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• signal method in special relativity

Times of arrival of electromagnetic signals (TOA’s) - one of most important observables in relativity

• Shapiro delays - provide a GR test [Shapiro 1964; Shapiro et al 1968]

• frequency shift due to gravity [Pound-Rebka 1959]

• measurement of the Hubble parameter using time delays between multiple images 
in strongly lensing systems [Refsdahl 1964; H0LiCOW 2016]

• pulsar timing

binary pulsars (and double pulsar) - proof of existence of GW [Hulse, Taylor 1974]


provide GR tests (quadrupole formula for GW, relativistic orbit deformation, Shapiro delay…)


pulsar timing arrays - low frequency GW [Sazhin 1978; Detweiler 1979; Hellings, Downs 1983…]

• clock-based gravitational compasses - curvature measurements using an ensemble of clocks and 
frequency comparisons [Neumann et al 2020; Puetzfeld et al 2016; Puetzfeld et al 2018]
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• based on papers:

M. Grasso, MK, J. Serbenta, „Geometric optics in general relativity using bilocal operators”, 

Phys. Rev. D 99, 064038 (2019)

TOA variations between slightly displaced points in two distant regions of spacetime

Possible to combine them into a measurement of curvature along the null geodesic connecting the region

Idea based on interesting geometric relations between the curvature and TOA’s

May have interesting implications for the theory of light propagation in curved spacetime 

Algebra rather complicated, but geometric interpretation is quite nice

MK, J. Miśkiewicz, J. Serbenta, „Weighing the spacetime along the line of sight using times of 
arrival of electromagnetic signals”, Phys. Rev. D 104, 024026 (2021)
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Time of arrival variations, dependence on spatial positions

Linear order in position variations

Rømer delays

Time transfer effects

 (Redshift/blueshift)



Idea of the measurement

6

E

O

(M, gμν)

Time of arrival variations, dependence on spatial positions

Linear + quadratic order

Quadratic term = finite distance effects + curvature imprint
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The product manifold M × M (dim = 8)

E

O

(M, gμν)

T(𝒪,ℰ)(M × M) ≅ T𝒪M ⊕ TℰM

M

MO

E (O,E)

X

Xμ′�
𝒪

Xμ
ℰ

Tangent vectors X = (Xμ′�
𝒪

Xμ
ℰ)

Metric tensor h(X, Y) ≡ g𝒪(X𝒪, Y𝒪) − gℰ(Xℰ, Yℰ)

sgn h = (4,4)
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E

O

(M, gμν)

Geometric locus of pairs of points connected by a null geodesic

M

M

Globally it is not an immersed sub-manifold of dim=7, but…

…locally it is (far from caustics)

(O,E)
E

O

Defines the shapes of all light cones!

lℰ

l𝒪
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In a small neighbourhood of (O,E)

lℰ

l𝒪

L = (l𝒪 μ′� − lℰ μ)
U⊥ given by the distance and 

the spacetime curvature 

along 𝛾0

Normal 1-form

Extrinsic curvature

Proof: via Synge’s world function formalism [Synge 1968], [Teyssandier, Le Poncin-Lafitte, Linet 2008]… 

L → c ⋅ L, U⊥ → c ⋅ U⊥
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Resolvent of the first order geodesic deviation equation
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Resolvent of the first order geodesic deviation equation

d
dλ

W = (
0 δα

β

Rγ
μνϵ(λ) lμ lν 0 ) W(λ)

W(𝒪) = I8

(0 δα
β

0 0 ) + ( 0 0
Rγ

μνϵ(λ) lμ lν 0)

Symmetric 2-tensor on T(𝒪,ℰ)(M × M)

U = (U𝒪𝒪 U𝒪ℰ
Uℰ𝒪 Uℰℰ) = (

−g𝒪 W−1
XL WXX g𝒪 W−1

XL

gℰ (WLL W−1
XL WXX − WLX) −gℰ WLL W−1

XL)
U(X, Y) = U(Y, X)

Extrinsic curvature of LSC: U⊥ = U
L⊥

(restriction to the tangent space to LSC)

lℰ

l𝒪
E

O

(M, gμν)

W = (
WXX

μ
ν WXL

μ
σ

WLX
ρ

ν WLL
ρ

σ) [Grasso, MK, Serbenta 2019] 
[Uzun 2020], [Fleury 2014]…
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bi-scalar

σ(x, x′�) =
λ2 − λ1

2 ∫
λ2

λ1

gμν
·γμ(λ) ·γν(λ) dλ

γ

x’

(M, gμν)

x

·γ(λ1)

·γ(λ2)

