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Collapse of a spherically symmetric cloud of dust

Classically:    Spherically symmetric vacuum Schwarzschild

Semiclassically:    Spherically symmetric vacuum ?

• Modified Einstein’s equations

• Oppenheimer-Snyder model

Introduction



Einstein’s Equations



Classical theory

(𝐺 = 𝑐 = 1)Spherically symmetric spacetime: 

𝑁 = 𝑁(𝜏, 𝑥)

𝑁𝑥 = 𝑁𝑥(𝜏, 𝑥)

Lapse function

x-component of the Shift vector

𝑑𝑠2 = −𝑁𝑑𝜏2 +
(𝐸𝜑)2

𝐸𝑥
(𝑑𝑥 + 𝑁𝑥 𝑑𝜏)2 + 𝐸𝑥 (𝑑𝜃2 + 𝑠𝑖𝑛2𝜃 𝑑𝜑2)

𝐸𝑖
𝑎 = 𝑞𝑒𝑖

𝑎

𝐴𝑎
𝑖 = 𝜔𝑎

𝑖 + 𝛾𝐾𝑎
𝑖

𝐸1
𝑥 = 𝐸𝑥 sin 𝜃

𝐸2
𝜃 = 𝐸𝜑 sin 𝜃

𝐸3
𝜑
= 𝐸𝜑

𝛾𝐾𝑥
1 = 𝐾𝑥

𝛾𝐾𝜃
2 = 𝐾𝜑

𝛾𝐾𝜑
3 = 𝐾𝜑 sin 𝜃



Classical theory

Gravity + Dust:    

𝑆 = 𝑑𝜏׬ 𝑑𝑥׬
ሶ𝐾𝑥𝐸

𝑥+2 ሶ𝐾𝜑𝐸
𝜑

2𝛾
+ 4𝜋 ሶ𝒯𝑝𝒯 − 𝑁(ℋ𝑔 + ℋ𝑑) − 𝑁𝑥(ℋ𝑥

𝑔
+ℋ𝑥

𝑑)

ℋ𝑔 = −
1

2𝛾2
2𝐾𝑥𝐾𝜑 𝐸𝑥 +

𝐸𝜑

𝐸𝑥
𝐾𝜑
2 + 𝛾2 −

𝛾2

4

𝜕𝑥𝐸
𝑥 2

𝐸𝜑 𝐸𝑥
− 𝛾2 𝐸𝑥𝜕𝑥

𝜕𝑥𝐸
𝑥

𝐸𝜑

ℋ𝑑 = 4𝜋 𝑝𝒯
2 +

𝐸𝑥

𝐸𝜑 2 𝑝𝒯
2 𝜕𝑥𝒯 2

ℋ𝑥
𝑔 =

1

2𝛾
2𝐸𝜑𝜕𝑥𝐾𝜑 − 𝐾𝑥𝜕𝑥𝐸

𝑥

ℋ𝑥
𝑑 = −4𝜋𝑝𝒯𝜕𝑥𝒯

V. Husain, T. Pawlowski (2012)

J. G. Kelly, R. Santacruz,  E. Wilson-Ewing. (2022)



Classical theory

𝑁 = 1Dust Gauge  (𝒯 = 𝜏)

ℋ𝑑 = 4𝜋 𝑝𝒯
2 +

𝐸𝑥

𝐸𝜑 2
𝑝𝒯
2 𝜕𝑥𝒯

2 = 4𝜋𝑝𝒯

ℋ𝑥
𝑑 = −4𝜋𝑝𝒯𝜕𝑥𝒯 = 0

Areal Gauge (𝐸𝑥 = 𝑥2) 𝑁𝑥 = −
𝐾𝜑
𝛾

ℋ𝑥
𝑔
=

1

2𝛾
2𝐸𝜑𝜕𝑥𝐾𝜑−𝐾𝑥𝜕𝑥𝐸

𝑥 𝐾𝑥 =
𝐸𝜑

𝑥
𝜕𝑥𝐾𝜑

ሶ𝐾𝑥𝐸
𝑥 is a total derivative

One dynamical pair 𝐾𝜑 𝑦1 , 𝐸𝜑 𝑦2 = 𝛾𝛿(𝑦1 − 𝑦2)

V. Husain, T. Pawlowski (2012)

J. G. Kelly, R. Santacruz,  E. Wilson-Ewing. (2022)



Classical theory

𝑁 = 1Dust Gauge  (𝒯 = 𝜏)

Areal Gauge (𝐸𝑥 = 𝑥2)

Gravity + Dust:    𝑆 = 𝑑𝜏׬ ׬ 𝑑𝑥
ሶ𝐾𝑥𝐸

𝑥+2 ሶ𝐾𝜑𝐸
𝜑

2𝛾
+ 4𝜋 ሶ𝒯𝑝𝒯 −𝑁(ℋ𝑔 +ℋ𝑑) − 𝑁𝑥(ℋ𝑥

𝑔 +ℋ𝑥
𝑑)

