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Overview

e Bondi, Metzner, Sachs(BMS) in 60s: asymptotically flat spacetime at
null infinity invariant under infinite dimensional BMS group

o Regge& Teitelboim(R&T) 1974: asymptotic symmetry group of
asymptotically flat spacetimes is Poincaré in Hamiltonian(ADM)
formalism at spatial infinity, BMS charges vanishing due to parity

conditions
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Overview

Figure: Penrose diagram of Minkowski space

e spatial infinity i® : t = const., r — oo

e null infinity Z* : u =t — r = const.,r — oo
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Overview

o Henneaux&Troessaert(H& T)! 2018: New parity conditions, BMS
charges finite in ADM formulation — BMS at i°

@ Their starting point: asymptotic expansion of spatial metric and
conjugate momenta

@ We revisited this analysis: 3+1 decomposition of Bondi-type
spacetime metric

o Results suggest presence of larger-than BMS symmetry at i°

'M. Henneaux and C. Troessaert. JHEP 2018.3 (2018): 147.
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BMS symmetry

@ BMS consider on-shell “Bondi metric”
ds? = —du® — 2dudr + r*yagdx?dx®  ( Minkowski )
+ 2deu2 + rCagdx*dx® + DB Capdudx?
+ subleading
@ Determinant condition
det gag = r*detvag — v*BCag =0

@ Mass loss formula, with Bondi News NAB(u,xA) = 0,CaB

:/szm(u,xA) = —/dzﬂNABNAB
u
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BMS symmetry

xt = xt 4+ &F Segu = Leguw

@ Which transformations leave Bondi metric asymptotically invariant?
Leguw=0(r'Y), Legap=0(r),...

@ Obtain asymptotic Killing vectors which generate "supertranslations”
parametrized by f(x*)

1 1
& = fO, — ;DAfﬁA + 5DADAfa, + subleading

@ For L¢gu, = 0 etc. obtain only Poincaré transformations, i.e. f
contains only / = 0,1 modes
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BMS symmetry

@ And Lorentz transformations parametrized by R
p = gDARAau L RAO, — %DARA&
@ Form BMS algebra under Lie bracket

[§f17R1 3 €f2,R2] = éf,fi’

. 1
f=R{Dah — §f2DAR1A — (14 2),
RA = REDgR) — (1 + 2)
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Asymptotic symmetries in ADM formalism

o ADM: foliation of spacetime into spacelike surfaces

@ Canonical fields are hjj, 7 and gauge transformations are generated
by

Ge = /d3X(§'H +EH)~0

@ via Poisson bracket
dehij = {hij, Ge}

On symmetries and charges at spatial infinity 8



Asymptotic symmetries in ADM formalism

@ For non-compact spaces: surface terms appear in variation of G
6G = / d*x(AT5h; + ByorT) + / d?>QCl¢, €]
=090Gy — 0K
@ R&T: redefine Hamiltonian so that functional derivative well-defined
5G'=6(G—K)=03Gy

o £, & arbitrary — value of surface terms arbitrary? choose them to be
zero?
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Asymptotic symmetries in ADM formalism

o First: define boundary conditions, e.g. asymptotic flat
hij = 0 + o(r 1)
@ Only allow &, & which preserve these conditions via
Sehij = {hy, EH + EH;}

@ If corresponding surface terms vanish they are “proper gauge
transformations”

@ Finite surface terms indicate “improper gauge transformations” —
asymptotic symmetry(finite charges)!
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Asymptotic symmetries in ADM formalism

@ R&T boundary conditions in cartesian coordinates

B I ]

hy =85+ -—20(r2), a¥ =25 4+ 0(r?)
r r

@ preserved by Poincaré transformations and angle-dependent

translations
@ Additional parity conditions are assumed
hi(—n) = hy(n). 7(-n) = ~7¥(n)

@ to cancel divergences in charges of the form
/ d?Qrlsh;
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Asymptotic symmetries in ADM formalism

@ Parity conditions let charges associated with angle-dependent
translations vanish

@ Remaining charges are shown to form Poincaré algebra under Poisson
bracket
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Asymptotic symmetries in ADM formalism

o H&T 2018: find new parity conditions to enlarge asymptotic
symmetry, use spherical coordinates

o Fall-off conditions are defined as
hy =1+ 1/_7,, +0(r?)
r
1-
h,«A = Fh,—A + 0 (ril)

hag = r*3ag + hag + O(1)
7_‘_rr _ 7T_rr + O (I‘_l)

= %ﬁrA +0(r?)

