ) (ng4, — nt)?
1 0/ 4 3 t+1
t
3,2 4,1
op, = NP N 0P, = max, O(v)
‘ OoP “ Phase A | Phase B | Phase Cgs ‘ Phase C,, ‘
OP large small medium medium
OP, small small large large
OP; | medium large small medium
OP, small large small large

-12- Phys. Rev. D85: 124044 JHEP 1602: 144 Phys. Rev. D 95: 124029



Phase transitions in S3 CDT

_ Spherical CDT_

<> To analyze phase transitions one l
needs to define a suitable order 08
parameter OP (e.g. N,/ N,, ...) o

<~ (Pseudo)critical point is signaled by <
max. of susceptibility xop = (OP?) —(OP)* |

0.0/

— 2
0P1:N0/N4 0P3_Z(nt+1_nt)
t
3,2 4,1
op, = N&? /N& 0P, = max, O(v)
‘ OoP “ Phase A | Phase B | Phase Cgs ‘ Phase C,, ‘

OP large small medium medium

OP, small small large large

OP; | medium large small medium

OP, small large small large

-12- Phys. Rev. D85: 124044 JHEP 1602: 144 Phys. Rev. D 95: 124029



Phase transitions in S3 CDT

<> To analyze phase transitions one

needs to define a suitable order 08
parameter OP (e.g. N,/ N, ...) |

<> (Pseudo)critical point is signaled by <

<> Two-states jumping of OP (double
peak structure of measured

_ Spherical CDT_

02l

max. of susceptibility xop = (OP%) —(OP)? |
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Phase transitions in S3 CDT

_ Spherical CDT_

<> To analyze phase transitions one

1st lorder |

needs to define a suitable order 08 ----o-- 1o
parameter OP (e.g. N,/ N, ...) oal el Cas !
< (Pseudo)critical point is signaled by < C1 \ X
of ofe , b)
max. of susceptibility xop = (OP?) —(OP)* I ...} ..
00— e =—m S~
<> Two-states jumping of OP (double | /‘ B el
-0.2} S~
peak structure of measured : [ : -
histograms) may signal a 1st order ko
transition _
/’—_5\\ /’— ~\~l
<> But one must be careful and check ¢ \ s N
. N A . 4 \
N, — colimit AN | A
I N=160k —— I 200
15 \ 150 [ q \
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| - { 1
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Phase transitions in S3 CDT

_ Spherical CDT_

<> To analyze phase transitions one

needs to define a suitable order O8] —---o- 1mmm e msomeooee i
parameter OP (e.g. Ny/ Ny, ...) oal el ] Cas t
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Search for a continuum limit

<> We observe a semiclassical
behaviour inside phase C

<> Due to the Hausdorf dimension dy=4 we
observe universal scaling of the spatial
volume n; and its fluctuations

<> which are well described by the
(discretized) MS effective action

<> Identifying (dimensionless) lattice and
(dimensionfull) physical quantities one
can compute the lattice spacing [

<> For fixed G and (k,,4) (constant T, @)
the lattice spacing [, is constant

< Taking N, — o for fixed (k,,4)
corresponds to the limit V,— oo
with const. [, >0 where (relative)
quantum fluct. vanish (IR limit ?)
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Search for a continuum limit

Spherical CDT
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Search for a continuum limit

<> We would rather like to find the UV

continuum limit where for N, — o

<> the lattice spacing [, — 0
<> the physical volume V,=const.

<> the ,shape” of the universe (w) is fixed

<> quantum fluctuations stay constant
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Toroidal vs spherical topologies

<>In CDT the topology of spatial slices is fixed and it is not
allowed to change in time (causality condition).
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Toroidal vs spherical topologies

<> Semiclassical backround inside phase C (T3 vs S° spatial
topology)

<> We focus again on the spatial
volume observable: n,= N4 (i)

time
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volume observable: n,= N 4 (i)
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Toroidal vs spherical topologies

<> Semiclassical backround inside phase C (T3 vs S° spatial

topology) - Spherical
< We focus again on the spatial oy
volume observable: n,= Ny |(?) i
<> The volume profiles for S and T3 o
topologies vary significantly o T
<> For S’ the average profile and e f i Je(r-2 A)
. nG
volume fluctuations were ds’ =di* +a*(1)dQ: = V(1) < a’ (1)

perfectly described by a

(maximally symmetric) MS model dQ, = dx’ +sin’ x,dx’ +sin’ x, sin’ x,dx’

st = dt(; V;((’)) Ul (0" = WV, (1)
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Toroidal vs spherical topologies

