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INTRODUCTION

WHAT IS GRAVITATIONAL COLLAPSE?
In co-moving co-ordinate system, 4-velocity: ui

t = δi
t :

R(r , t) = r a(r , t),

Ṙ < 0 −→ ȧ < 0.

The time-like congruence ua: converging:

θ = Daua < 0.

FIGURE: Evolution of apparent horizon and the collapsing cloud: black-hole.
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INTRODUCTION

WHAT IS A SCALAR FIELD?

A real scalar field:
ϕ : M → R.

Lagrangian of a scalar field ϕ with potential V (ϕ):

Lϕ = −
1
2

gµν∂µϕ∂νϕ− V (ϕ).

Stress-energy tensor:

Tµν = ∇µϕ∇νϕ− −
1
2

gµν (∇δϕ∇δϕ + V (ϕ)).
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INTRODUCTION

WHY STUDY GRAVITATIONAL COLLAPSE OF A SCALAR FIELD?

1 Understanding fundamental features of space-time:

▶ Cosmic Cesnsorship Conjecture1 (CCC)2,
▶ Critical phenomena in gravitational collapse3.

2 Applications in cosmology:

▶ Dark matter4,
▶ Dark energy5,
▶ Structure formation6.

1R. Penrose. In: Riv. Nuovo. Cimento Num. Sp. I (1969).
2P. S. Joshi K. Mosani Koushiki, J. V. Trivedi, and T. Bhanja. In: Phys. Rev. D 108.044049 (2023).
3M. W. Choptuik. In: Phys. Rev. Lett. 70, 9 (1993).
4Frank Wilczek. In: Physical Review Letters 85 (2000), pp. 1158–1161. DOI: 10.1103/PhysRevLett.85.1158.
5M. Sami E. J. Copeland and S. Tsujikawa. In: Int. Jou. Mod. Phys. D 15.1753-1935 (2006).
6D. Dey P. Saha and K. Bhattacharya. In: Phys. Rev. D 109.104023 (2024).
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GENERAL FRAMEWORK FOR GRAVITATIONAL COLLAPSE

IN SPHERICALLY SYMMETRIC SPACE-TIMES

1 Line element:

ds2 = −e2ν(r ,t)dt2 + e2ψ(r ,t)dr2 + R2(r , t)dσ2.

2 Type-I matter fields: Three space-like and one time-like
eigen-vectors: Hawking and Ellis7, Joshi8.

3 Weak energy condition9:

ρ ≥ 0, ρ + pi ≥ 0.

4 Equation of state10:
p = ω(r , t)ρ.

7S. W. Hawking and G. F. R. Ellis. The large scale structure of spacetime. 1973.
8P. S. Joshi. Global Aspects in Gravitation and Cosmology (Clendron Press). 1993.
9S. D. Maharaj B. P. Brassel and R. Goswami. In: Entropy 23.11, 1400 (2021).

10DESI Collaboration et.al. In: (2024). arXiv: 2404.03002 [astro-ph.CO].
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INTRODUCTION

VISIBILITY OF THE SINGULARITY

FIGURE: Formation of Black-hole as an end
state of a spatially homogeneous dust
(Oppenheimer Snyder Datt collapse)11.

P. S. Joshi and D. Malafarina, International Journal of
Modern Physics D 20, 14 (2011).

FIGURE: Formation of Naked singularity as
an end state of a spatially inhomogeneous dust
collapse (Leimatre Tolman Bondi collapse)12.

P. S. Joshi and D. Malafarina, International Journal of
Modern Physics D 20, 14 (2011).
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IMPORTANT DEFINITIONS

Singularity: boundary of the manifold.

The 4-velocity or the tangent to a outgoing null geodesic for the manifold (M, g): K i = dx i

dλ
.

The expansion scalar of the outgoing null-congruence is:

θl = ∇i K i .

There should be no trapped surfaces along K i and the singularity would be naked if13:

θl > 0.

Singularity is strong if at least along one non-spacelike geodesic with the affine parameter
λ, with λ → 0 in the neighbourhood of the singularity, the following inequality should be
satisfied14 15:

lim
λ→0

λ2Rij K i K j > 0.

