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Overview

Bondi, Metzner, Sachs(BMS) in 60s: asymptotically flat spacetime at
null infinity invariant under infinite dimensional BMS group

Regge&Teitelboim(R&T) 1974: asymptotic symmetry group of
asymptotically flat spacetimes is Poincaré in Hamiltonian(ADM)
formalism at spatial infinity, BMS charges vanishing due to parity
conditions
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Overview

Figure: Penrose diagram of Minkowski space

spatial infinity i0 : t = const., r →∞

null infinity I+ : u = t − r = const., r →∞
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Overview

Henneaux&Troessaert(H& T)1 2018: New parity conditions, BMS
charges finite in ADM formulation → BMS at i0

Their starting point: asymptotic expansion of spatial metric and
conjugate momenta

We revisited this analysis: 3+1 decomposition of Bondi-type
spacetime metric

Results suggest presence of larger-than BMS symmetry at i0

1M. Henneaux and C. Troessaert. JHEP 2018.3 (2018): 147.
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BMS symmetry

BMS consider on-shell “Bondi metric”

ds2 = −du2 − 2dudr + r2γABdx
AdxB ( Minkowski )

+
2m

r
du2 + rCABdx

AdxB + DBCABdudx
A

+ subleading

Determinant condition

det gAB = r4 det γAB → γABCAB = 0

Mass loss formula, with Bondi News NAB(u, xA) = ∂uCAB

d

du

∫
d2Ωm(u, xA) = −

∫
d2ΩNABN

AB

On symmetries and charges at spatial infinity 5



BMS symmetry

xµ → xµ + ξµ, δξgµν = Lξgµν

Which transformations leave Bondi metric asymptotically invariant?

Lξguu = O
(
r−1
)
, LξgAB = O (r) , ...

Obtain asymptotic Killing vectors which generate ”supertranslations”
parametrized by f (xA)

ξf = f ∂u −
1

r
DAf ∂A +

1

2
DAD

Af ∂r + subleading

For Lξguu = 0 etc. obtain only Poincaré transformations, i.e. f
contains only l = 0, 1 modes
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BMS symmetry

And Lorentz transformations parametrized by RA

ξR =
u

2
DAR

A∂u + RA∂A −
r

2
DAR

A∂r

Form BMS algebra under Lie bracket

[ξf1,R1 , ξf2,R2 ] = ξf̂ ,R̂

f̂ = RA
1 DAf2 −

1

2
f2DAR

A
1 − (1↔ 2),

R̂A = RB
1 DBR

A
2 − (1↔ 2)
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Asymptotic symmetries in ADM formalism

ADM: foliation of spacetime into spacelike surfaces

Canonical fields are hij , π
ij and gauge transformations are generated

by

Gξ =

∫
d3x(ξH+ ξiHi ) ≈ 0

via Poisson bracket
δξhij = {hij ,Gξ}
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Asymptotic symmetries in ADM formalism

For non-compact spaces: surface terms appear in variation of G

δG =

∫
d3x(Aijδhij + Bijδπ

ij) +

∫
d2ΩC [ξ, ξi ]

= δG0 − δK

R&T: redefine Hamiltonian so that functional derivative well-defined

δG ′ = δ(G − K ) = δG0

ξ, ξi arbitrary → value of surface terms arbitrary? choose them to be
zero?
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Asymptotic symmetries in ADM formalism

First: define boundary conditions, e.g. asymptotic flat

hij = δij + O(r−1)

Only allow ξ, ξi which preserve these conditions via

δξhij = {hij , ξH+ ξiHi}

If corresponding surface terms vanish they are “proper gauge
transformations”

Finite surface terms indicate “improper gauge transformations” →
asymptotic symmetry(finite charges)!
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Asymptotic symmetries in ADM formalism

R&T boundary conditions in cartesian coordinates

hij = δij +
h̄ij
r
O(r−2), πij =

π̄ij

r2
+ O(r−3)

preserved by Poincaré transformations and angle-dependent
translations

Additional parity conditions are assumed

h̄ij(−n) = h̄ij(n), π̄ij(−n) = −π̄ij(n)

to cancel divergences in charges of the form∫
d2Ωπ̄ijδh̄ij
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Asymptotic symmetries in ADM formalism

Parity conditions let charges associated with angle-dependent
translations vanish

Remaining charges are shown to form Poincaré algebra under Poisson
bracket
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Asymptotic symmetries in ADM formalism

H&T 2018: find new parity conditions to enlarge asymptotic
symmetry, use spherical coordinates

Fall-off conditions are defined as

hrr = 1 +
1

r
h̄rr + O

(
r−2
)

hrA =
1

r
h̄rA + O

(
r−1
)

hAB = r2γ̄AB + h̄AB + O(1)

πrr = π̄rr + O
(
r−1
)

πrA =
1

r
π̄rA + O

(
r−2
)

πAB =
1

r2
π̄AB + O

(
r−3
)
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Asymptotic symmetries in ADM formalism

New parity conditions formulated in spherical coordinates, e.g.

h̄rr = even, π̄rr = odd

Not only charges, but also kinetic term in action should be finite∫
d3xπij ḣij =

∫
dr

r
dθdφ

(
π̄rr ˙̄hrr + ...

