

GRAVITATIONAL COLLAPSE OF REAL SCALAR FIELDS: FUNDAMENTALS AND APPLICATIONS

AT
(WYDZIAŁ FIZYKI UW
AND
DBP NCBJ)

BY

Koushiki

Ahmedabad University

December 13th, 2024

OUTLINE

1 INTRODUCTION

2 FUNDAMENTALS

3 APPLICATIONS: EQUILIBRIUM END-STATES

OUTLINE

1 INTRODUCTION

2 FUNDAMENTALS

3 APPLICATIONS: EQUILIBRIUM END-STATES

INTRODUCTION

WHAT IS GRAVITATIONAL COLLAPSE?

- In co-moving co-ordinate system, 4-velocity: $u_t^i = \delta_t^i$:

$$R(r, t) = r \ a(r, t),$$

$$\dot{R} < 0 \longrightarrow \dot{a} < 0.$$

- The time-like congruence u^a : converging:

$$\theta = D_a u^a < 0.$$

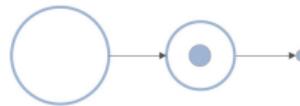


FIGURE: Evolution of apparent horizon and the collapsing cloud: black-hole.

INTRODUCTION

WHAT IS A SCALAR FIELD?

- A real scalar field:

$$\phi : \mathcal{M} \rightarrow \mathbb{R}.$$

- Lagrangian of a scalar field ϕ with potential $V(\phi)$:

$$\mathcal{L}_\phi = -\frac{1}{2}g^{\mu\nu}\partial_\mu\phi\partial_\nu\phi - V(\phi).$$

- Stress-energy tensor:

$$T_{\mu\nu} = \nabla_\mu\phi\nabla_\nu\phi - \frac{1}{2}g_{\mu\nu}(\nabla_\delta\phi\nabla^\delta\phi + V(\phi)).$$

WHY STUDY GRAVITATIONAL COLLAPSE OF A SCALAR FIELD?

1 Understanding fundamental features of space-time:

- ▶ Cosmic Censorship Conjecture¹ (CCC)²,
- ▶ Critical phenomena in gravitational collapse³.

2 Applications in cosmology:

- ▶ Dark matter⁴,
- ▶ Dark energy⁵,
- ▶ Structure formation⁶.

¹R. Penrose. In: *Riv. Nuovo. Cimento* Num. Sp. I (1969).

²P. S. Joshi K. Mosani Koushiki, J. V. Trivedi, and T. Bhanja. In: *Phys. Rev. D* 108.044049 (2023).

³M. W. Choptuik. In: *Phys. Rev. Lett.* 70, 9 (1993).

⁴Frank Wilczek. In: *Physical Review Letters* 85 (2000), pp. 1158–1161. DOI: 10.1103/PhysRevLett.85.1158.

⁵M. Sami E. J. Copeland and S. Tsujikawa. In: *Int. Jou. Mod. Phys. D* 15.1753-1935 (2006).

⁶D. Dey P. Saha and K. Bhattacharya. In: *Phys. Rev. D* 109.104023 (2024).

GENERAL FRAMEWORK FOR GRAVITATIONAL COLLAPSE IN SPHERICALLY SYMMETRIC SPACE-TIMES

- ① Line element:

$$ds^2 = -e^{2\nu(r,t)}dt^2 + e^{2\psi(r,t)}dr^2 + R^2(r,t)d\sigma^2.$$

- ② **Type-I matter fields:** *Three space-like and one time-like eigen-vectors:* Hawking and Ellis⁷, Joshi⁸.
- ③ Weak energy condition⁹:

$$\rho \geq 0, \quad \rho + p_i \geq 0.$$

- ④ Equation of state¹⁰:

$$p = \omega(r, t)\rho.$$

⁷ S. W. Hawking and G. F. R. Ellis. *The large scale structure of spacetime*. 1973.

⁸ P. S. Joshi. *Global Aspects in Gravitation and Cosmology* (Clarendon Press). 1993.

⁹ S. D. Maharaj B. P. Brassel and R. Goswami. In: *Entropy* 23.11, 1400 (2021).

¹⁰ DESI Collaboration et.al. In: (2024). arXiv: 2404.03002 [astro-ph.CO].