Introduced by Synge in 1960

σ : M × M ⊃ 𝒰 → R

Properties:

σ,ν ≡
∂σ
∂xν

= (λ2 − λ1) ·γμ(λ2) gμν

σ,ν′� ≡
∂σ
∂xν′�

= − (λ2 − λ1) ·γμ′ �(λ1) gμ′�ν′�

σ > 0

σ = 0

σ < 0

iff

 spacelikeγ

 nullγ

 timelikeγ
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Locally LSC can be identified with the zero level set of  

[Teyssandier, Leponcin-Lafitte]

σ

lℰ

l𝒪
E

O

(M, gμν)
LSC = {(x, x′�) ∈ M × M |σ(x, x′�) = 0}

Taylor expansion in coordinates locally flat at O and E

σ(xℰ + δxℰ, x𝒪 + δx𝒪) = σ,μ′�δxμ′ �
𝒪 + σ,μ δxμ

ℰ

+
1
2

σ;μν δxμ
ℰ δxν

ℰ +
1
2

σ;μ′�ν′�δxμ′�
𝒪 δxν′�

𝒪 + σ;μν′�δxμ
ℰ δxν′�

𝒪

+O(δx3)

LSC condition can be rewritten L(X) +
1
2

U(X, X) = 0

L = (l𝒪 μ′� − lℰ μ) U = −
1

λℰ − λ𝒪 (σ;μ′�ν′ � σ;μν′�
σ;μ′�ν σ;μν)

Also a locally flat coordinate system on  near M × M (ℰ, 𝒪)

X = (δxμ′�
𝒪

δxμ
ℰ)



Synge’s world function

13

lℰ

l𝒪
E

O

(M, gμν)

Relation between  and the spacetime curvature:U

 gives relation between endpoints variations

and tangent vector variations
U

(
Δl𝒪 μ′�

−Δlℰ ν) = U (δxμ′ �
𝒪

δxν
ℰ)

on the other hand, the geodesic deviation equation relates

initial data variations at O to variations at E

d
dλ

W = (
0 δα

β

Rγ
μνϵ(λ) lμ lν 0 ) W(λ)

W(𝒪) = I8

(
δxμ

ℰ

Δlν
ℰ) = W (

δxμ′�
𝒪

Δlν′ �
𝒪)

after a bit of algebra:

U = (
−g𝒪 W−1

XL WXX g𝒪 W−1
XL

gℰ (WLL W−1
XL WXX − WLX) −gℰ WLL W−1

XL)
Relation partially known [Dixon 1970, Vines 2015…] 
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Locally flat coordinate systems near O and E 

points in M near O and E ⟷ tangent vectors at TOM, TEM 

Gauge choice: L0 = 1

X0 = − Li Xi −
1
2

Qij Xi Xj + O ((Xi)3)

extrinsic curvature U⊥

X0 ≡ X0 (X1, …, X7)

Time of arrival
Position of the receiver + 

position and time of emission 
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Assume we have a sample of TOA’s ( = pairs of points)

Can we reconstruct  L and U⊥? 

X0
1 = − Li Xi

1 −
1
2

Qij Xi
1 Xj

1

X0
2 = − Li Xi

2 −
1
2

Qij Xi
2 Xj

2

.

.

.

Xk = (
xμ

obs,k

xμ
em,k) known

Li, Qij solved for

Finding a unique quadric through a set of points

Possible if the sampling done right

Determining the shape of the LSC from variations of TOA’s
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Curved spacetime

U⊥ =

* * * * * 0 0
* * * * * 0 0
* * * * * 0 0
* * * * * 0 0
* * * * * 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Flat spacetime

U⊥ = D−1
𝒪

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

diagonalising basis

Curvature causes a change of shape of LSC

Need to detect the imprint of curvature in the extrinsic curvature

Problem: we have no control over the orthonormal tetrads systems at O and E

Look for 2-sided Lorentz invariants
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μ = 1 −
Aℰ

A𝒪
O

E

A𝒪

Aℰ

O

E

Ã 𝒪

Ã ℰ

ν = 1 −
Ã 𝒪

Ã ℰ

• Independent of the states of motion


• Vanish in a flat spacetime


• For short distances given by an integral 
of  the stress-energy tensor
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Distance measures in astrometry

• Angular diameter distance (area distance) 
[Perlick 2004]

• Luminosity distance

lμ

Dang = ( Aℰ

Ω𝒪 )
1/2

Dang ≡ Dang(uμ
𝒪, Rμ

αβν)

Dlum = ( I
4πF )

1/2

Dlum ≡ Dlum(uμ
𝒪, uμ

ℰ, Rμ
αβν)