<> Semiclassical backround inside phase C (T3 vs S° spatial
topology)

< We focus again on the spatial ST = [di 1 (1), ALY
volume observable: n,= N /(1) " L V(t ) :

<> The volume profiles for S and T3
topologies vary significantly

2 2 2
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<> For S3 the average profile and s, = fd‘*xf (R-24)
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perfectly described by a Toroidal
(maximally symmetric) MS model 0 ey
<> Using the same for T° one
recovers MS action with no
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Toroidal vs spherical topologies

<> Semiclassical backround inside phase C (T3 vs S° spatial

topology)

<> The effective action can be
measured in CDT using the
covariance matrix data
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Toroidal vs spherical topologies

<> Semiclassical backround inside phase C (T3 vs S° spatial

topology)

<> The effective action can be
measured in CDT using the
covariance matrix data

<> in toroidal case: n; «<N,/T and one
can combine a collection of data
measured for various Nyand T

<> one can also use non-standard
boundary conditions to force n; in
some range

<> due to a lack of semiclassical
potential it is easier to observe a
quantum correction term
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Nucl. Phys. B922: 226 -17-
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Toroidal vs spherical topologies

<> Semiclassical backround inside phase C (T3 vs S° spatial
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measured in CDT using the
covariance matrix data

S[n]=S[n]+ %gént[C'l]n.ént, +0(0n”)

[ C‘l] 9°S[n]

<> in toroidal case: n; «<N,/T and one

can combine a collection of data on (Sn, -
measured for various Nyand T RN
<> one can also use non-standard ST _ E 1 (n“l " ) Iy uny L )Ln
boundary conditions to force n; in 7 “|T (n,+n,) ‘o)
some range - -
<~ due to a lack of semiclassical e~
otential it is easier to observe a 5) 1 V
P | ST = [ di E QN7 (08 Ly (1)
quantum correction term TV (t)
Yy = —3 /2

Phys. Rev. D 94: 044010

Nucl. Phys. B922: 226 -17-



Toroidal vs spherical topologies
<> The phase structure of CDT (T vs S° spatial topology)

. . 3 1 3 1
<> In toroidal CDT there exists a SIXS "xS5
. . Phase C4s and C,, Phase C
semiclasical phase C
ZZZZW
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Toroidal vs spherical topologies
<> The phase structure of CDT (T vs S° spatial topology)

<> In toroidal CDT there exists a $x St T3x S

. . Ph Cq4s and Cp, Ph C
semiclasical phase C e e

<> What about other phases ?
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Toroidal vs spherical topologies
<> The phase structure of CDT (T vs S° spatial topology)

<> In toroidal CDT there exists a $x St T3x S

] [ Phase A Phase A
semiclasical phase C . ase ., ase

previously observed in the S° spatial

<> What about other phases ? -
<> MC results show that all phases MM%W -
topology also exist in the T3 case S o

0.8

0.6 |

04 |

0.2

18-

JHEP 1806: 111



Toroidal vs spherical topologies
<> The phase structure of CDT (T vs S° spatial topology)

<> In toroidal CDT there exists a $x St T3x S

] ] Phase B Phase B
semiclasical phase C ., ase ) ase

000000
000000

<> What about other phases ? ol

000000000000

<> MC results show that all phases o
previously observed in the S° spatial

topology also exist in the T° case
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Toroidal vs spherical topologies
<> The phase structure of CDT (T vs S° spatial topology)

<> In toroidal CDT there exists a $x St T3x S

. toroidal CDT
spherical CDT XOW)

semiclasical phase C

<> What about other phases ? it Wy
<> MC results show that all phases .

previously observed in the S° spatial
topology also exist in the T° case
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Toroidal vs spherical topologies
<> The phase structure of CDT (T vs S° spatial topology)

<> In toroidal CDT there exists a T $7x 5t
semiclasical phase C B G| G
<> What about other phases ? i N
<> MC results show that all phases e e
previously obser\./ea{ in the S3 spatial 0P, = No/N, oP, = Z (Mpyy — 1)
topology also exist in the T3 case z

0P, = NP /N®D  op, = max, 0(v)

0.8

<> Position of the phase transitions ...

<> we analyse order parameters similar
to the spherical case
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Toroidal vs spherical topologies
<> The phase structure of CDT (T vs S° spatial topology)

<> In toroidal CDT there exists a
semiclasical phase C

<> What about other phases ? .

<> MC results show that all phases
previously observed in the S3 spatial
topology also exist in the T3 case

PxS?

