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Outline

Review of black hole uniqueness theorems in four and higher
dimensions, non-extreme and extreme.

Classification of static, extreme, black hole spacetimes in
higher-dimensional Einstein-Maxwell theory [JL ’20]



Black hole equilibrium states

Central role in classical and quantum gravity: endpoint of
collapse, no-hair theorem, black hole thermodynamics...

Extreme black holes particularly relevant in quantum gravity:
zero Hawking temperature.

Open problem: classification of equilibrium (stationary) black
hole solutions to the higher-dimensional Einstein equations.

Five-dimensions best understood but far from being solved!

Motivation: new physics/geometry, string theory, AdS/CFT...



Black holes in General Relativity

Topology: Cross-sections of horizon H ∼= S2. [Hawking ’72]

Rigidity: stationary black hole must be axisymmetric or static.
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Asymptotically flat, stationary-axisymmetric, electro-vacuum,
single black hole spacetime must be a Kerr-Newman solution.
[Carter, Robinson, Mazur, Bunting...’70, 80s]

Extreme case [Meinel et al ’08; Figueras, JL ’09; Chrusciel, Nguyen ’10]

Near-horizon geometry [Lewandowski, Pawlowski ’02; Kunduri, JL ’08]

‘Double-Kerr’ in vacuum ruled out [Hennig, Neugebauer ’13]



Static black holes

Asymptotically flat, static, electro-vacuum, non-extreme,
black hole solution must be a Reissner-Nordström solution.
[Israel ’67; Robinson ’77; Bunting, Masood Alam ’87]

Multi-black holes don’t exist [Bunting, Masood-ul-Alam ’87]

Majumdar-Papapetrou (MP) solution: extreme multi-black
hole spacetime [Hartle, Hawking ’72]

Asymptotically flat, static, electro-vacuum, extreme black hole
solution must be a MP multi-black hole [Chrusciel, Tod ’05]

Uses general static near-horizon geometry is AdS2 × S2



Majumdar-Papapetrou solution

MP metrics:

g = −H−2dt2 + H2δijdx
idx j , F = −d(H−1dt)

electro-vacuum ⇐⇒ H harmonic on euclidean space (R3, δ)

Extreme Reissner-Nordström: H = 1 + q
|x | , x = 0 is horizon.

‘Multi-centred’ black hole solutions [Hartle, Hawking ’72]:

H = 1 +
N∑
I=1

qI
|x − pI |

x = pI are components of analytic event horizon

Static equilibrium of N charged black holes mI = qI



Supersymmetric black holes

N = 2 minimal supergravity: truncates to Einstein-Maxwell.
Asymptotically flat (g ,F ) obey BPS inequality [Gibbons, Hull ’82]

M ≥ |Q|

M = |Q| iff admits ‘Killing’ spinor ε: stationary V µ = ε̄γµε

MP solution is most general static supersymmetric solution
[Gibbons, Hull ’82; Tod ’83]

Asymptotically flat, supersymmetric black hole solution must
be MP multi-black hole [Chrusciel, Reall, Tod ’05]

Note: supersymmetric black holes have extreme horizons.



Black hole in higher dimensions

Black hole non-uniqueness even for vacuum spacetimes!
D = 5: asymptotically flat (AF) black hole solutions:

Myers-Perry S3

black ring S1 × S2 [Emparan, Reall ’01]

multi-black holes exist: black Saturn... [Elvang, Figueras ’07]

Horizon topology less constrained [Galloway, Schoen ’05].
D = 5: cross-sections S3/Γ,S1 × S2 and connected sums

Rigidity: stationary rotating black hole has axial symmetry
[Hollands, Ishibashi, Wald ’06; Moncrief, Isenberg ’08]

Classification of all stationary black holes formidable problem!
Need extra symmetry assumptions...