OUTLINE

1 INTRODUCTION

2 FUNDAMENTALS

3 APPLICATIONS: EQUILIBRIUM END-STATES

INTRODUCTION

VISIBILITY OF THE SINGULARITY

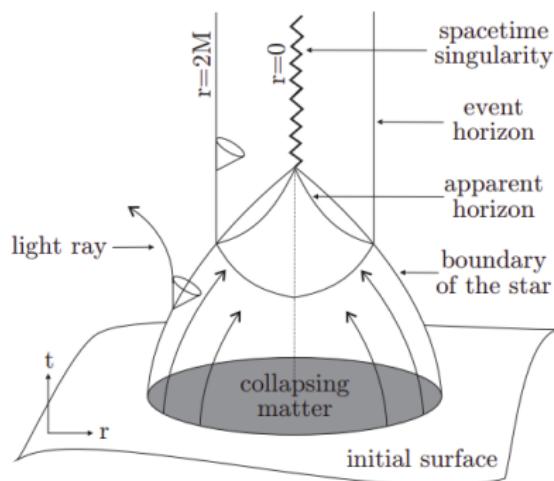


FIGURE: Formation of **Black-hole** as an end state of a spatially homogeneous dust (Oppenheimer Snyder Datt collapse)¹¹.

P. S. Joshi and D. Malafarina, International Journal of Modern Physics D **20**, 14 (2011).

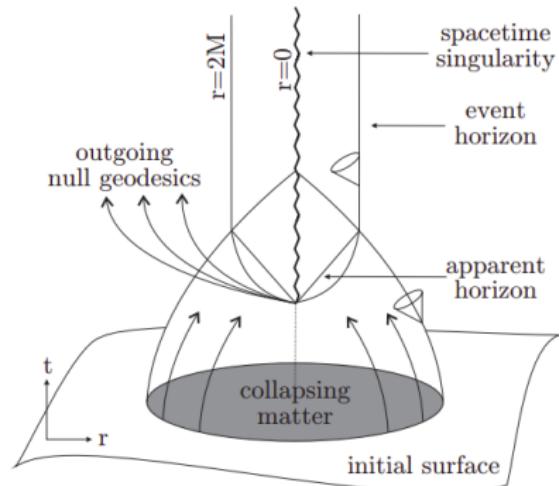


FIGURE: Formation of **Naked singularity** as an end state of a spatially inhomogeneous dust collapse (Leimatre Tolman Bondi collapse)¹².

P. S. Joshi and D. Malafarina, International Journal of Modern Physics D **20**, 14 (2011).

IMPORTANT DEFINITIONS

- Singularity: boundary of the manifold.
- The 4-velocity or the tangent to a outgoing null geodesic for the manifold (\mathcal{M}, g) : $K^i = \frac{dx^i}{d\lambda}$.
- The expansion scalar of the outgoing null-congruence is:

$$\theta_I = \nabla_i K^i.$$

- There should be no trapped surfaces along K^i and the singularity would be **naked** if¹³:

$$\theta_I > 0.$$

- Singularity is **strong** if at least along one non-spacelike geodesic with the affine parameter λ , with $\lambda \rightarrow 0$ in the neighbourhood of the singularity, the following inequality should be satisfied^{14 15}:

$$\lim_{\lambda \rightarrow 0} \lambda^2 R_{ij} K^i K^j > 0.$$

¹³ P. S. Joshi and I. H. Dwivedi. In: *Phys. Rev. D* 47 (1993), p. 5357.

¹⁴ C. J. S. Clarke and A. Krolak. In: *J. Geom. Phys.* 127 (1985), p. 2.

¹⁵ F. J. Tipler. In: *Phys. Lett. A* 8 (1977), p. 64.