061 So

04l

0.2

0.0

-0.2

<> Position of the phase transitions ... $x S

0.8

<> we analyse order parameters similar
to the spherical case

0.6 |

<> in search of susceptibility peaks < / i |
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Toroidal vs spherical topologies
<> The phase structure of CDT (T vs S° spatial topology)

<> In toroidal CDT there exists a
semiclasical phase C

<> What about other phases ?

<> MC results show that all phases
previously observed in the S3 spatial
topology also exist in the T3 case <

<> Position of the phase transitions ...

<> we analyse order parameters similar
to the spherical case

N
0000000OCOS \¢\
000000000000002>

-0.2 . . . . 1 . . . . 1 . T eansansansansansansanas ™ .

1 2

<> in search of susceptibility peaks

3
= KO
<> to locate phase transition points | Cy \
0 GM_.\
B

< ... isalso similar

<> small shifts due to finite size effects
JHEP 1806: 111 )
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Toroidal vs spherical topologies
<> Phase transitions (T3 vs S3 spatial topology)

-19-



Toroidal vs spherical topologies
<> Phase transitions (T3 vs S3 spatial topology)

< In T? CDT we have investigated
the region where all phases meet

<> we observe a direct B-C transition

JHEP 1907: 166 19
JHEP 2204: 103 b



Toroidal vs spherical topologies

<> Phase transitions (T3 vs S3 spatial topology)

035 | e} [}
03

< In T? CDT we have investigated | »
the region where all phases meet

<~ we observe a direct B-C transition ; T
" - 7 r ~3 - i
<~ the B-C transition was classified to , I N ¢ p A
be 1°t order: visible hysteresis, order 4T } b i “""""""'}
parameters on both sides do not <1 ’ N .
. . . 0.2 el0000000000000000i000000
converge with increased lattice : ;
r .0\‘0.....}.‘.... .....
VO/Ume N4 00* == — XXX . xxx
ooo\m(oooooo?o
-0.2 . \ \ \ | \ \ \ \ | \  Tessnsssnsnsnsnes .
1 2 3 4 5
Ko
0 R
- |
—-0.2 L ! 1 I |
0 1 2 3 4 5

JHEP 1907: 166
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Toroidal vs spherical topologies
<> Phase transitions (T3 vs S3 spatial topology)

] — gt +
< In T? CDT we have investigated < S
the region where all phases meet | - .
<> we observe a direct B-C transition ; P
C A

™ <
<> the B-C transition was classified to i r
be 15t order: visible hysteresis, order 4T

00000¢Cs0s0 M

0000002 4000

3
-3
parameters on both sides do not 9 00l . G : 3.:.'
o o . . [}
converge with increased lattice : ' ¢
volume N, f S

0.0
<> but with some untypical properties: ’

hysteresis shrinks with N, — oo, p

ooo\m(ooooo:§~

NP W W W W, L L

nontrivial scaling exponents

< itis possible that the endpoinds are |,
higher order (work in progress)

J H E P 1907 : 166 1 9 —0.1 —0.08 —0.06 —l);(i:‘ —0.02 0 0.02 0.4 2 4 6 X “?S““(]H 10
JHEP 2204: 103 Bt



Toroidal vs spherical topologies
<> Phase transitions (T3 vs S3 spatial topology)

<> In T2 CDT the A-C transition was
confirmed to be 1° order (as in S3)

Class.Quant.Grav. 36: 224001 -20-



Toroidal vs spherical topologies

bdkaJ—

<> Phase transitions (T3 vs S° spatial topology)

< In T? CDT the A-C transition was
confirmed to be 1% order (as in S3)
<> critical scaling exponent: V=1

\
KS (Naq) = K§(00)-alVe ¥

Class.Quant.Grav. 36: 224001 -20-



Toroidal vs spherical topologies
<> Phase transitions (T3 vs S3 spatial topology)

< In T? CDT the A-C transition was
confirmed to be 1° order (as in S3)
<> critical scaling exponent: v=1

- a
KS (Naq) = K§(00)-alVe ¥

<> but the transition is smoother than
for the S3 case: no metastable state
jumping visible in Monte Carlo
history

0.0

-0.2 L L L L | L L L L 1 L

06F °
04L

0.2}

crit A
Ko“"" based on peaks in X\/TPZ

B (XY XYY YY XX °
eeccccccccccces

PPN W W W W W W WY L L

Ko=4.60

CIaSS_Quant_Grav_ 36: 224001 _2U_ 20600 40(")00 60600 BDE)OO 100‘000 MG time




Toroidal vs spherical topologies
<> Phase transitions (T3 vs S3 spatial topology)