13P. S. Joshi and I. H. Dwivedi. In: Phys. Rev. D 47 (1993), p. 5357.
14C. J. S. Clarke and A. Krolak. In: J. Geom. Phys. 127 (1985), p. 2.
15F. J. Tipler. In: Phys. Lett. A 8 (1977), p. 64.
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UNHINDERED GRAVITATIONAL COLLAPSE OF SCALAR AND VECTOR FIELDS

SH Perfect Fluid

Characterised by the equation of state 
parameter 𝜔(a)

SH Scalar Field

Characterised by 𝜙(a)

SH Vector Field

Characterised by Ã(a)

FIGURE: Equivalence between the unhindered gravitational collapse of spatially homogeneous
perfect fluid, scalar field and vector field with potentials.

(Ahmedabad University) CQG 11 / 27



RELATIVISTIC DESCRIPTION OF THE SYSTEM

Spherically symmetric spatially homogeneous cloud: Friedmann Leimatre Robertson
Walker (FLRW) line-element:

ds2 = −dt2 + a(t)2dσ2

where dσ2 = dx2 + dy2 + dz2.

The stress-energy tensor in this scheme:

T µ
ν = diag (−ρ, p, p, p).

Equation of state parameter:
p(a)
ρ(a)

= ω(a).
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END STATE OF HOMOGENEOUS SCALAR AND VECTOR FIELD COLLAPSE

RESULTS

We find strong and naked singularities, defined by their equation of state parameter16:

There will be no trapped surfaces in the resultant space-time if:

lim
a→0

ρ0a2 exp

(∫ 1

a

3 (1 + ω(a))
a

)
da < 1.

The singularity will be strong if:

lim
a→0

exp

(∫ 1

a

3(1 + ω)
a

da

)
> 0.

The resultant singularity is strong and naked if:

0 < lim
a→0

exp

(∫ 1

a

3(1 + ω)
a

da

)
< O(a−2).

We get a strong and naked singularity for the scalar field described by Goswami and
Joshi17.

16P. S. Joshi K. Mosani Koushiki, J. V. Trivedi, and T. Bhanja. In: Phys. Rev. D 108.044049 (2023).
17R. Goswami and P. S. Joshi. In: Modern Physics Letters A 22 (2007), pp. 65–74.
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VISIBILITY OF THE SINGULARITY

EXAMPLES

EH

AH
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FIGURE: Massless scalar field (Vs = 0).
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FIGURE: Vs(ϕ) ∝ expϕ as described in18. A
globally visible and strong singularity forms in
finite comoving time.

R. Goswami and P. S. Joshi, Modern Physics Letters A, 22,
01, pp. 65-74 (2007).
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CRITICAL COLLAPSE OF MASS-LESS SCALAR FIELDS

Choptuik’s Original work19:
1 power-law relationship for the mass of the black hole formed near

the critical threshold:
M ∼ (p − p∗)γ ,

2 γ ≈ 0.37: universal critical exponent.
3 p∗: attractor in parameter space.
4 Arbitrarily small mass black-hole.
5 The critical solution: self-similarity: echoing.
6 Families of scalar fields: γ → universal.

19M. W. Choptuik. In: Phys. Rev. Lett. 70, 9 (1993).
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CRITICALITY AND UNIVERSALITY IN MASS-LESS SCALAR FIELD COLLAPSE

OUR FINDINGS

These results are from a work under preparation:
1 Universality of collapse end-states in all scalar-field families.
2 ∃ a dimension-less parameter that decides the visibility of the end-state.
3 The scalar field is necessarily of type-I.

4 There are four different outcomes:

▶ dispersal and no singularity,
▶ zero-mass black-hole,
▶ a black-hole with non-zero mass,
▶ a locally naked singularity with zero gravitational mass.
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NECESSARY CONDITIONS FOR STABLE EQUILIBRIUM

Stable equilibrium:
lim

t→∞
Ṙ = lim

t→∞
R̈ = 0 .

If ae(r ) ≡ limt→∞ a(r , t) then:

ȧe(r ) = äe(r ) = 0 ,

where, R(r , t) = r a(r , t).
a(r , t): smooth monotonically decreasing function of comoving
time t :

a(r , t) = ae(r ) ∀ t ≥ te
=⇒ ȧ = ä =

...
a = ... = a(n) = 0 ∀ t ≥ te .
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RELATIVISTIC DESCRIPTION OF THE COLLAPSING SYSTEM

Line element:

ds2 = −dt2 +
a2(t)

1 − r2 dr2 + r2 a2(t) dσ2.