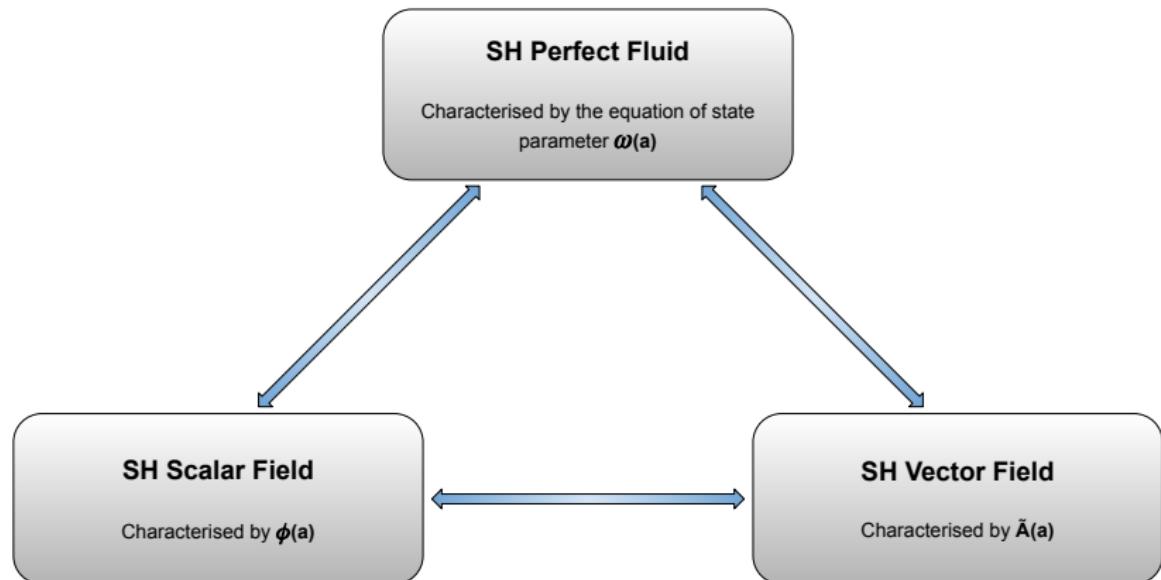


FIGURE: Equivalence between the unhindered gravitational collapse of spatially homogeneous perfect fluid, scalar field and vector field with potentials.

- Spherically symmetric spatially homogeneous cloud: Friedmann Leimatre Robertson Walker (FLRW) line-element:

$$ds^2 = -dt^2 + a(t)^2 d\sigma^2$$

where $d\sigma^2 = dx^2 + dy^2 + dz^2$.

- The stress-energy tensor in this scheme:

$$T_{\nu}^{\mu} = \text{diag}(-\rho, p, p, p).$$

- Equation of state parameter:

$$\frac{p(a)}{\rho(a)} = \omega(a).$$

RESULTS

We find strong and naked singularities, defined by their equation of state parameter¹⁶:

- There will be no **trapped surfaces** in the resultant space-time if:

$$\lim_{a \rightarrow 0} \rho_0 a^2 \exp \left(\int_a^1 \frac{3(1 + \omega(a))}{a} da \right) < 1.$$

- The singularity will be **strong** if:

$$\lim_{a \rightarrow 0} \exp \left(\int_a^1 \frac{3(1 + \omega)}{a} da \right) > 0.$$

- The resultant singularity is **strong** and **naked** if:

$$0 < \lim_{a \rightarrow 0} \exp \left(\int_a^1 \frac{3(1 + \omega)}{a} da \right) < \mathcal{O}(a^{-2}).$$

- We get a **strong and naked singularity** for the scalar field described by Goswami and Joshi¹⁷.

¹⁶ P. S. Joshi K. Mosani Koushiki, J. V. Trivedi, and T. Bhanja. In: *Phys. Rev. D* 108.044049 (2023).

¹⁷ R. Goswami and P. S. Joshi. In: *Modern Physics Letters A* 22 (2007), pp. 65–74.

VISIBILITY OF THE SINGULARITY

EXAMPLES

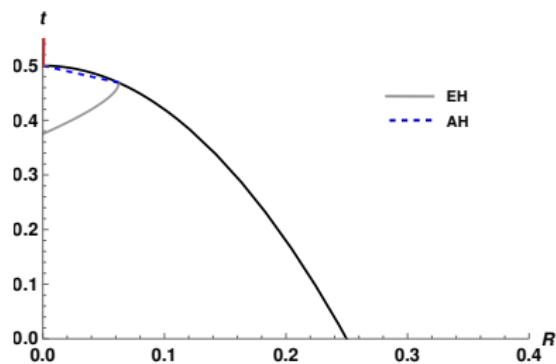


FIGURE: Massless scalar field ($V_s = 0$).

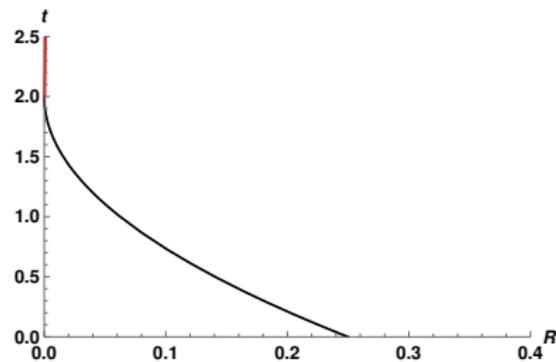


FIGURE: $V_s(\phi) \propto \exp \phi$ as described in¹⁸. A globally visible and strong singularity forms in finite comoving time.

