

Classification of static extreme black holes

James Lucietti

University of Edinburgh

Relativity Seminar
University of Warsaw
16 December 2022

Outline

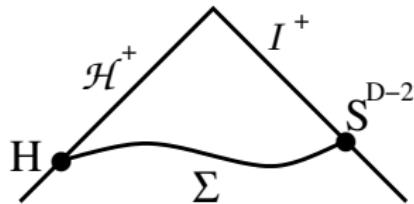
- Review of black hole uniqueness theorems in four and higher dimensions, non-extreme and extreme.
- Classification of static, extreme, black hole spacetimes in higher-dimensional Einstein-Maxwell theory [JL '20]

Black hole equilibrium states

- Central role in classical and quantum gravity: endpoint of collapse, no-hair theorem, black hole thermodynamics...
- Extreme black holes particularly relevant in quantum gravity: zero Hawking temperature.
- **Open problem:** classification of equilibrium (stationary) black hole solutions to the *higher-dimensional* Einstein equations.
Five-dimensions best understood but far from being solved!
Motivation: new physics/geometry, string theory, AdS/CFT...

Black holes in General Relativity

- Topology: Cross-sections of horizon $H \cong S^2$. [Hawking '72]
Rigidity: stationary black hole must be axisymmetric or static.



- Asymptotically flat, stationary-axisymmetric, electro-vacuum, *single* black hole spacetime must be a Kerr-Newman solution.
[Carter, Robinson, Mazur, Bunting...'70, 80s]
 - Extreme case [Meinel et al '08; Figueras, JL '09; Chrusciel, Nguyen '10]
Near-horizon geometry [Lewandowski, Pawłowski '02; Kunduri, JL '08]
 - 'Double-Kerr' in vacuum ruled out [Hennig, Neugebauer '13]

Static black holes

- Asymptotically flat, static, electro-vacuum, *non-extreme*, black hole solution must be a Reissner-Nordström solution.
[Israel '67; Robinson '77; Bunting, Masood Alam '87]

Multi-black holes don't exist [Bunting, Masood-ul-Alam '87]
- Majumdar-Papapetrou (MP) solution: *extreme* multi-black hole spacetime [Hartle, Hawking '72]
- Asymptotically flat, static, electro-vacuum, *extreme* black hole solution must be a MP multi-black hole [Chrusciel, Tod '05]
Uses general static near-horizon geometry is $\text{AdS}_2 \times S^2$

Majumdar-Papapetrou solution

- MP metrics:

$$g = -H^{-2}dt^2 + H^2\delta_{ij}dx^i dx^j, \quad F = -d(H^{-1}dt)$$

electro-vacuum $\iff H$ harmonic on euclidean space (\mathbb{R}^3, δ)

- Extreme Reissner-Nordström: $H = 1 + \frac{q}{|x|}$, $x = 0$ is horizon.
'Multi-centred' black hole solutions [Hartle, Hawking '72]:

$$H = 1 + \sum_{I=1}^N \frac{q_I}{|x - p_I|}$$

$x = p_I$ are components of analytic event horizon

- Static equilibrium of N charged black holes $m_I = q_I$

Supersymmetric black holes

- $N = 2$ minimal supergravity: truncates to Einstein-Maxwell. Asymptotically flat (g, F) obey BPS inequality [Gibbons, Hull '82]

$$M \geq |Q|$$

$M = |Q|$ iff admits 'Killing' spinor ϵ : stationary $V^\mu = \bar{\epsilon} \gamma^\mu \epsilon$

- MP solution is most general *static* supersymmetric solution [Gibbons, Hull '82; Tod '83]
- Asymptotically flat, supersymmetric black hole solution must be MP multi-black hole [Chrusciel, Reall, Tod '05]

Note: supersymmetric black holes have extreme horizons.