<> In T? CDT the B-C, transition was
confirmed to be 2" order (as in S°)

JHEP 2005: 030 -21-



Toroidal vs spherical topologies

<> Phase transitions (T3 vs S3 spatial topology)

0.045

<> In T2 CDT the B-C, transition was “
confirmed to be 2"? order (as in S3) -

<> critical scaling exponent: v=2.6 # 1

\ p [ s
A€ (Nyq) =A€ (o0) 'O‘Nfll"/w al r 3

<> no metastable state jumping was <
observed in Monte Carlo history

<> Binder cumulants are approaching
zero with N, — oo

VVVVVV

-0.2 L . . . 1 . . . . 1 .

~
00000000000COCOOOT™

LT ensasasassassnsnsnesn L L

-0.2
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Toroidal vs spherical topologies
<> Phase transitions (T3 vs S3 spatial topology)

<> In T2 CDT the C-C, transition is Pxs

most likely 1°t order : » J

JHEP 2005: 030 -22-



Toroidal vs spherical topologies

<> Phase transitions (T3 vs S3 spatial.,

<> In T? CDT the C-C, transition is
most likely 1°t order

<> one observes strong hysteresis in the
transition region which makes precise
phase transition studies very difficult

<> it suggests that the transition is now
15t order transition (C-C, transition
was found to be 2" order in S3)

<> but one cannot exclude that it is

an algotythmic issue due to much
stronger finite size effects in T3 vs §3

JHEP 2005: 030 -22-

0.6F

(OP)
IR TSP o i e == ==
e Tl =t . OP
LI N "
4"" ¢ OP,
o6 PR
: 'OP3
0.4;‘
i OP,
2f 8
02: Jkgi
- ‘s‘._.___‘_ ‘ N
0.1 0.2 0.3 0.4 A :
S ’ >~ I
I
Wby, © A
N SN !
\ i ; ; \..........W'
MNEE SN
[ ] \ [ ] i g 00000000OCGOOS }.....
[
C { g 83
[ ] b \ ?.§...\............ 000000
N I
“!0\‘9............ 00000
0000000OCOCO
r ..............:.
-0.2 . . . . T Tensansasansnansanas . .

0.4+
0.2+

0.0

5

-0.2

B

3
ko
Cy \
see RN

1 2 3 4 5

Ko



Toroidal vs spherical topologies
<> Phase transitions (T3 vs S3 spatial topology)

<> Phase transitions summary:

Spherical CDT | Toroidal CDT 1 \:\QZ:\

" Cas = LR 1+ order Cal e MRy T
B - Cys 277 15t order LI S i ' o
Cys - Cy 2" order 1st order (?) , o mmtmn
B-Cp 2nd order 2nd order 53XK;1
<> Conjecture: phase transitions
involving a change of effetive
topology are 1°* order transitions a st fer |
JHEP 1907: 166 0 ‘ ‘ | ‘ ‘
Class.Quant.Grav. 36: 224001 0 1 2 . 3 4 5
JHEP 2005: 030 -23-
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Toroidal vs spherical topologies
<> Phase transitions (T3 vs S3 spatial topology)

<> Phase transitions summary:

Spherical CDT | Toroidal CDT I

- Cys 1st order 1st order .
B - Cgs ?7?7? 1st order A=
) ) ) m)
Coe o T 2nd order 1storder (?) [ | u e 1 | - /f\\
B T 0 W | AN ¥ \
B-C, 2nd order 2nd order R e o B
. .y . “ ,Il A E /\X N .
<> Conjecture: phase transitions S A 1 ‘ﬁ\ =/ \ B
involving a change of effetive B ——
= 1st order -
topology are 1% order transitions . K i

I )

—-0.2

W Qo= < 0
> 3\ 0=0 O
- 2 3 -
JHEP 2204: 103




Conclusions

<> CDT is very well suited to test the asymptotic safety conjecture

< It is also a promising candidate for describing Quantum Gravity in
a fully non-perturbative way if asymptotic safety scenario is valid

< CDT has rich phase structure (incl. the semi-classical phase Cy)

<> The spatial volume fluctuations inside the C4 phase are very well
described by the MS action which enables one to define the RG flow

<> There exist 2" order phase transitions + 15t order transitions with
potentially higher order endpoints (perspective UV limits)

<> Most CDT results seem to be universal, independent of the spatial
topology chosen (at least for the toroidal vs spherical cases),
however the order of the phase transitions may depend on the
topology (important in the search for a continuum limit !)

_24-



Thank You !
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