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@ Short introduction to spinors and space spinors formalism in

GR
@ The 1+142 decomposition of spinors

@ Approximate twistor equation on asymptotically flat initial
data with inner boundary

@ New bound on ADM mass
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Short introduction to (space) spinors in GR

Conventions and notation from Penrose & Rindler, Spinors and
space-time, e.g.

@ signature of the 4-dimensional metric is (+, —, —, —),

@ abstract index notation: A (spinors), a (tensors),

e components: A (spinors), a (tensors)

Spinor — element of a vector space ¢ over C with dim¢c o = 2.
o is endowed with antisymmetric, bilinear and non-degenerate
function [[-,-]] : 0 x 0 — C.
Spin basis: 0”, A € ¢ with

[[o,]] =1 (1)

Decomposition of 4 € o

i = ([, ] o* = [l o) # ()
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Short introduction to (space) spinors in GR

Higher valence spinors can be introduced using tensorial pro-
ducts of o, e.g. xY*BC is defined through a multilinear map

YBC :o* x 0* x ¢* — C (3)

where ¢* is a dual space.
Levi-Civita spinor Let x*, ¢ € 0. We can write

([, 8]] = easr”o”, (4)
with €eag € 0* ® 0* and eap = —epa. It can be regarded as index
lowering object, i.e.

¢leag = ¢p € o (5)
Let AB

(e_l) =B eaceBC = §,45. (6)
Then

ABog =" 0. (7)
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Short introduction to (space) spinors in GR

Complex conjugation Let

P
A =rAcT (8)
Spinors
EAB = €EAB 9)
A/B/ . . .
and € are used to move primed indices.

Irreducible decomposition Any spinor 14, gar. Fr can be decom-
posed as the sum of 14 Fya...F7) and products of Levi-Civita spi-
nors eag and €a g with symmetrized contractions of na._ par. Fr,

e.g.
1 C 1 C/
NABA'B’ = T(AB)(A’B") T 5CABTIC (A'BY) + 5 CA'BITI(AB) C’
(10)
n Ee c ¢
4 CABEATBIIIC !
where
1 1
(AB) = 571AB T+ 571BA (11)
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Short introduction to (space) spinors in GR

The relation between spinors and tensors
Let (M, g) be a 4-dimensional Lorentzian manifold with a metric
g and an orthonormal tetrad e,, i.e.

Zab ‘= g(€a, &) = diag[l,—1, -1, 1] (12)
Consider the following spinor,

SAA'BB' = €EABEA'B'- (13)

J— . / /
We have gan 55 = gaaBs (real spinor) and gaa s gV BB =4

SO

a b
BAA'BB’ = 8ab0 AA'0 BB’ (14)

where 0@ 44/ are four 2 x 2 hermitian matrices — Infeld-van der
Waerden symbols (unit matrix + Pauli matrices).
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Short introduction to (space) spinors in GR

We have

AA AA

/ ! !
0 0% = 6570, 0 M 0P

An = 0a°. (15)
Then, for any tensor T, (b8,
B'..GGC' _ T

B b... f BB’ GG’
TAA’...FF’ a..f gO'aAA/...O' FF'Op ...Og . (16)

In particular,

Van :xe.0 < = xag.ap (17)

is a spinorial counterpart of the Levi-Civita connection V. It anni-
hilates eap, i.e.

Vaaepc = Vanepc = 0. (18)
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Short introduction to (space) spinors in GR

Space spinors — 3 + 1 decomposition.
Let S be a spacelike hypersurface of M with unit normal n?, indu-
ced metric h,p and Levi-Civita connection D,. Let

A = 2N (19)

be a spinorial counterpart of n?. It can be used to express every-
thing in terms of unprimed indices, e.g.

’ !

A F
WA/ F'B...G — WA..FB..G =TA" ..TF WA'_F'B..G- (20)

Then, wa. FB..c is a space spinor counterpart of wa_ Fig. .
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Short introduction to (space) spinors in GR

Consequences:

@ Hermitian conjugation and positive definite product.
Let

/

&}A...G = TAA ...TGG/wA/mG/ (21)

be a hermitian conjugation of wa .
Hermitian conjugation induces a positive definite product, i.e.

wa..c0"¢ >0, (22)

and wA._G&\)A“'G = 0 iff WA..G — 0.

@ 3-+1 decomposition.
Let vaa be a spinorial counterpart of a one-form. A
symmetrized product

/

VaB = 7'(AA VB)a/ (23)

corresponds to the spatial part of v,.
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Short introduction to (space) spinors in GR

Spinorial counterpart of a 3-dimensional metric hyp,

hasco = —€a(cep)s (24)

The extrinsic curvature K,p,

1 y
K = ¢ DagTecr, 25
ABCD N D~ PaBTcc (25)
where
DAB = T(AB vB)B/ (26)
is a spinorial counterpart of a 3-dimensional Sen connection D,,
i.e.
D,vP = h,Vvb, (27)
We have 1
Dagkc = Dagric — —=Kagc kE. 28
ngtic = Dagric = —5Kasc” kF (28)
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14+1+2 decomposition of space spinors

14142 decomposition Let 35S be an inner boundary of S — to-
pological sphere with outer-pointing normal vector p?, i.e.

panp™ = -2, paat™ =0 (29)

and
Al
pag =TA" Py (30)
its space spinor counterpart.
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14+1+2 decomposition of space spinors

Decomposition of the space spinor Let vz be a space spinor.
We have

1
VAR = —§PABVL + VL',;, vt = veppP. (31)

Decomposition of the 3-dimensional Sen connection We have

1
Dpg = —EPABPCDDCD + D ag: (32)

where P 45 is the 2-dimensional Sen connection. It can be
expressed as the 2D Levi-Civita derivative [) 45 and a transition

spinor Qagcp, i.e.
DPapvc = Dagrc + Qascrp (33)

QaBcp can be expressed with the use of the null expansions 6,
f_ and shear of 0S.