Black hole in higher dimensions

- Black hole non-uniqueness even for vacuum spacetimes!
 $D = 5$: asymptotically flat (AF) black hole solutions:
 - Myers-Perry S^3
 - black ring $S^1 \times S^2$ [Emparan, Reall '01]
 - multi-black holes exist: black Saturn... [Elvang, Figueras '07]
- Horizon topology less constrained [Galloway, Schoen '05].
 $D = 5$: cross-sections $S^3/\Gamma, S^1 \times S^2$ and connected sums
- Rigidity: stationary rotating black hole has axial symmetry
[Hollands, Ishibashi, Wald '06; Moncrief, Isenberg '08]
- Classification of *all* stationary black holes formidable problem!
Need extra symmetry assumptions...

Classification theorems in higher dimensions

- $D = 5$: AF, stationary, vacuum black holes with *biaxial* $U(1)^2$ -symmetry classified by rod structure [Hollands Yazadjiev '07]
Existence: recent progress using integrability of Einstein eq, rules out regular $L(n, 1)$ lens space horizons [JL, Tomlinson '20]
- $D = 5$, AF, *supersymmetric* black holes: biaxial symmetry [Breunholder, JL '17]; single axial symmetry [Katona, JL '22]
Large moduli space: S^3 , $S^1 \times S^2$ and $L(n, 1)$ black hole spacetimes with 2-cycles in DOC.
- AF, *static*, electro-vacuum, *non-extreme* black hole spacetime is RN in all dimensions. [Gibbons, Ida, Shiromizu '01; Kunduri, JL '17]

Static extreme black holes

- n -dimensional Einstein-Maxwell solution [Myers '87]:

$$g = -H^{-2}dt^2 + H^{\frac{2}{n-3}}\delta_{ij}dx^i dx^j, \quad F = -d(H^{-1}dt)$$

H harmonic $(\mathbb{R}^{n-1}, \delta)$. Higher-dimensional MP solution!

- Multi-centred solutions: asymptotically flat $M = |Q|$

$$H = 1 + \sum_{I=1}^N \frac{q_I}{|x - p_I|^{n-3}}$$

$x = p_I$ extreme horizons with low regularity: g is C^1 (C^2 if $n = 5$), F is C^0 . [Welch '95; Candelish, Reall '07]

- Classify all static extreme electro-vacuum black holes?

Static spacetimes

- Static Killing field ξ : time-like in DOC, null on horizon (assume DOC globally hyperbolic, simply connected)
- $M = \mathbb{R} \times \Sigma$, coordinates (t, x^i) , $\xi = \partial_t$,

$$g = -V^2 dt^2 + \hat{g}_{ij} dx^i dx^j$$

(Σ, \hat{g}) Riemannian manifold (orbit space)

- Maxwell field: $\mathcal{L}_\xi F = 0 \implies \iota_\xi F = -d\psi$, electric field ψ
 $F = d\psi \wedge dt + B$, magnetic field $B \in \Omega^2(\Sigma)$

No electro-magnetic duality for $n > 4$ so can't assume $B = 0$!
[Kunduri, JL '17]

- Einstein-Maxwell eqs: geometric eqs for $(\Sigma, \hat{g}, V, \psi, B)$

Boundary conditions

- Asymptotic flatness: end diffeo to $\mathbb{R}^{n-1} \setminus B_R$,

$$\hat{g}_{ij} = \left(1 + \frac{2M}{n-3} \frac{1}{r^{n-3}}\right) \delta_{ij} + O(r^{-(n-2)})$$

$$V = 1 - \frac{M}{r^{n-3}} + O(r^{-(n-2)})$$

$$\psi = \frac{Q}{r^{n-3}} + O(r^{-(n-2)})$$

M mass, Q electric charge

- $\partial\Sigma := \{V = 0\}$: non-extreme horizon $\kappa^2 = (dV)^2 \neq 0$, totally geodesic, κ, ψ constants.

Extreme horizon $V \rightarrow 0$ is a ‘cylindrical’ end (more later!)