R. Goswami and P. S. Joshi, Modern Physics Letters A, **22**, 01, pp. 65-74 (2007).

Choptuik's Original work¹⁹:

- ① power-law relationship for the mass of the black hole formed near the critical threshold:

$$M \sim (p - p_*)^\gamma,$$

- ② $\gamma \approx 0.37$: universal critical exponent.
- ③ p_* : attractor in parameter space.
- ④ Arbitrarily small mass black-hole.
- ⑤ The critical solution: self-similarity: *echoing*.
- ⑥ Families of scalar fields: $\gamma \rightarrow$ universal.

¹⁹M. W. Choptuik. In: *Phys. Rev. Lett.* 70, 9 (1993).

OUR FINDINGS

These results are from a work under preparation:

- ① Universality of collapse end-states in all scalar-field families.
- ② \exists a dimension-less parameter that decides the visibility of the end-state.
- ③ The scalar field is necessarily of type-I.
- ④ There are *four* different outcomes:
 - ▶ dispersal and no singularity,
 - ▶ zero-mass black-hole,
 - ▶ a black-hole with non-zero mass,
 - ▶ a locally naked singularity with zero gravitational mass.

OUTLINE

1 INTRODUCTION

2 FUNDAMENTALS

3 APPLICATIONS: EQUILIBRIUM END-STATES

- Stable equilibrium:

$$\lim_{t \rightarrow \infty} \dot{R} = \lim_{t \rightarrow \infty} \ddot{R} = 0.$$

- If $a_e(r) \equiv \lim_{t \rightarrow \infty} a(r, t)$ then:

$$\dot{a}_e(r) = \ddot{a}_e(r) = 0,$$

where, $R(r, t) = r a(r, t)$.

- $a(r, t)$: smooth monotonically decreasing function of comoving time t :

$$\begin{aligned} a(r, t) &= a_e(r) \quad \forall t \geq t_e \\ \Rightarrow \dot{a} &= \ddot{a} = \ddot{a} = \dots = a^{(n)} = 0 \quad \forall t \geq t_e. \end{aligned}$$

Line element:

$$ds^2 = -dt^2 + \frac{a^2(t)}{1-r^2} dr^2 + r^2 a^2(t) d\sigma^2.$$

- ① Finding potential function \Rightarrow equilibrium solution.
- ② Two independent equations and three unknowns: $\phi(a)$, $V(\phi)$, and $\dot{a}(a)$.
- ③ Freedom to choose one free function: $\dot{a}(a)$.
- ④ Functional form of $\dot{a}(a)$:

$$\dot{a}(a) = \beta (f(a) - f(a_e))^\alpha \quad \forall a \in [a_e, a_0],$$

RESULTS

Potential class for equilibrium-condition for a spatially homogeneous scalar field in spherical symmetry²⁰:

- Bound on α :

$$\alpha \geq 1 .$$

- $\forall \alpha \geq 1$ near the equilibrium $a \rightarrow a_e$

$$\begin{aligned}\partial_a \phi &\approx \frac{\pm \sqrt{2}}{\beta a (f(a) - f(a_e))^\alpha} , \\ V(a) &\approx \frac{2}{a^2} .\end{aligned}$$

²⁰Koushiki Dipanjan Dey and Pankaj S. Joshi. In: *Phys. Rev. D* 108, 104045 (2023).

MOTIVATION TO EXPLAIN STRUCTURES IN LARGE SCALES

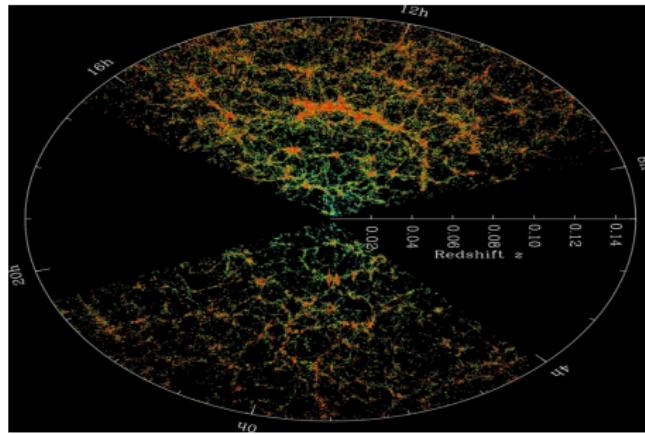


FIGURE: A plot of sky coordinates vs. distance for galaxies in the Sloan Digital Sky Survey, Source: SDSS.