Etherington’s reciprocity relation 
[Etherington 1933]

Dlum = (1 + z)2 Dang

Grasso, Korzyński, Serbenta 2019
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baseline-averaged parallax distance:

Parallax distance

δθA = − D−1
𝒪 δxA

𝒪

Dpar = det ΠA
B

−1/2
= ( A𝒪

Ω )
1/2

flat spacetime

general spacetime δθA = − ΠA
B δxB

𝒪

Dpar ≡ Dpar(uμ
𝒪, Rα

μνβ)

lμ
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μ = 1 − σ
D2

ang

D2
par

= 1 − σ
D2

lum

D2
par

(1 + z)−4

σ = ± 1  (almost always +1)

μ = 1 −
Aℰ

A𝒪
O

E

A𝒪

Aℰ

μ ≡ μ(Rμ
αβν)

• Measurable as the relative difference between distance 
measurements to a single object (very small effect though)


• Independent of the states of motion


• Vanishes in a flat spacetime


• For short distances given by an integral of  the stress-energy 
tensor
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μ = 1 −
Q𝒪𝒪 i′ �j′�Q𝒪𝒪 k′�l′�ϵi′ �k′�

𝒪 ϵ j′ �l′�
𝒪

Q𝒪ℰ i′ �j Q𝒪ℰ k′ �l ϵi′�k′�
𝒪 ϵ jl

ℰ

ν = 1 −
Qℰℰ ij Qℰℰ kl ϵik

ℰ ϵ jl
ℰ

Q𝒪ℰ i′ �j Q𝒪ℰ k′ �l ϵi′ �k
𝒪 ϵ jl

ℰ

ϵ𝒪 i′�j′� =
lk′�
𝒪

l0′�
𝒪

εi′ �j′ �k′ �

ϵℰ ij =
lk
ℰ

l0
ℰ

εijk

• Lorentz-invariant expressions, work for any pair of oriented, orthonormal tetrads

O

E

uμ
𝒪

eμ
1 eμ

2

eμ
3uμ

ℰ

f μ
1

f μ
2

f μ
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μ =
8πG
c4 ∫

λℰ

λ𝒪

Tμν lμ lμ (λℰ − λ) dλ + O(Riemann2)

ν =
8πG
c4 ∫
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Expansion in powers of curvature 

No Cμ
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Pressureless dust, weak gravity

μ =
8πG
c2 ∫

D

0
ρ(r)(D − r) dr

ν =
8πG
c2 ∫

D

0
ρ(r) r dr

⟨ρ⟩ ≡ D−1 ∫
D

0
ρ(r) dr =

c2(μ + ν)
8πG D2

rCM ≡
∫ D

0
ρ(r) r dr

∫ D
0

ρ(r) dr
=

D ν
μ + ν

Average mass density and COM position of mass 
distribution along the LOS
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Measurement protocol

23

L

L

L-L

-L -L

13 clocks in both ensembles

placement:

Proof of concept

(with respect to any pair of locally flat, 
orthonormal coordinates

near O and E)

all emitters send 3 signals at 

tℰ = −
L
c

, 0,
L
c

We can derive exact expressions

Li ≡ Li(X0
(k))

Qkl ≡ Qkl(X0
(k))

μ ≡ μ (Qij, Lj)
ν ≡ ν (Qij, Lj)
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0 = L̃ ( X̃ ) +
1
2 ( L

D ) Ũ f lat( X̃ , X̃ ) +
1
2 ( L

D ) ( D
ℛ )

2

Ũ curv( X̃ , X̃ )

L ≪ D ≪ ℛ
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E

D

L

L
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X = L ⋅ X̃
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ℛ−2 =
8πG ρ

c2

δX0
curv ≈

1
c

⋅
G Mtot

c2

Schwarzschild radius for the enclosed mass

Small effect usually: 


Jupiter mass MJ  corresponds to 10 ns, Solar mass M⊙  to 10 𝜇s

Constant mass density 𝜌

Mtot = πL2 D ρ mass enclosed in the connecting cylinder

O

E

ρ = const

D

L

L
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Summary

26

Variations of TOA’s of the second order between two distant regions contain curvature 
corrections on top of finite distance effects

Possible to extract two scalars quantifying the curvature impact along the LOS from an 
appropriate sample of TOA measurements

Possible to obtain first two moments of mass distribution along the LOS

Differential measurement, curvature effects shielded from (potentially much larger) contributions 
from the tidal forces of massive bodies off the LOS, misalignment effects, velocity differences

Reason: geometric relation between the extrinsic curvature of the LSC and the spacetime 
curvature along the line of sight

Small effects usually

Applications: binary pulsar timing, direct curvature measurements etc.