Mass-charge inequality

Lemma [Kunduri, JL, '17]

$M \geq |Q|$ with equality if and only if $B = 0$ and $\pm\psi = 1 - V$

- Let $F_{\pm} := V \pm \psi - 1$, field eqs imply

$$\hat{\nabla}^i (V \hat{\nabla}_i F_{\pm}) = |\hat{\nabla} F_{\pm}|^2 + \frac{V^2 |B|^2}{n-2}$$

- Integrate over Σ together with $F_{\pm} = -(M \mp Q)r^{-(n-3)} + \dots$

$$M \mp Q = \int_{\Sigma} \left(|\hat{\nabla} F_{\pm}|^2 + \frac{V^2 |B|^2}{n-2} \right) d\text{vol} \geq 0$$

$M = |Q|$ iff $F_{\pm} = 0$ and $B = 0$.

Non-extreme black holes

Theorem [Gibbons, Ida Shiromizu '01; Kunduri JL '17]

Any $n \geq 5$, asymptotically flat, static solution of Einstein-Maxwell containing non-extreme black hole is a Reissner-Nordström solution

- $M > |Q| \implies$ conformal scalings $\hat{g}_\pm = \Omega_\pm^2 \hat{g}$ and $\hat{R}_\pm \geq 0$.
- (Σ, \hat{g}_+) AF zero-mass, glued along $\partial\Sigma$ to compactification $(\Sigma \cup \infty, \hat{g}_-)$ \implies *complete* AF zero-mass manifold
- Positive-mass theorem $\implies (\Sigma, \hat{g})$ conformally flat \mathbb{R}^{n-1}
 $\implies V^2 = 1 + \psi^2 - 2M\psi/Q$ and $B = 0$.
- $g = (v_+ v_-)^{2/(n-3)} \delta$, v_\pm harmonic on \mathbb{R}^{n-1} , boundary value problem has unique solution $v_\pm = 1 + \frac{M \mp Q}{2r^{n-3}}$

Extreme black holes

- $M = |Q| \implies B = 0$ and $\pm\psi = 1 - V$,

$$g = -H^{-2}dt^2 + H^{\frac{2}{n-3}}h_{ij}dx^i dx^j, \quad F = -d(H^{-1}dt)$$

$\text{Ric}(h) = 0$, $H := V^{-1}$ harmonic on base space (Σ, h)

- $n = 4$: h must be flat so recover MP solution.
 $n > 4$: h Ricci flat, *generalised MP solution*, AF zero-mass
- **Problem:** determine all sufficiently regular AF black hole spacetimes in this class. Must h be flat and H multi-centred?

Main result

Theorem [JL '20]

Consider n -dimensional asymptotically flat, static, electro-vacuum, extreme black hole spacetime such that:

- 1 ξ timelike in DOC and null on horizon
- 2 (g, F) smooth in DOC; at horizon g is C^1 , F is C^0 , $\iota_\xi F$ is C^1 , all smooth in tangential directions.
- 3 Components of horizon admit smooth cross-section, with non-Ricci flat induced metric

Then DOC is MP solution with (Σ, h) isometric to $(\mathbb{R}^{n-1}, \delta)$ with removed points $p_{I=1, \dots, N}$ corresponding to horizon components and H is multi-centred with poles p_I .

Near-horizon analysis

- Invariants $|\xi|^2 = -H^{-2}$, $\iota_\xi F = -dH^{-1} \implies H^{-1} > 0$ and smooth on DOC and $H^{-1} = 0$ and C^1 at horizons
- $d|\xi|^2 = -dH^{-2} = -2H^{-1}dH^{-1} = 0$ at horizon \implies event horizon is a extreme Killing horizon of ξ
- Gaussian null coords (GNC) [Moncrief, Isenberg '83]: $\xi = \partial_v$, ∂_λ is transverse geodesic, $\lambda = 0$ at horizon, (y^a) on cross-section S :

$$g = 2dv \left(d\lambda + \lambda h_a dy^a - \frac{1}{2}\lambda^2 f dv \right) + \gamma_{ab} dy^a dy^b$$

Regularity assumptions $\implies f, h_a$ are C^0 , γ_{ab} is C^1 at horizon

Near-horizon limit and geometry

- **Near-horizon limit:** $\phi_\epsilon : (v, \lambda, y) \mapsto (\frac{v}{\epsilon}, \epsilon\lambda, y)$ then,
 $g_{\text{NH}} := \lim_{\epsilon \rightarrow 0} \phi_\epsilon^* g$ same as g with $f \rightarrow \mathring{f} := f|_{\lambda=0}$ etc
[Reall '03; Kunduri, JL, Reall '07..., Kunduri, JL '13]

Near-horizon equations for *intrinsic* data on S : $(\mathring{f}, \mathring{h}, \mathring{\gamma}, \dots)$

Same as extremal isolated horizon equation ($n = 4$)

[Ashtekar, Beetle, Lewandowski, Pawłowski '02...]