- Perturbation of linear gravity regime²¹.
- Top hat prescription²²:
 - ① Background: pressureless dust expanding, governed by flat FLRW.
 - ② Overdense sub-universe: pressureless dust in closed FLRW geometry.
 - ③ Initial expansion phase, followed by a collapse.
 - ④ Halting of collapse: virialisation.

Why is our approach novel?

- General relativistic.
- Potential function is not presumed.
- Collapse stops automatically at asymptotic co-moving time²³.

²¹ P.J.E. Peebles. *The Large-Scale Structure of the Universe*. Chapter: Linear and Nonlinear Evolution of Cosmological Perturbations. Princeton University Press, 1980.

²² P. J. E. Peebles. In: *The Astrophysical Journal* 243 (1980), pp. 1–16.

²³ N. Ramesh S. Rajibul P. Kocherlakota and P. S. Joshi. In: *Mon. Not. Roy. Astron. Soc.* 482 (2019), pp. 52–64.

- Scale factor:

$$R(t) = r a(t). \quad (1)$$

- Expansion phase: upto the epoch of turn-around:

$$a \in (a_0, a_{max}) \begin{cases} \dot{a} > 0, \\ \ddot{a} < 0. \end{cases} \quad (2)$$

- At the epoch of turn-around:

$$a = a_{max} \begin{cases} \dot{a} = 0, \\ \ddot{a} < 0. \end{cases} \quad (3)$$

- Collapse phase: after turn-around, upto equilibrium:

$$a \in (a_{max}, a_e) \begin{cases} \dot{a} < 0, \\ \ddot{a} < 0. \end{cases} \quad (4)$$

Expansion phase: closed FLRW, collapse phase: geometric description? Components: pressureless dust (ordinary dark matter), weakly interacting to dark energy (seeded by a massive scalar field²⁴).

① General spherically symmetric:

$$ds^2 = -e^{2\nu(r,t)}dt^2 + \frac{R'^2(r,t)}{G(r,t)}dr^2 + R^2(r,t)d\sigma^2. \quad (5)$$

② Stress-energy tensor of the sub-universe:

$$\begin{aligned} T_{\mu\nu} &= (T_{\mu\nu})_{DM} + (T_{\mu\nu})_{\phi} \\ &= (\rho_{DM} + P_{DM})u_{\mu}u_{\nu} + P_{DM}g_{\mu\nu} + (\rho_{\phi} + P_{\phi})u_{\mu}u_{\nu} + P_{\phi}g_{\mu\nu} \end{aligned} \quad (6)$$

③ Isotropic fluid in its comoving frame, the non-vanishing and unique components:

$$\begin{aligned} \rho &= \rho_{DM} + \rho_{\phi}, \\ P &= P_{\phi}. \end{aligned} \quad (7)$$

²⁴ M. Sami E. J. Copeland and S. Tsujikawa. In: *Int. Jou. Mod. Phys. D* 11.1753-1935 (2006)

RESULTS

Dynamic dark-energy seeded by a scalar field potential²⁵:

- ① Line-element for the system: closed FLRW.
- ② Equation of state of the composite system:
 - ▶ Expanding phase: *zero*.
 - ▶ Collapsing phase: *varying*.
- ③ Effect of dark-energy starts growing from the collapse phase.
- ④ Potential class: Tachyonic potential^{26 27}.
- ⑤ Effective mass: imaginary.
- ⑥ Misner-Sharp mass function: real and positive for a closed FLRW space-time.

²⁵ D. Dey Koushiki and P. S. Joshi. In: (2024). arXiv: 2404.03901 [gr-qc].

²⁶ A. Sen. In: *JHEP* 07, 065 (2002).

²⁷ A. Sen. In: *JHEP* 04, 048 (2002).

ACKNOWLEDGEMENTS

Pankaj S Joshi, Karim Mosani, Rituparno Goswami, Dipanjan Dey, Jay Verma
Trivedi and Tapobroto Bhanja.

*Thank
you!*