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The plan

 What is the cosmological constant problem?

 UV and IR sides of vacuum energy.

 Phase space regularization.

 Holography and the cosmological constant bound.

Based on L. Freidel, JKG, R. Leigh, D. Minic “The Vacuum Energy Density and 

Gravitational Entropy”, ArxiV 2212.00901 [hep-th] and “On the Inevitable 

Lightness of Vacuum” ArxiV 2303.17495 [hep-th]
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Leibniz vs Coleman

Why there is something 

rather than nothing? (1714)

Why there is nothing rather 

than something? (1988)



Vacuum energy

 In quantum mechanics, the ground (vacuum)
state of an oscillator of frequency ω has energy

E0=1/2 ℏω.

 Field theory describes an infinite number of

oscillators (one per momentum), and the total

vacuum energy density is infinite.
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The cosmological constant problem

 This is not a problem if gravity is not there, because only energy

differences matter, and one can always shift the excited states 

energies by infinite amount (using normal ordering). 

 If, however, gravity is present, due to its universal nature the 

infinite vacuum energy produces an infinite gravitational field.

 But do the quantum fluctuations (vacuum energy) really 

gravitate? (Assume they do.)
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The cosmological constant problem

 The gravity action contains the cosmological constant

 You may argue that the value of this parameter is just a 

constant defining the action that must be fixed observationally, 

but this misses the point.

 The point is that there are non-controllable contributions to the 

cosmological constant from matter loop diagrams. 
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Rough calculation*

 In the leading order the matter-linearized gravity (graviton) 

coupling is

 Computing the tadpole diagram, we get

 Notice that that loop contribution to cosmological constant is

proportional to the regularized volume of momentum space.

*J. F. Donoghue, Phys. Rev. D 104, 045005
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The lesson

 This rough calculation shows that in order to get 

the cosmological constant vacuum energy 

contribution,  we must compute the loop 

diagram, multiply it by         and add the result to 

the action.
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Theory vs observation/comments

 The measured value of cosmological constant is 10-120 in Planck units.

 Depending on what is your favorite cut-off scale* the parameter Λ is 

between 10-17 (Standard Model scale) and 1 (Quantum Gravity scale). 

Whichever we choose, the discrepancy is huge.

 The cosmological constant problem, or the vacuum energy problem, is 

also associated with the enormous hierarchy of scales between the 

observed vacuum energy scale and the naive quantum gravity scale 

set by the Planck energy.
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* String theory is UV finite, but this does not solve the problem, because in the string loop calculation the cutoff 

scale Λ is just replaced by the string scale (and the mass of the lightest string state), again many orders of 

magnitudes off the desired result. Besides, superstrings are incompatible with positive cosmological constant.



An idea

 The cosmological constant problem clearly needs a new 

idea. 

 The crucial observation is that it is about not only UV, but 

also IR.

 To see this let us revisit the computation from slightly 

different perspective. Instead of computing the loop 

diagram with no external legs, we can start with a particle 

moving on a circle S1, the circle amplitude
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Polchinski, String theory, ch. 7



Equivalence of loops and circles

 Consider the vacuum partition function

 In momentum space trace is an integral over momenta, while

 so that Zvac = exp(ZS
1 )
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UV & IR

 The circle amplitude is
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⇚ divergent IR volume contribution

⇚ phase space integration



Phase space integral

 To proceed, we leave the τ integration to the end and consider the 

Wick rotated integral

 In the next step we split the integral over phase space into a sum 

over integrals in a finite cell, via              ,              . The dimensionful
scales λ, ε are arbitrary here.
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Modular polarization

 These manipulations are just rearrangements of the integral, but the resulting expression 

has an interpretation of the trace done in another basis, a so-called modular polarization. 
It is unitarily equivalent (via so called Zak transform) to the momentum basis.

 The phase space decomposes into modular cells of size

 We call this quantum area constraint. It should be stressed that apart the area constraints 

the scales ε and λ are arbitrary; nothing forces us to identify them with the Planck scales.

 The sums can then be interpreted as counting such modular cells. 
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* Y. Aharonov, D. Rohrlich, “Quantum Paradoxes”, Wiley 2005



The phase space

 Instead of the minimal length, area, volume … we have here the minimal 
phase space cell of size ℏ, the notion that lies at heart of quantum 

mechanics. The exact size of the cell is fixed contextually, relative to the 
actual physical situation. For example, in the double slit experiment λ is 

the distance between the slits
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Regularization

 The expression Z(τ) is divergent and must be regularized

 Here Nq and Np are finite integers. Knowing them and λ, ε we can 

determine the size of spacetime and momentum space

 Also, we know that the total number of degrees of freedom is
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Regularization

 Further, 

 This result is unusual: if we regard N as fixed, then the cutoffs on 

space and momentum are not separately arbitrary but are 

inversely related. This clearly can be interpreted as a UV/IR 

mixing phenomenon. In EFT, there is no such relation, because 
there is no notion of finite N.
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Vacuum energy

 From regularized Z(τ)m.r. we get the vacuum energy density

 Assuming that the τ integration does not change things substantially, we get a bound

 This can be rewritten as

 and if M is identified with a large mass scale such as Planck mass, then the usual 

conundrum pertains. But there is nothing here that makes it necessary/natural.
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Vacuum energy

 The bound can be also written as

 It relates the vacuum energy density times space-time volume, ρVq, to N. 

 This is remarkable. Moreover, we know from the theory of geometric 
quantization that (in the limit of small ℏ) N is the dimension of the Hilbert 

space of the system, and therefore its entropy.
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Entropy and N

 The gravitational entropy sales as an area

 The holographic principle states that matter entropy N cannot exceed de Sitter 

gravitational entropy which gives the vacuum energy bound

 which gives the value of the vacuum energy contribution to cosmological constant
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The cosmological constant

 The scale ℓ is the size of the system. In our universe it is the cosmic horizon

size, and since our universe is essentially de Sitter, it equals de Sitter

horizon. Now everything fits together perfectly, because N equals de Sitter

entropy. 

 The cosmological constant is small because the universe is large. This is

almost tautological: a nearly empty universe, corresponding to a small N, 

would have an extremely large cosmological constant and therefore be 

of Planckian size.

 Why the universe is large? It is large, because it is stable against

fluctuations. If we have N degrees of freedom, the statistical fluctuations

are of order of N1/2 and are (relatively) small if N is large.
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Conclusions: what has just happened?

 The steps:

1. We started with the standard vacuum energy formula and the semiclassical 

relation between vacuum energy and cosmological constant.

2. We noticed that vacuum energy formula is defined on phase space; we 

regularize it assuming that there is a finite number of the elementary phase 

space cells in the system of interest.

3. We identify the number of cells with entropy using the holographic principle.

4. De Sitter entropy of our universe provides us with the upper bound on the 

vacuum energy contribution to cosmological constant. This bound agrees with 

the observed cosmological constant value.
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Conclusion

 In a large universe the vacuum energy 

contribution to the cosmological constant must 

be small.

 The universe is large because it contains a lot of 

degrees of freedom. 

 It must have a lot of degrees of freedom in order 

to be.
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