- Near-horizon limit of F more subtle: ψ constant along horizon but existence of limit needs $\partial_a \psi = O(\lambda)$.
- MP $\implies d\xi = 2H^{-1}F$: staticity and assumps $\implies f, h_a, \gamma_{ab}$ are C^1 at horizon, $\mathring{f} > 0$ const, $\mathring{h}_a = 0$, $F_{\text{NH}} = -d(\mathring{f}\lambda dv)$
Note: 1st order transverse deformation of NH geometry exists
[Li, JL '15, '18; Kolanowski '21]

Asymptotically cylindrical and conical ends

- Orbit space metric $q_{\mu\nu} = g_{\mu\nu} - \xi_\mu \xi_\nu / |\xi|^2$:

$$q = \frac{1}{f\lambda^2} (d\lambda + \lambda h_a dy^a)^2 + \gamma_{ab} dy^a dy^b$$

(Σ, q) complete, $\lambda \rightarrow 0$ cylindrical end diffeo $\mathbb{R} \times S$

- What about (Σ, h) ? MP solution $q = H^{\frac{2}{n-3}} h$, horizon is *conically singular* end diffeo to $\mathbb{R} \times S$, $\rho := \lambda^{\frac{1}{n-3}} \rightarrow 0$,

$$|h - h_0|_{h_0} = O(\rho^{n-3})$$

$h_0 = d\rho^2 + \rho^2 \sigma_{ab} dy^a dy^b$ cone-metric of (S, σ) , $\sigma_{ab} \propto \mathring{\gamma}_{ab}$

Note: fall-off fixed by f, h_a, γ_{ab} being C^1 at horizon

Near-horizon geometry

- $\text{Ric}(h) = 0 \implies h_0$ is Ricci flat cone-metric \implies horizon metric $\mathring{\gamma}_{ab}$ is (positive) Einstein, so S compact.
- Near-horizon geometry $(\mathring{f}, \mathring{h}_a, \mathring{\gamma}_{ab})$ now determined:

$$g_{\text{NH}} = -\mathring{f}\lambda^2 dv^2 + 2dv d\lambda + (n-3)^2 \mathring{f}^{-1} \sigma_{ab} dy^a dy^b$$

AdS_2 times (S, σ) where $\text{Ric}(\sigma) = (n-3)\sigma$.

$n = 4$ unit S^2 , $n = 5$ (locally) unit S^3 , $n > 5$ maybe not S^{n-2} !

- Classification of $n > 4$ static near-horizon geometries open: magnetic fields, warped AdS_2 products... [Kunduri, JL'09]

MP solution rules out nontrivial near-horizon geometries!

Positive-mass theorem with conical singularities

- Positive-mass theorem: AF, *complete*, Riemannian manifold, $\text{Ric} \geq 0$ ($R \geq 0$ if spin) must have $m_{\text{ADM}} \geq 0$ and $= 0$ iff flat.
[Witten '81; Bartnik '86]
- (Σ, h) is Ricci-flat and AF with zero mass. However, it has conical singularities \implies *not complete*. Nevertheless:

Theorem [JL'20]

(Σ, h) is AF Riemannian manifold with conically singular ends and $\text{Ric}(h) \geq 0$. Then $m_{\text{ADM}} \geq 0$ and $= 0$ iff flat.