1 Finding potential function ⇒ equilibrium solution.
2 Two independent equations and three unknowns: ϕ(a), V (ϕ), and

ȧ(a).
3 Freedom to choose one free function: ȧ(a).
4 Functional form of ȧ(a):

ȧ(a) = β (f (a) − f (ae))α ∀a ∈ [ae, a0] ,
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SCALAR FIELD POTENTIAL RESPONSIBLE FOR EQUILIBRIUM STATES FROM GRAVITATIONAL

COLLAPSE

RESULTS

Potential class for equilibrium-condition for a spatially homogeneous
scalar field in spherical symmetry20:

Bound on α:
α ≥ 1 .

∀ α ≥ 1 near the equilibrium a → ae

∂aϕ ≈ ±
√

2
β a (f (a) − f (ae))α

,

V (a) ≈ 2
a2 .

20Koushiki Dipanjan Dey and Pankaj S. Joshi. In: Phys. Rev. D 108, 104045 (2023).
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MOTIVATION TO EXPLAIN STRUCTURES IN LARGE SCALES

FIGURE: A plot of sky coordinates vs. distance for galaxies in the Sloan Digital
Sky Survey, Source: SDSS.
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WHY STUDY LARGE-SCALE STRUCTURES GENERAL RELATIVISTICALLY

Perturbation of linear gravity regime21.
Top hat prescription22:

1 Background: pressureless dust expanding, governed by flat FLRW.
2 Overdense sub-universe: pressureless dust in closed FLRW

geometry.
3 Initial expansion phase, followed by a collapse.
4 Halting of collapse: virialisation.

Why is our approach novel?
General relativistic.
Potential function is not presumed.
Collapse stops automatically at assymptotic co-moving time23.

21P.J.E. Peebles. The Large-Scale Structure of the Universe. Chapter: Linear and Nonlinear Evolution of Cosmological
Perturbations. Princeton University Press, 1980.

22P. J. E. Peebles. In: The Astrophysical Journal 243 (1980), pp. 1–16.
23N. Ramesh S. Rajibul P. Kocherlakota and P. S. Joshi. In: Mon. Not. Roy. Astron. Soc. 482.1 (2019), pp. 52–64.
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DYNAMICAL DESCRIPTION OF THE OVER-DENSE SUB-UNIVERSE

Scale factor:
R(t) = r a(t). (1)

Expansion phase: upto the epoch of turn-around:

a ∈ (a0, amax )

{
ȧ > 0 ,

ä < 0 .
(2)

At the epoch of turn-around:

a = amax

{
ȧ = 0 ,

ä < 0 .
(3)

Collapse phase: after turn-around, upto equilibrium:

a ∈ (amax , ae)

{
ȧ < 0 ,

ä < 0 .
(4)

(Ahmedabad University) CQG 23 / 27



RELATIVISTIC DESCRIPTION OF THE SYSTEM

Expansion phase: closed FLRW, collapse phase: geometric
description? Components: pressureless dust (ordinary dark matter),
weakly interacting to dark energy (seeded by a massive scalar field24).

1 General spherically symmetric:

ds2 = −e2ν(r ,t)dt2 +
R′2(r , t)
G(r , t)

dr2 + R2(r , t)dσ2 . (5)

2 Stress-energy tensor of the sub-universe:

Tµν = (Tµν)DM + (Tµν)ϕ
= (ρDM + PDM )uµuν + PDMgµν + (ρϕ + Pϕ)uµuν + Pϕgµν .(6)

3 Isotropic fluid in its comoving frame, the non-vanishing and unique
components:

ρ = ρDM + ρϕ ,

P = Pϕ . (7)
24M. Sami E. J. Copeland and S. Tsujikawa. In: Int. Jou. Mod. Phys. D 11.1753-1935 (2006).
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BONAFIDE RELATIVISTIC MODEL FOR LARGE-SCALE STRUCTURE FORMATION

RESULTS

Dynamic dark-energy seeded by a scalar field potential25:
1 Line-element for the system: closed FLRW.
2 Equation of state of the composite system:

▶ Expanding phase: zero.
▶ Collapsing phase: varying.

3 Effect of dark-energy starts growing from the collapse phase.
4 Potential class: Tachyonic potential26 27.
5 Effective mass: imaginary.
6 Misner-Sharp mass function: real and positive for a closed FLRW

space-time.

25D. Dey Koushiki and P. S. Joshi. In: (2024). arXiv: 2404.03901 [gr-qc].
26A. Sen. In: JHEP 07, 065 (2002).
27A. Sen. In: JHEP 04, 048 (2002).
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