7TAB_rl-ABJrO( 3
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Asymptotic symmetries in ADM formalism

@ New parity conditions formulated in spherical coordinates, e.g.

h, = even, 7" = odd

@ Not only charges, but also kinetic term in action should be finite

/fm%fi/fwwcwm+m)

e Divergences in charges canceled by strengthening of constraints(so
parity not needed here), e.g.

H=0(r1)=H=0(r?
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Asymptotic symmetries in ADM formalism

@ Fall-off conditions invariant under Lorentz transf. and
supertranslations parametrized by T(x*), W(x*)
DAW
E=T. =W, =——
r

Preserving parity conditions requires W = odd, T = even

T, W combine to single f parametrizing BMS supertranslations

Supertranslation charges in general finite(were vanishing for R&T)
QT,W = deX (ErrT + W(ﬁ-” - ﬁﬁ))

= Asymptotic symmetry is BMS
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Our analysis

We expressed h,-j,7r"f, h,-j etc. in terms of spacetime metric components by
using 341 decomposition

@ What do boundary conditions imply for spacetime metric?
@ What are consequences for asymptotic symmetry?
@ What do charges look like?
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Bondi-type metric as starting point

gudx!dx” = — <1 - ¥ +0(r~ )) du® -2 (1 Bur | o(r- )) dudr

+ <¢A + %FA + O(r_2)> dudx?

+ (rPvag + rCag + Dag + O(r 1)) dx*dx®,

@ More general than Bondi metric: off-shell, no determinant condition

e Condition 7*BCag = 0 too rigid at i©
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3+1 Decomposition

@ Define foliation into spacelike surfaces X; by

A
)+ g7) _ const.
r

t=u+r+f(x*
@ Transform metric v — t and compare with decomposition
ds®> = —N2dt> + h(dy’ + N'dt)(dy’ + W dt)

= read off hjj, N, N;
@ t is the most general choice such that hj; asymptotically flat
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3+1 Decomposition

@ For hj; one finds, e.g.

hee =2(M —gu), hag = Cag
@ And for lapse and shift

M
N=1-——+0(r2), N,
r r

1
Na = 0af + St0a+ O(r™)
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3+1 Decomposition

t=u+r+f(x*+

e On hj; coordinates are (r,x*) but M = M(u, x*)?
@ u is not independent coordinate, M = M(u(r, x*), x*)

@ In large r limit: v — —o0, so always implicit limit

M= lim M(u,x?)

u——00
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3+1 Decomposition

@ From extrinsic curvature

m v 1 oxt
KU = Ny €; ej s n, = —N@,,t, € = 8_}/’

@ obtain momenta and “velocity” in terms of g,
wl = Vh(KT — Kh¥),  hj = 2NKj; + N
@ In particular one finds leading order

7" x r*Bo,Cag, 7B x

N |

(’yABauM + 0, CAB)
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Restricting allowed spacetimes

7" x B8, Can, 7B x

N | =

(VAB(%M + Oy CAB)

@ H&T boundary conditions for momenta
1
= 7" 4+ O(ril), 7_‘_AB — r_2ﬁ_AB + O(r73)

@ translate into conditions on 90,Cag, 9,M in limit u — —o0
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Restricting allowed spacetimes

@ Natural requirement, on-shell describe rate of gravitational radiation

@ Finite amount of radiated energy if
OyM x u_(1+e), 0,Ca x u_(1+€), e>0

@ Since u =t — r 4 subleading, we can write in the large r limit
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Finiteness of kinetic term

hij = 2NKjj + N

/ Pxrity = | L dode(7"a,M + 780, Cag)

r
@ Extra damping factors = no parity conditions needed to cancel

logarithmic divergence for allowed spacetimes

@ No more restriction of T, W to preserve parity conditions =
potentially larger asymptotic symmetry if charges finite

@ If vanishing = proper gauge transformations
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Supertranslation charge

Qrw = faﬂx [T\/’_y/_m +ow (7?” - ﬁﬁ)]
@ Expressed in terms of components of g,

Qr.w = j{d2xﬁ[4T(M — Bur)
v ((D2 +4) (Zur — 2M)) — VABauDAB> }

@ Finite for all modes of T, W = supertranslation sector of asymptotic
symmetry larger than BMS
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Determinant condition and reduction of symmetry

@ Asymptotic transformations would also have to preserve
Y*Bhag =P Cap = 0

’)/A85§/_7AB =0
@ Leads to condition of the form
(D* +2)W = f(=*).

e In general no solution since D?Y; ,, = —I(/ + 1) Y}, and the lhs can
not produce / = 1 harmonics which are present on rhs.

@ Spatial translation do not leave fyABl_u\B = 0 invariant
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Determinant condition and reduction of symmetry

o At IT: 44B§Cap = 0 is fulfilled identically

e Why is it harmless at Z* but strongly reduces symmetry at 07
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