Proof

- AF end diffeo to $\mathbb{R}^d \setminus B$ and $h_{ij} = \delta_{ij} + O_1(r^{-\tau})$,

$$m_{\text{ADM}} := \int_{S_{r \rightarrow \infty}} (\partial_j g_{ji} - \partial_i g_{jj}) dS^i$$

$\tau > (d - 2)/2$ required for well-defined [Bartrik '86]

- Conically singular end diffeo to $(0, \rho_0) \times S$, where

$$|h - h_0|_{h_0} = O(\rho^\delta), \quad |\mathring{\nabla} h|_{h_0} = O(\rho^{\delta-1})$$

$h_0 = d\rho^2 + \rho^2 \sigma$ cone over (S, σ)

- Let z^i be harmonic functions that are coordinates on AF end:

$$z^i - x^i = O(r^{1-\tau}), \quad z^i - p^i = O(\rho^\varsigma)$$

Construct these by modifying harmonic coords on AF end.

Proof

- $K^i := dz^i$ obey Bochner identity

$$\Delta|K^i|^2 = 2|\nabla K^i|^2 + 2\text{Ric}(K^i, K^i)$$

- Integrating over Σ

$$\underbrace{\sum_{i=1}^d \int_{S_{r \rightarrow \infty}} \partial_j |K^i|^2 dS^j}_{\propto m_{\text{ADM}}} - \underbrace{\sum_{i=1}^d \int_{S_{\rho \rightarrow 0}} \partial_n |K^i|^2 d\text{vol}}_{O(\rho^s)} \geq 0$$

- $m \geq 0$ with equality iff $\nabla K^i = 0$. $\{K^i\}$ orthonormal at infinity so $m = 0 \implies$ global parallel frame $\implies (\Sigma, h)$ flat

Uniqueness proof

- (Σ, h) is flat \implies cone-metric h_0 is flat $\implies (\Sigma, \sigma)$ isometric to quotient S^{n-2}/Γ where Γ is finite subgroup of $O(n-1)$
- Conical ends diffeomorphic to $\mathbb{R}^{n-1}/\Gamma - \{p\}$, p is f.p. of Γ
 N -conical ends: $\hat{\Sigma} = (\Sigma \cup \{p_1, \dots, p_N\}, h)$ is a flat orbifold
- $\hat{\Sigma}$ is flat orbifold $\implies \hat{\Sigma}$ is quotient of \mathbb{R}^{n-1} $\implies \mathbb{R}^{n-1}$ since AF. Deduce all horizons S^{n-1} .
- Near-horizon coordinate change $(x^i) \mapsto (\rho, y^a)$:

$$x^i - p^i = O(\rho), \quad H = \frac{1}{\sqrt{f} \rho^{n-3}}$$

Uniqueness proof

- Deduce $|x - p|^{n-3}H = O(1)$. H is smooth in DOC and $x = p$ is isolated singularity, must be a pole order $n - 3$

$$H = \frac{q}{|x - p|^{n-3}} + \underbrace{K}_{\text{regular at } x=p}$$

- If there are N -components of horizon

$$H = \sum_{I=1}^N \frac{q_I}{|x - p_I|^{n-3}} + \underbrace{\tilde{H}}_{\text{regular on all } \mathbb{R}^{n-1}}$$

- AF then implies \tilde{H} is bounded and so must be constant $\tilde{H} = 1$.

Comment on supersymmetric black holes

- Static, supersymmetric, black holes in $D = 5$ minimal supergravity are MP solutions with base (Σ, h) hyper-Kähler [Gaußl et al '02]

Theorem therefore classifies these solutions too!

- Uniqueness of AF, supersymmetric black holes with strictly timelike stationary Killing field and locally S^3 horizons [Reall '03]
Conical singularity is ADE orbifold singularity, can be resolved.
But only AF complete HK space is \mathbb{R}^4 !

Summary and questions

- Determined all AF static *extreme* black holes in n -dimensional Einstein-Maxwell theory: MP multi-black holes.
Completes classification of AF static black holes!
- Proof used positive mass theorem for AF manifolds with conical singularities.
 - Generalise to $R \geq 0$ spin case?
 - Apply to classification of extreme or supersymmetric black holes or branes in other theories?