J. Kopinski A new spinorial approach to mass inequalities for black holes



Approximate twistor equation on AS manifold

Asymptotically Schwarzchildean (AS) initial data Let (S, hp, Kap)
be AS vacuum initial data, i.e.

hsp = — <1+2:n> 026+ O (r*3/2),

(34)
Kab =0 (r_5/2)

Spatial twistor equation Let x* € o. Spatial twistor equations
reads

Dagkcy =0, (35)
and arises from the space spinor decomposition of twistor equation
(Penrose, 1960")

VA’(AKB) = 0 (36)
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Approximate twistor equation on AS manifold

Combine spatial twistor operator (overdetermined) with its formal
adjoint to get (elliptic) approximate twistor equation,

1
Dgc'DBCHA + KABCD'D(BCHD) + gK'DABHB =0 (37)
where K = K,?. Consider following asymptotic expansion of x4,
2m
n = (1 + r) xag® + o(r~1/2), (38)

where given some asymptotically Cartesian coordinates x?® we set

1 | —xt—ix? x3
XAB = \ﬁ [ 3 X1 — ile (39)
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Approximate twistor equation on AS manifold

Consider the following functional

I[iia] = /D(ABXC)DABXCdV >0 (40)
S
where )
XA = g'DABHB. (41)

If k4 is a solution of approximate twistor equation with asymptotic
expansion (38), then from integration by parts

1 —
Iloal = 4mm — < § pagtcDAPRIas  (42)
V2
oS
SO
4tm > \f %PABXCD (ABC)dS (43)

J. Kopinski A new spinorial approach to mass inequalities for black holes



Approximate twistor equation on AS manifold

Tasks:

@ prescribe k4 on the boundary in a way that makes
1 e
—= fPABf(cD(ABf(C)dS (44)
ﬁas

non-negative

@ prove existence of the approximate twistor equation witch
such boundary condition and asymptotic expansion (38)

Let 5
XA ‘= §DAB,‘£B = (bA (45)

for some ¢4 on QS — satisfies Lopatinskii-Shapiro compatibility
conditions, so the boundary value problem is elliptic.
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Approximate twistor equation on AS manifold

The boundary value problem is then

1
L (K}A) = 'DBC'DBCEA + KABCD'D(BCHD) + gK'DABHB =0 on S
2_ g ~
B(ka) = §DA kg =¢a on 0S
We have
2

where H31/2 is a weighted L2 Sobolev space, so

L(6a) = F
( A) A On 5 (47)
B (QA) == GA on OS

Fact - (L, B’as) is self-adjoint.

J. Kopinski
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Approximate twistor equation on AS manifold

Fredholm alternative:
L(0a) = Fa, B (6a) ‘as = Gy (48)

has a solution iff

/ FAb dT + 7{ GaPdo = 0 (49)
S oS

for all va € H2, , in the kernel of (L, B|,s).

The kernel of (L, B in H?_ . is trivial if the inner boundary
as 1/2

0S is a marginally outer trapped surface (MOTS), i.e. 0+ =0,
0_ <0
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Approximate twistor equation on AS manifold

Proof. Let 6, = 0. Then

0< /D(ABVc)Zﬁ?CdT = %I//\CpCBpABVAdO'

S oS (50)
- ja{ 6_|vo|?do.
oS
So if 6_ < 0 then
D(ABVC) =0 = vp=0. (51)
Result - There exist a solution of
L(r4) =0, B(ka)|,s= 0a (52)

with 5
KA = (1 + ;”) xag0® +0a, Oa € H31/2’ (53)
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The mass inequality

If 9S is a MOTS, then

1 e
drm > —= %pAB)?cD(AB?C)dS (54)
V2
ds
with )
XA = §DABHB = ¢a (55)
for some ¢4 on 0S. Rewrite r.h.s. of (54) to get
4rm > \ﬁj{ *paPPpcdCdo (56)
05
or )
m> V2 H[$a, fa] (57)
where 1
Hion dul i= 5 § 3 pa®Ppcodo (58)
ds

is the Nester-Witten functional.
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The mass inequality

Nester-Witten functional — GHP formalism

H[¢pa, dar] = %f{ [50' (5451 = 97_451) — ¢y (5l¢o = %¢1):| do  (59)

oS

The choice of ¢4 — examples:

quA:O — m=0

@ Let ¢4 be an eigenspinor of the 2-dimensional Dirac operator
with the eigenvalue , i.e.

DPaPos = Apa (60)

Then A = —\ (A is pure imaginary) and it follows from the
reality of H[¢A, ¢A’] that

¢ Jool2dr = § |1 do (61)
oS oS
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The mass inequality

The mass inequality now reads

1
> —— ¢ |0-||¢ol*d 62
m mwajsh ldold (62)

Fact: on a topological sphere the eigenspace associated to a given

eigenvalue is spanned by {¢a, pa}. R
Choose the (pointwise) normalisation ¢4¢™ =1, i.e.

|do|? + | |* = 1. (63)
The condition (61) now yields

1
9of? = 30| (64)

Ultimately

T (minlo-1) los (65)
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Conclusion

Summary:

@ we used the second-order spinorial equation to relate the
mass to the integral on the inner boundary

@ with the proper choice of the boundary conditions the

boundary integral has the form of the Nester-Witten
functional

e freedom in choice of the behaviour on the boundary (¢4)

Future plans:

@ include angular momentum

@ make use of the conformal transformations (a la Herzlich)

@ other choice of boundary conditions

Thank you!
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