

A new spinorial approach to mass inequalities for black holes

J. Kopiński

Centre for Theoretical Physics PAS

joint work with J. Valiente Kroon (QMUL)
arXiv:2010.03299

- Short introduction to spinors and space spinors formalism in GR
- The 1+1+2 decomposition of spinors
- Approximate twistor equation on asymptotically flat initial data with inner boundary
- New bound on ADM mass

Short introduction to (space) spinors in GR

Conventions and notation from Penrose & Rindler, Spinors and space-time, e.g.

- signature of the 4-dimensional metric is $(+, -, -, -)$,
- abstract index notation: A (spinors), a (tensors),
- components: \mathbf{A} (spinors), \mathbf{a} (tensors)

Spinor – element of a vector space σ over \mathbb{C} with $\dim_{\mathbb{C}} \sigma = 2$. σ is endowed with antisymmetric, bilinear and non-degenerate function $[[\cdot, \cdot]] : \sigma \times \sigma \rightarrow \mathbb{C}$.

Spin basis: $o^A, \iota^A \in \sigma$ with

$$[[o, \iota]] = 1 \tag{1}$$

Decomposition of $\kappa^A \in \sigma$:

$$\kappa^A = \underbrace{[[\kappa, \iota]]}_{\kappa^0} o^A - \underbrace{[[\kappa, o]]}_{\kappa^1} \iota^A \tag{2}$$

Short introduction to (space) spinors in GR

Higher valence spinors can be introduced using tensorial products of σ , e.g. χ^{ABC} is defined through a multilinear map

$$\chi^{ABC} : \sigma^* \times \sigma^* \times \sigma^* \rightarrow \mathbb{C} \quad (3)$$

where σ^* is a dual space.

Levi-Civita spinor Let $\kappa^A, \phi^A \in \sigma$. We can write

$$[[\kappa, \phi]] = \epsilon_{AB} \kappa^A \phi^B, \quad (4)$$

with $\epsilon_{AB} \in \sigma^* \otimes \sigma^*$ and $\epsilon_{AB} = -\epsilon_{BA}$. It can be regarded as index lowering object, i.e.

$$\phi^A \epsilon_{AB} = \phi_B \in \sigma^* \quad (5)$$

Let

$$\left(\epsilon^{-1}\right)^{AB} := \epsilon^{AB}, \quad \epsilon_{AC} \epsilon^{BC} = \delta_A^B. \quad (6)$$

Then

$$\epsilon^{AB} \phi_B = \phi^A \in \sigma. \quad (7)$$

Complex conjugation

Let

$$\bar{\kappa}^{A'} := \overline{\kappa^A} \in \bar{\sigma}. \quad (8)$$

Spinors

$$\epsilon_{A'B'} := \bar{\epsilon}_{A'B'} \quad (9)$$

and $\epsilon^{A'B'}$ are used to move primed indices.

Irreducible decomposition Any spinor $\eta_{A\dots FA'\dots F'}$ can be decomposed as the sum of $\eta_{(A\dots F)(A'\dots F')}$ and products of Levi-Civita spinors ϵ_{AB} and $\epsilon_{A'B'}$ with symmetrized contractions of $\eta_{A\dots FA'\dots F'}$, e.g.

$$\begin{aligned} \eta_{ABA'B'} &= \eta_{(AB)(A'B')} + \frac{1}{2} \epsilon_{AB} \eta_C{}^C{}_{(A'B')} + \frac{1}{2} \epsilon_{A'B'} \eta_{(AB)C'}{}^{C'} \\ &+ \frac{1}{4} \epsilon_{AB} \epsilon_{A'B'} \eta_C{}^C{}_{C'} \end{aligned} \quad (10)$$

where

$$\eta_{(AB)} = \frac{1}{2} \eta_{AB} + \frac{1}{2} \eta_{BA} \quad (11)$$

The relation between spinors and tensors

Let (M, g) be a 4-dimensional Lorentzian manifold with a metric g and an orthonormal tetrad e_a , i.e.

$$g_{ab} := g(e_a, e_b) = \text{diag}[1, -1, -1, -1] \quad (12)$$

Consider the following spinor,

$$g_{AA'BB'} = \epsilon_{AB}\epsilon_{A'B'}. \quad (13)$$

We have $\bar{g}_{AA'BB'} = g_{AA'BB'}$ (real spinor) and $g_{AA'BB'}g^{AA'BB'} = 4$, so

$$g_{AA'BB'} = g_{ab}\sigma^a_{AA'}\sigma^b_{BB'} \quad (14)$$

where $\sigma^a_{AA'}$ are four 2×2 hermitian matrices – *Infeld-van der Waerden symbols* (unit matrix + Pauli matrices).