Classification theorems in higher dimensions

D = 5: AF, stationary, vacuum black holes with biaxial
U(1)2-symmetry classified by rod structure [Hollands Yazadjiev ’07]

Existence: recent progress using integrability of Einstein eq,
rules out regular L(n, 1) lens space horizons [JL, Tomlinson ’20]

D = 5, AF, supersymmetric black holes: biaxial symmetry
[Breunholder, JL ’17]; single axial symmetry [Katona, JL ’22]

Large moduli space: S3,S1 × S2 and L(n, 1) black hole
spacetimes with 2-cycles in DOC.

AF, static, electro-vacuum, non-extreme black hole spacetime
is RN in all dimensions. [Gibbons, Ida, Shiromizu ’01; Kunduri, JL ’17]



Static extreme black holes

n-dimensional Einstein-Maxwell solution [Myers ’87]:

g = −H−2dt2 + H
2

n−3 δijdx
idx j , F = −d(H−1dt)

H harmonic (Rn−1, δ). Higher-dimensional MP solution!

Multi-centred solutions: asymptotically flat M = |Q|

H = 1 +
N∑
I=1

qI
|x − pI |n−3

x = pI extreme horizons with low regularity: g is C 1 (C 2 if
n = 5), F is C 0. [Welch ’95; Candlish, Reall ’07]

Classify all static extreme electro-vacuum black holes?



Static spacetimes

Static Killing field ξ: time-like in DOC, null on horizon
(assume DOC globally hyperbolic, simply connected)

M = R× Σ, coordinates (t, x i ), ξ = ∂t ,

g = −V 2dt2 + ĝijdx
idx j

(Σ, ĝ) Riemannian manifold (orbit space)

Maxwell field: LξF = 0 =⇒ ιξF = −dψ, electric field ψ
F = dψ ∧ dt + B, magnetic field B ∈ Ω2(Σ)

No electro-magnetic duality for n > 4 so can’t assume B = 0!
[Kunduri, JL ’17]

Einstein-Maxwell eqs: geometric eqs for (Σ, ĝ ,V , ψ,B)



Boundary conditions

Asymptotic flatness: end diffeo to Rn−1\BR ,

ĝij =

(
1 +

2M

n − 3

1

rn−3

)
δij + O(r−(n−2))

V = 1− M

rn−3
+ O(r−(n−2))

ψ =
Q

rn−3
+ O(r−(n−2))

M mass, Q electric charge

∂Σ := {V = 0}: non-extreme horizon κ2 = (dV )2 6= 0,
totally geodesic, κ, ψ constants.

Extreme horizon V → 0 is a ‘cylindrical’ end (more later!)



Mass-charge inequality

Lemma [Kunduri, JL, ’17]

M ≥ |Q| with equality if and only if B = 0 and ±ψ = 1− V

Let F± := V ± ψ − 1, field eqs imply

∇̂i (V ∇̂iF±) = |∇̂F±|2 +
V 2|B|2

n − 2

Integrate over Σ together with F± = −(M ∓ Q)r−(n−3) + ...

M ∓ Q =

∫
Σ

(
|∇̂F±|2 +

V 2|B|2

n − 2

)
dvol ≥ 0

M = |Q| iff F± = 0 and B = 0.



Non-extreme black holes

Theorem [Gibbons, Ida Shiromizu ’01; Kunduri JL ’17]

Any n ≥ 5, asymptotically flat, static solution of Einstein-Maxwell
containing non-extreme black hole is a Reissner-Nordström solution

M > |Q| =⇒ conformal scalings ĝ± = Ω2
±ĝ and R̂± ≥ 0.

(Σ, ĝ+) AF zero-mass, glued along ∂Σ to compactification
(Σ ∪∞, ĝ−) =⇒ complete AF zero-mass manifold

Positive-mass theorem =⇒ (Σ, ĝ) conformally flat Rn−1

=⇒ V 2 = 1 + ψ2 − 2Mψ/Q and B = 0.

g = (v+v−)2/(n−3)δ, v± harmonic on Rn−1, boundary value
problem has unique solution v± = 1 + M∓Q

2rn−3



Extreme black holes

M = |Q| =⇒ B = 0 and ±ψ = 1− V ,

g = −H−2dt2 + H
2

n−3 hijdx
idx j , F = −d(H−1dt)

Ric(h) = 0, H := V−1 harmonic on base space (Σ, h)

n = 4: h must be flat so recover MP solution.
n > 4: h Ricci flat, generalised MP solution, AF zero-mass

Problem: determine all sufficiently regular AF black hole
spacetimes in this class. Must h be flat and H multi-centred?