27



Time of arrival of a signal

28

O

E

uμ
𝒪

eμ
1 eμ

2

eμ
3uμ

ℰ

f μ
1

f μ
2

f μ
3

Introduce orthonormal tetrads at O and E 



Time of arrival of a signal

28

O

E

uμ
𝒪

eμ
1 eμ

2

eμ
3uμ

ℰ

f μ
1

f μ
2

f μ
3

Introduce orthonormal tetrads at O and E 

Locally flat coordinate systems near O and E 

points in M near O and E ⟷ tangent vectors at TOM, TEM 



Time of arrival of a signal

28

O

E

uμ
𝒪

eμ
1 eμ

2

eμ
3uμ

ℰ

f μ
1

f μ
2

f μ
3

Introduce orthonormal tetrads at O and E 

Locally flat coordinate system (X0,…,X7) in M×M near (O, E)

Locally flat coordinate systems near O and E 

points in M near O and E ⟷ tangent vectors at TOM, TEM 



Time of arrival of a signal

28

O

E

uμ
𝒪

eμ
1 eμ

2

eμ
3uμ

ℰ

f μ
1

f μ
2

f μ
3

Introduce orthonormal tetrads at O and E 

Locally flat coordinate system (X0,…,X7) in M×M near (O, E)

Locally flat coordinate systems near O and E 

points in M near O and E ⟷ tangent vectors at TOM, TEM 

Gauge choice: L0 = 1



Time of arrival of a signal

28

O

E

uμ
𝒪

eμ
1 eμ

2

eμ
3uμ

ℰ

f μ
1

f μ
2

f μ
3

Introduce orthonormal tetrads at O and E 

Locally flat coordinate system (X0,…,X7) in M×M near (O, E)

Locally flat coordinate systems near O and E 

points in M near O and E ⟷ tangent vectors at TOM, TEM 

Gauge choice: L0 = 1

X0 ≡ X0 (X1, …, X7)



Time of arrival of a signal

28

O

E

uμ
𝒪

eμ
1 eμ

2

eμ
3uμ

ℰ

f μ
1

f μ
2

f μ
3

Introduce orthonormal tetrads at O and E 

Locally flat coordinate system (X0,…,X7) in M×M near (O, E)

Locally flat coordinate systems near O and E 

points in M near O and E ⟷ tangent vectors at TOM, TEM 

Gauge choice: L0 = 1

X0 ≡ X0 (X1, …, X7)

Time of arrival
Position of the receiver + 

position and time of emission 



Time of arrival of a signal

28

O

E

uμ
𝒪

eμ
1 eμ

2

eμ
3uμ

ℰ

f μ
1

f μ
2

f μ
3

Introduce orthonormal tetrads at O and E 

Locally flat coordinate system (X0,…,X7) in M×M near (O, E)

Locally flat coordinate systems near O and E 

points in M near O and E ⟷ tangent vectors at TOM, TEM 

Gauge choice: L0 = 1

X0 = − Li Xi −
1
2

Qij Xi Xj + O ((Xi3))

X0 ≡ X0 (X1, …, X7)

Time of arrival
Position of the receiver + 

position and time of emission 



Time of arrival of a signal

28

O

E

uμ
𝒪

eμ
1 eμ

2

eμ
3uμ

ℰ

f μ
1

f μ
2

f μ
3

Introduce orthonormal tetrads at O and E 

Locally flat coordinate system (X0,…,X7) in M×M near (O, E)

Locally flat coordinate systems near O and E 

points in M near O and E ⟷ tangent vectors at TOM, TEM 

Gauge choice: L0 = 1

X0 = − Li Xi −
1
2

Qij Xi Xj + O ((Xi3))
extrinsic curvature U⊥

X0 ≡ X0 (X1, …, X7)

Time of arrival
Position of the receiver + 

position and time of emission 
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μ = 1 −
det U𝒪𝒪 A′ �B′ �

det U𝒪ℰ A′ �B

ν = 1 −
det Uℰℰ AB

det U𝒪ℰ A′ �B

ν ≡ ν (U⊥, L)μ ≡ μ (U⊥, L)

eμ
2

O

E

uμ
𝒪

eμ
1

eμ
3

uμ
ℰ

f μ
3

f μ
2

f μ
1

lμ′�
𝒪 = a(−uμ′�

𝒪 + eμ′�
3 )

lμ
ℰ = b(−uμ

ℰ + f μ
3 )

In an aligned orthonormal tetrad

Independent of the choice of 

and rotations of the transverse vectors

uμ
𝒪, uμ

ℰ