Short introduction to (space) spinors in GR

We have

$$\sigma_{\mathbf{a}}^{AA'} \sigma^{\mathbf{a}}_{BB'} = \delta_B{}^A \delta_{B'}{}^{A'}, \quad \sigma_{\mathbf{a}}^{AA'} \sigma^{\mathbf{b}}_{AA'} = \delta_{\mathbf{a}}{}^{\mathbf{b}}. \quad (15)$$

Then, for any tensor $T_{a\dots f}{}^{b\dots g}$,

$$T_{AA' \dots FF'}{}^{BB' \dots GG'} = T_{a\dots f}{}^{b\dots g} \sigma^{\mathbf{a}}_{AA'} \dots \sigma^{\mathbf{f}}_{FF'} \sigma^{\mathbf{b}}_{BB'} \dots \sigma^{\mathbf{g}}_{GG'}. \quad (16)$$

In particular,

$$\nabla_{AA'} : \chi_{B \dots D'}{}^{C \dots F'} \rightarrow \chi_{AB \dots A'D'}{}^{C \dots F'} \quad (17)$$

is a spinorial counterpart of the Levi-Civita connection ∇_a . It annihilates ϵ_{AB} , i.e.

$$\nabla_{AA'} \epsilon_{BC} = \nabla_{AA'} \epsilon_{B'C'} = 0. \quad (18)$$

Space spinors – $3+1$ decomposition.

Let S be a spacelike hypersurface of M with unit normal n^a , induced metric h_{ab} and Levi-Civita connection D_a . Let

$$\tau^{AA'} = \sqrt{2}n^{AA'} \quad (19)$$

be a spinorial counterpart of n^a . It can be used to express everything in terms of unprimed indices, e.g.

$$\omega_{A' \dots F' B \dots G} \rightarrow \omega_{A \dots F B \dots G} = \tau_A{}^{A'} \dots \tau_F{}^{F'} \omega_{A' \dots F' B \dots G}. \quad (20)$$

Then, $\omega_{A \dots F B \dots G}$ is a **space spinor counterpart** of $\omega_{A' \dots F' B \dots G}$.

Short introduction to (space) spinors in GR

Consequences:

- Hermitian conjugation and positive definite product.

Let

$$\hat{\omega}_{A \dots G} := \tau_A{}^{A'} \dots \tau_G{}^{G'} \bar{\omega}_{A' \dots G'} \quad (21)$$

be a **hermitian conjugation** of $\omega_{A \dots G}$.

Hermitian conjugation induces a positive definite product, i.e.

$$\omega_{A \dots G} \hat{\omega}^{A \dots G} \geq 0, \quad (22)$$

and $\omega_{A \dots G} \hat{\omega}^{A \dots G} = 0$ iff $\omega_{A \dots G} = 0$.

- 3+1 decomposition.

Let $v_{AA'}$ be a spinorial counterpart of a one-form. A symmetrized product

$$v_{AB} = \tau_{(A}{}^{A'} v_{B)A'} \quad (23)$$

corresponds to the spatial part of v_a .

Short introduction to (space) spinors in GR

Spinorial counterpart of a 3-dimensional metric h_{ab} ,

$$h_{ABCD} = -\epsilon_{A(C}\epsilon_{D)B} \quad (24)$$

The extrinsic curvature K_{ab} ,

$$K_{ABCD} = \frac{1}{\sqrt{2}} \tau_D{}^{C'} \mathcal{D}_{AB} \tau_{CC'}, \quad (25)$$