Main result

Theorem [JL ’20]

Consider n-dimensional asymptotically flat, static, electro-vacuum,
extreme black hole spacetime such that:

1 ξ timelike in DOC and null on horizon

2 (g ,F ) smooth in DOC; at horizon g is C 1, F is C 0, ιξF is
C 1, all smooth in tangential directions.

3 Components of horizon admit smooth cross-section, with
non-Ricci flat induced metric

Then DOC is MP solution with (Σ, h) isometric to (Rn−1, δ) with
removed points pI=1,...,N corresponding to horizon components and
H is multi-centred with poles pI .



Near-horizon analysis

Invariants |ξ|2 = −H−2, ιξF = −dH−1 =⇒ H−1 > 0 and
smooth on DOC and H−1 = 0 and C 1 at horizons

d|ξ|2 = −dH−2 = −2H−1dH−1 = 0 at horizon =⇒ event
horizon is a extreme Killing horizon of ξ

Gaussian null coords (GNC) [Moncrief, Isenberg ’83]: ξ = ∂v , ∂λ is
transverse geodesic, λ = 0 at horizon, (ya) on cross-section S :

g = 2dv
(
dλ+ λhadya − 1

2λ
2f dv

)
+ γabdyadyb

Regularity assumptions =⇒ f , ha are C 0, γab is C 1 at horizon



Near-horizon limit and geometry

Near-horizon limit: φε : (v , λ, y) 7→ ( vε , ελ, y) then,

gNH := limε→0 φ
∗
εg same as g with f → f̊ := f |λ=0 etc

[Reall ’03; Kunduri, JL, Reall ’07..., Kunduri, JL ’13]

Near-horizon equations for intrinsic data on S : (f̊ , h̊, γ̊, ...)
Same as extremal isolated horizon equation (n = 4)
[Ashtekar, Beetle, Lewandowski, Pawlowski ’02...]

Near-horizon limit of F more subtle: ψ constant along horizon
but existence of limit needs ∂aψ = O(λ).

MP =⇒ dξ = 2H−1F : staticity and assumps =⇒ f , ha, γab
are C 1 at horizon, f̊ > 0 const, h̊a = 0, FNH = −d(f̊ λdv)

Note: 1st order transverse deformation of NH geometry exists
[Li, JL ’15,’18; Kolanowski ’21]



Asymptotically cylindrical and conical ends

Orbit space metric qµν = gµν − ξµξν/|ξ|2:

q =
1

f λ2
(dλ+ λhadya)2 + γabdyadyb

(Σ, q) complete, λ→ 0 cylindrical end diffeo R× S

What about (Σ, h)? MP solution q = H
2

n−3 h, horizon is

conically singular end diffeo to R× S , ρ := λ
1

n−3 → 0,

|h − h0|h0 = O(ρn−3)

h0 = dρ2 + ρ2σabdyadyb cone-metric of (S , σ), σab ∝ γ̊ab
Note: fall-off fixed by f , ha, γab being C 1 at horizon



Near-horizon geometry

Ric(h) = 0 =⇒ h0 is Ricci flat cone-metric =⇒ horizon
metric γ̊ab is (positive) Einstein, so S compact.

Near-horizon geometry (f̊ , h̊a, γ̊ab) now determined:

gNH = −f̊ λ2dv2 + 2dvdλ+ (n − 3)2f̊ −1σabdyadyb

AdS2 times (S , σ) where Ric(σ) = (n − 3)σ.
n = 4 unit S2, n = 5 (locally) unit S3, n > 5 maybe not Sn−2!