)
Divergences in charges canceled by strengthening of constraints(so
parity not needed here), e.g.

H = O(r−1)⇒ H = O(r−2)
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Asymptotic symmetries in ADM formalism

Fall-off conditions invariant under Lorentz transf. and
supertranslations parametrized by T (xA),W (xA)

ξ = T , ξr = W , ξA =
DAW

r

Preserving parity conditions requires W = odd ,T = even

T ,W combine to single f parametrizing BMS supertranslations

Supertranslation charges in general finite(were vanishing for R&T)

QT ,W =

∮
d2x

(
h̄rrT + W (π̄rr − π̄AA)

)
⇒ Asymptotic symmetry is BMS
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Our analysis

We expressed hij , π
ij , ḣij etc. in terms of spacetime metric components by

using 3+1 decomposition

What do boundary conditions imply for spacetime metric?

What are consequences for asymptotic symmetry?

What do charges look like?
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Bondi-type metric as starting point

gµνdx
µdxν = −

(
1− 2M

r
+ O(r−2)

)
du2 − 2

(
1− ḡur

r
+ O(r−2)

)
dudr

+

(
ψA +

1

r
FA + O(r−2)

)
dudxA

+
(
r2γAB + rCAB + DAB + O(r−1)

)
dxAdxB ,

More general than Bondi metric: off-shell, no determinant condition

Condition γABCAB = 0 too rigid at i0
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3+1 Decomposition

Define foliation into spacelike surfaces Σt by

t = u + r + f (xA) +
g(xA)

r
= const.

Transform metric u → t and compare with decomposition

ds2 = −N2dt2 + hij(dy
i + N idt)(dy j + N jdt)

⇒ read off hij ,N,Ni

t is the most general choice such that hij asymptotically flat
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3+1 Decomposition

For hij one finds, e.g.

h̄rr = 2(M − ḡur ), h̄AB = CAB ...

And for lapse and shift

N = 1− M

r
+ O(r−2), Nr =

ḡur − 2M

r
+ O(r−2),

NA = ∂Af +
1

2
ψA + O(r−1)
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3+1 Decomposition

t = u + r + f (xA) +
g(xA)

r
= const.

On hij coordinates are (r , xA) but M = M(u, xA)?

u is not independent coordinate, M = M(u(r , xA), xA)

In large r limit: u → −∞, so always implicit limit

M = lim
u→−∞

M(u, xA)
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3+1 Decomposition

From extrinsic curvature

Kij = nµ;νe
µ
i e

ν
j , nν = −N∂νt, eµi =

∂xµ

∂y i

obtain momenta and “velocity” in terms of gµν

πij =
√
h(K ij − Khij), ḣij = 2NKij + N(i |j)

In particular one finds leading order

πrr ∝ rγAB∂uCAB , πAB ∝ 1

r

(
γAB∂uM + ∂uC

AB
)
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Restricting allowed spacetimes

πrr ∝ rγAB∂uCAB , πAB ∝ 1

r

(
γAB∂uM + ∂uC

AB
)

H&T boundary conditions for momenta

πrr = π̄rr + O(r−1), πAB =
1

r2
π̄AB + O(r−3)

translate into conditions on ∂uCAB , ∂uM in limit u → −∞
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Restricting allowed spacetimes

Natural requirement, on-shell describe rate of gravitational radiation

Finite amount of radiated energy if

∂uM ∝ u−(1+ε), ∂uCAB ∝ u−(1+ε), ε > 0

Since u = t − r + subleading, we can write in the large r limit

∂uM =
M̂(xA)

r1+ε
, ∂uCAB =

ĈAB(xA)

r1+ε
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Finiteness of kinetic term

ḣij = 2NKij + N(i |j)∫
d3xπij ḣij =

∫
dr

r
dθdφ(π̄rr∂uM + π̄AB∂uCAB)

Extra damping factors ⇒ no parity conditions needed to cancel
logarithmic divergence for allowed spacetimes

No more restriction of T ,W to preserve parity conditions ⇒
potentially larger asymptotic symmetry if charges finite

If vanishing ⇒ proper gauge transformations
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Supertranslation charge

QT ,W =

∮
d2x

[
T
√
γh̄rr + 2W

(
π̄rr − π̄AA

)]
Expressed in terms of components of gµν

QT ,W =

∮
d2x
√
γ
[
4T (M − ḡur )

+ W
((

D2 + 4
)

(ḡur − 2M))− γAB∂uDAB

) ]
Finite for all modes of T ,W ⇒ supertranslation sector of asymptotic
symmetry larger than BMS
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Determinant condition and reduction of symmetry

Asymptotic transformations would also have to preserve
γAB h̄AB = γABCAB = 0

γABδξh̄AB = 0

Leads to condition of the form

(D2 + 2)W = f (πab).

In general no solution since D2Yl ,m = −l(l + 1)Yl ,m and the lhs can
not produce l = 1 harmonics which are present on rhs.

Spatial translation do not leave γAB h̄AB = 0 invariant
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Determinant condition and reduction of symmetry

At I+: γABδCAB = 0 is fulfilled identically

Why is it harmless at I+ but strongly reduces symmetry at i0?
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