where

$$\mathcal{D}_{AB} := \tau_{(A}{}^{B'} \nabla_{B)B'} \quad (26)$$

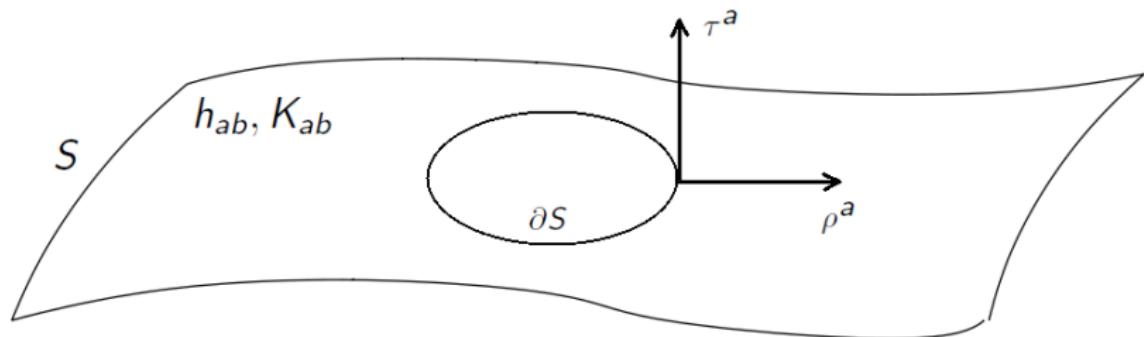
is a spinorial counterpart of a 3-dimensional **Sen connection** \mathcal{D}_a ,
i.e.

$$\mathcal{D}_a v^b = h_a{}^c \nabla_c v^b, \quad (27)$$

We have

$$\mathcal{D}_{AB} \kappa_C = D_{AB} \kappa_C - \frac{1}{\sqrt{2}} K_{ABC}{}^F \kappa_F. \quad (28)$$

1+1+2 decomposition of space spinors



1+1+2 decomposition Let ∂S be an inner boundary of S – topological sphere with outer-pointing normal vector ρ^a , i.e.

$$\rho_{AA'}\rho^{AA'} = -2, \quad \rho_{AA'}\tau^{AA'} = 0 \quad (29)$$

and

$$\rho_{AB} = \tau(A^{A'}\rho_B)_{A'} \quad (30)$$

its space spinor counterpart.

1+1+2 decomposition of space spinors

Decomposition of the space spinor Let ν_{AB} be a space spinor.

We have

$$\nu_{AB} = -\frac{1}{2}\rho_{AB}\nu^{\perp} + \nu_{AB}^{\parallel}, \quad \nu^{\perp} = \nu_{CD}\rho^{CD}. \quad (31)$$

Decomposition of the 3-dimensional Sen connection We have

$$\mathcal{D}_{AB} = -\frac{1}{2}\rho_{AB}\rho^{CD}\mathcal{D}_{CD} + \mathcal{D}_{AB}, \quad (32)$$

where \mathcal{D}_{AB} is the **2-dimensional Sen connection**. It can be expressed as the 2D Levi-Civita derivative \mathcal{D}_{AB} and a transition spinor Q_{ABCD} , i.e.

$$\mathcal{D}_{AB}\nu_C = \mathcal{D}_{AB}\nu_C + Q_{ABC}^D\nu_D \quad (33)$$

Q_{ABCD} can be expressed with the use of the null expansions θ_+ , θ_- and shear of ∂S .

Asymptotically Schwarzhildean (AS) initial data Let (S, h_{ab}, K_{ab}) be AS vacuum initial data, i.e.

$$\begin{aligned} h_{ab} &= -\left(1 + \frac{2m}{r}\right) \delta_{ab} + \mathcal{O}\left(r^{-3/2}\right), \\ K_{ab} &= \mathcal{O}\left(r^{-5/2}\right) \end{aligned} \tag{34}$$

Spatial twistor equation Let $\kappa^A \in \sigma$. Spatial twistor equations reads

$$\mathcal{D}_{(AB}\kappa_{C)} = 0, \tag{35}$$

and arises from the space spinor decomposition of twistor equation (Penrose, 1960')

$$\nabla_{A'(A}\kappa_{B)} = 0 \tag{36}$$

Approximate twistor equation on AS manifold

Combine spatial twistor operator (overdetermined) with its formal adjoint to get (elliptic) **approximate twistor equation**,

$$\mathcal{D}_{BC}\mathcal{D}^{BC}\kappa_A + K_{ABCD}\mathcal{D}^{(BC}\kappa^{D)} + \frac{1}{3}K\mathcal{D}_{AB}\kappa^B = 0 \quad (37)$$

where $K = K_a{}^a$. Consider following asymptotic expansion of κ_A ,

$$\kappa_{\mathbf{A}} = \left(1 + \frac{2m}{r}\right) x_{\mathbf{AB}} o^{\mathbf{B}} + o(r^{-1/2}), \quad (38)$$

where given some asymptotically Cartesian coordinates x^a we set

$$x_{\mathbf{AB}} := \frac{1}{\sqrt{2}} \begin{bmatrix} -x^1 - ix^2 & x^3 \\ x^3 & x^1 - ix^2 \end{bmatrix} \quad (39)$$