Classification of n > 4 static near-horizon geometries open:
magnetic fields, warped AdS2 products... [Kunduri, JL’09]

MP solution rules out nontrivial near-horizon geometries!



Positive-mass theorem with conical singularities

Positive-mass theorem: AF, complete, Riemannian manifold,
Ric ≥ 0 (R ≥ 0 if spin) must have mADM ≥ 0 and = 0 iff flat.
[Witten ’81; Bartnik ’86]

(Σ, h) is Ricci-flat and AF with zero mass. However, it has
conical singularities =⇒ not complete. Nevertheless:

Theorem [JL’20]

(Σ, h) is AF Riemannian manifold with conically singular ends and
Ric(h) ≥ 0. Then mADM ≥ 0 and = 0 iff flat.



Proof

AF end diffeo to Rd\B and hij = δij + O1(r−τ ),

mADM :=

∫
Sr→∞

(∂jgji − ∂igjj)dS i

τ > (d − 2)/2 required for well-defined [Bartnik ’86]

Conically singular end diffeo to (0, ρ0)× S , where

|h − h0|h0 = O(ρδ), |∇̊h|h0 = O(ρδ−1)

h0 = dρ2 + ρ2σ cone over (S , σ)

Let z i be harmonic functions that are coordinates on AF end:

z i − x i = O(r1−τ ), z i − pi = O(ρς)

Construct these by modifying harmonic coords on AF end.



Proof

K i := dz i obey Bochner identity

∆|K i |2 = 2|∇K i |2 + 2Ric(K i ,K i )

Integrating over Σ

d∑
i=1

∫
Sr→∞

∂j |K i |2dS j

︸ ︷︷ ︸
∝mADM

−
d∑

i=1

∫
Sρ→0

∂n|K i |2dvol︸ ︷︷ ︸
O(ρς)

≥ 0

m ≥ 0 with equality iff ∇K i = 0. {K i} orthonormal at infinity
so m = 0 =⇒ global parallel frame =⇒ (Σ, h) flat



Uniqueness proof

(Σ, h) is flat =⇒ cone-metric h0 is flat =⇒ (S , σ) isometric
to quotient Sn−2/Γ where Γ is finite subgroup of O(n − 1)

Conical ends diffeomorphic to Rn−1/Γ− {p}, p is f.p. of Γ
N-conical ends: Σ̂ = (Σ ∪ {p1, . . . , pN}, h) is a flat orbifold

Σ̂ is flat orbifold =⇒ Σ̂ is quotient of Rn−1 =⇒ Rn−1 since
AF. Deduce all horizons Sn−1.

Near-horizon coordinate change (x i ) 7→ (ρ, ya):

x i − pi = O(ρ), H =
1√

f ρn−3



Uniqueness proof

Deduce |x − p|n−3H = O(1). H is smooth in DOC and x = p
is isolated singularity, must be a pole order n − 3

H =
q

|x − p|n−3
+ K︸︷︷︸

regular at x=p

If there are N-components of horizon

H =
N∑
I=1

qI
|x − pI |n−3

+ H̃︸︷︷︸
regular on all Rn−1

AF then implies H̃ is bounded and so must be constant H̃ = 1.



Comment on supersymmetric black holes

Static, supersymmetric, black holes in D = 5 minimal
supergravity are MP solutions with base (Σ, h) hyper-Kähler
[Gaultlett et al ’02]

Theorem therefore classifies these solutions too!

Uniqueness of AF, supersymmetric black holes with strictly
timelike stationary Killing field and locally S3 horizons [Reall ’03]

Conical singularity is ADE orbifold singularity, can be resolved.
But only AF complete HK space is R4!



Summary and questions

Determined all AF static extreme black holes in n-dimensional
Einstein-Maxwell theory: MP multi-black holes.

Completes classification of AF static black holes!

Proof used positive mass theorem for AF manifolds with
conical singularities.

Generalise to R ≥ 0 spin case?

Apply to classification of extreme or supersymmetric black
holes or branes in other theories?