Approximate twistor equation on AS manifold

Consider the following functional

$$I[\kappa_A] := \int_S \mathcal{D}_{(AB} \hat{\chi}_{C)} \widehat{\mathcal{D}^{AB} \hat{\chi}^C} dV \geq 0 \quad (40)$$

where

$$\chi_A := \frac{2}{3} \mathcal{D}_A{}^B \kappa_B. \quad (41)$$

If κ_A is a solution of approximate twistor equation with asymptotic expansion (38), then from integration by parts

$$I[\kappa_A] = 4\pi m - \frac{1}{\sqrt{2}} \oint_{\partial S} \rho_{AB} \hat{\chi}_C \widehat{\mathcal{D}^{(AB} \hat{\chi}^{C)}} dS \quad (42)$$

so

$$4\pi m \geq \frac{1}{\sqrt{2}} \oint_{\partial S} \rho_{AB} \hat{\chi}_C \widehat{\mathcal{D}^{(AB} \hat{\chi}^{C)}} dS \quad (43)$$

Tasks:

- prescribe κ_A on the boundary in a way that makes

$$\frac{1}{\sqrt{2}} \oint_{\partial S} \rho_{AB} \hat{\chi}_C \widehat{\mathcal{D}^{(AB} \hat{\chi}^{C)}} dS \quad (44)$$

non-negative

- prove existence of the approximate twistor equation with such boundary condition and asymptotic expansion (38)

Let

$$\chi_A := \frac{2}{3} \mathcal{D}_A{}^B \kappa_B = \hat{\phi}_A \quad (45)$$

for some ϕ_A on ∂S – satisfies Lopatinskii-Shapiro compatibility conditions, so the boundary value problem is elliptic.

Approximate twistor equation on AS manifold

The boundary value problem is then

$$\begin{aligned}\mathbf{L}(\kappa_A) &:= \mathcal{D}_{BC}\mathcal{D}^{BC}\kappa_A + K_{ABCD}\mathcal{D}^{(BC}\kappa^{D)} + \frac{1}{3}K\mathcal{D}_{AB}\kappa^B = 0 \quad \text{on } S \\ \mathbf{B}(\kappa_A) &:= \frac{2}{3}\mathcal{D}_A{}^B\kappa_B = \hat{\phi}_A \quad \text{on } \partial S\end{aligned}$$

We have

$$\kappa_{\mathbf{A}} = \left(1 + \frac{2m}{r}\right) x_{\mathbf{AB}} o^{\mathbf{B}} + \theta_{\mathbf{A}}, \quad \theta_{\mathbf{A}} \in H_{-1/2}^2, \quad (46)$$

where $H_{-1/2}^2$ is a weighted L^2 Sobolev space, so

$$\begin{aligned}\mathbf{L}(\theta_A) &= F_A \quad \text{on } S \\ \mathbf{B}(\theta_A) &= G_A \quad \text{on } \partial S\end{aligned} \quad (47)$$

Fact – $(\mathbf{L}, \mathbf{B}|_{\partial S})$ is self-adjoint.

Fredholm alternative:

$$\mathbf{L}(\theta_A) = F_A, \quad \mathbf{B}(\theta_A)|_{\partial S} = G_A \quad (48)$$

has a solution iff

$$\int_S F_A \hat{\nu}^A d\tau + \oint_{\partial S} G_A \hat{\nu}^A d\sigma = 0 \quad (49)$$

for all $\nu_A \in H^2_{-1/2}$ in the kernel of $(\mathbf{L}, \mathbf{B}|_{\partial S})$.

Theorem

The kernel of $(\mathbf{L}, \mathbf{B}|_{\partial S})$ in $H^2_{-1/2}$ is trivial if the inner boundary ∂S is a marginally outer trapped surface (MOTS), i.e. $\theta_+ = 0$, $\theta_- \leq 0$

Proof. Let $\theta_+ = 0$. Then

$$\begin{aligned} 0 &\leq \int_S \mathcal{D}_{(AB}\nu_{C)} \widehat{\mathcal{D}^{AB}\nu^C} d\tau = \oint_{\partial S} \widehat{\nu^C} \rho_C{}^B \mathcal{D}^A{}_B \nu_A d\sigma \\ &= \oint_{\partial S} \theta_- |\nu_0|^2 d\sigma. \end{aligned} \tag{50}$$

So if $\theta_- \leq 0$ then

$$\mathcal{D}_{(AB}\nu_{C)} = 0 \implies \nu_A = 0. \tag{51}$$

Result - There exist a solution of

$$\mathbf{L}(\kappa_A) = 0, \quad \mathbf{B}(\kappa_A)|_{\partial S} = \widehat{\phi}_A \tag{52}$$

with

$$\kappa_{\mathbf{A}} = \left(1 + \frac{2m}{r}\right) x_{\mathbf{AB}} o^{\mathbf{B}} + \theta_{\mathbf{A}}, \quad \theta_{\mathbf{A}} \in H^2_{-1/2}, \tag{53}$$

The mass inequality

If ∂S is a MOTS, then

$$4\pi m \geq \frac{1}{\sqrt{2}} \oint_{\partial S} \rho_{AB} \hat{\chi}_C \widehat{\mathcal{D}^{(AB} \hat{\chi}^{C)}} dS \quad (54)$$

with

$$\chi_A := \frac{2}{3} \mathcal{D}_A{}^B \kappa_B = \hat{\phi}_A \quad (55)$$

for some ϕ_A on ∂S . Rewrite r.h.s. of (54) to get

$$4\pi m \geq \sqrt{2} \oint_{\partial S} \hat{\phi}^A \rho_A{}^B \mathcal{D}_{BC} \phi^C d\sigma \quad (56)$$

or

$$m \geq \sqrt{2} H[\phi_A, \bar{\phi}_{A'}] \quad (57)$$

where

$$H[\phi_A, \bar{\phi}_{A'}] := \frac{1}{4\pi} \oint_{\partial S} \hat{\phi}^A \rho_A{}^B \mathcal{D}_{BC} \phi^C d\sigma \quad (58)$$

is the **Nester-Witten functional**.

The mass inequality

Nester-Witten functional – GHP formalism

$$H[\phi_A, \bar{\phi}_{A'}] = \frac{1}{4\pi} \oint_{\partial S} \left[\bar{\phi}_{0'} \left(\eth \phi_1 - \frac{\theta_-}{2} \phi_1 \right) - \bar{\phi}_{1'} \left(\eth' \phi_0 - \frac{\theta_+}{2} \phi_1 \right) \right] d\sigma \quad (59)$$

The choice of ϕ_A – examples:

- $\phi_A = 0 \implies m \geq 0$
- Let ϕ_A be an eigenspinor of the 2-dimensional Dirac operator with the eigenvalue λ , i.e.

$$\not{D}_A{}^B \phi_B = \lambda \phi_A \quad (60)$$

Then $\bar{\lambda} = -\lambda$ (λ is pure imaginary) and it follows from the reality of $H[\phi_A, \bar{\phi}_{A'}]$ that

$$\oint_{\partial S} |\phi_0|^2 d\sigma = \oint_{\partial S} |\phi_1|^2 d\sigma. \quad (61)$$

The mass inequality

The mass inequality now reads

$$m \geq \frac{1}{4\sqrt{2}\pi} \oint_{\partial S} |\theta_-| |\phi_0|^2 d\sigma \quad (62)$$

Fact: on a topological sphere the eigenspace associated to a given eigenvalue is spanned by $\{\phi_A, \hat{\phi}_A\}$.

Choose the (pointwise) normalisation $\phi_A \hat{\phi}^A = 1$, i.e.

$$|\phi_0|^2 + |\phi_1|^2 = 1. \quad (63)$$

The condition (61) now yields

$$|\phi_0|^2 = \frac{1}{2} |\partial S| \quad (64)$$

Ultimately

$$m \geq \frac{1}{8\sqrt{2}\pi} \left(\min_{\partial S} |\theta_-| \right) |\partial S| \quad (65)$$

Summary:

- we used the second-order spinorial equation to relate the mass to the integral on the inner boundary
- with the proper choice of the boundary conditions the boundary integral has the form of the Nester-Witten functional
- freedom in choice of the behaviour on the boundary (ϕ_A)

Future plans:

- include angular momentum
- make use of the conformal transformations (à la Herzlich)
- other choice of boundary conditions

Thank you!