𝑆 = න𝑑𝜏න 𝑑𝑥
ሶ𝐾𝜑𝐸

𝜑

𝛾
− 𝐻

𝐻 = −4𝜋𝑝𝒯 = −
1

2𝛾

𝐸𝜑

𝛾𝑥
𝜕𝑥 𝑥𝐾𝜑

2 +
𝛾𝐸𝜑

𝑥
+
𝛾𝑥

𝐸𝜑
− 2𝛾𝜕𝑥

𝑥2

𝐸𝜑

𝐾𝜑 𝑦1 , 𝐸𝜑 𝑦2 = 𝛾𝛿(𝑦1 − 𝑦2)

𝑁𝑥 = −
𝐾𝜑

𝛾

V. Husain, T. Pawlowski (2012)

J. G. Kelly, R. Santacruz,  E. Wilson-Ewing. (2022)



Classical theory – Dust density 𝜌

From the Dust Gauge: ℋ𝑑 = 4𝜋𝑝𝒯

By solving the Scalar Constraint: ℋ𝑔 = −4𝜋𝑝𝒯 = 𝐻

The density 𝜌 is defined by ℋ𝑑 = 𝑑Ω׬ 𝑞𝜌

𝜌 =
𝑝𝒯
𝑥𝐸𝜑

= −
𝐻

4𝜋𝑥𝐸𝜑

J. G. Kelly, R. Santacruz,  E. Wilson-Ewing. (2022)



Classical theory – LTB model

𝑑𝑠2 = −𝑑𝜏2 +
(𝐸𝜑)2

𝑥2
(𝑑𝑥 + 𝑁𝑥 𝑑𝜏)2 + 𝑥2𝑑Ω2 PG: (𝜏, 𝑥, 𝜃, 𝜑)

𝑑𝑠2 = −𝑑𝑇2 +
𝜕𝑅𝜉

2

1+𝐸(𝑅)
𝑑𝑅2 + 𝜉2𝑑Ω2 LTB: ( 𝑇, 𝑅, 𝜃, 𝜑)

𝜉 = 𝜉(𝑇, 𝑅)

𝐸𝜑 = ±
𝑥

1 + 𝜀(𝜏, 𝑥)

𝑥 = 𝜉 𝑇, 𝑅
𝜏 = 𝑇
𝑁𝑥 = −𝜕𝑇𝜉
𝜀 𝜏, 𝑥 = 𝐸(𝑅)



Classical theory - recap

𝐻 =
1

2𝛾

𝐸𝜑

𝛾𝑥
𝜕𝑥 𝑥𝐾𝜑

2 +
𝛾𝐸𝜑

𝑥
+
𝛾𝑥

𝐸𝜑
− 2𝛾𝜕𝑥

𝑥2

𝐸𝜑

𝐾𝜑 𝑦1 , 𝐸𝜑 𝑦2 = 𝛾𝛿(𝑦1 − 𝑦2)

Three operators corresponding to    𝐸𝜑, 𝐾𝜑 ,
1

𝐸𝜑

𝜌 = −
𝐻

4𝜋𝑥𝐸𝜑



Quantum theory

𝐻 = −
1

2𝛾

𝐸𝜑

𝛾𝑥
𝜕𝑥 𝑥𝐾𝜑

2 +
𝛾𝐸𝜑

𝑥
+
𝛾𝑥

𝐸𝜑
− 2𝛾𝜕𝑥

𝑥2

(𝐸𝜑)2

1) Discretization:

𝑥 ⟶ 𝑥𝑗 𝜔𝑗 = 𝑥𝑗+1 − 𝑥𝑗 ≈ ℓ𝑝

𝑓(𝑥) ⟶ 𝑓𝑗 ≔ 𝑓(𝑥𝑗)

𝜕𝑥𝑓(𝑥) ⟶
𝑓𝑗+1 − 𝑓𝑗

𝜔𝑗



Quantum theory

1-dimensional graph:
𝑥𝑥𝑗−1 𝑥𝑗 𝑥𝑗+1

|𝐸𝑗−1
𝜑
⟩ |𝐸𝑗

𝜑
⟩ |𝐸𝑗+1

𝜑
⟩

෡𝑈𝑗 = 𝑒𝑖 ഥ𝜇𝑗𝐾𝜑(𝑥𝑗)
෡𝑈𝑗−෡𝑈𝑗

†

2 𝑖 ഥ𝜇𝑗
=
sin( ҧ𝜇𝑗𝐾𝜑(𝑥𝑗))

ҧ𝜇𝑗
ҧ𝜇𝑗 =

Δ

𝑥𝑗

• Holonomy:

• Inverse triad:
෢1

𝐸
𝑗
𝜑 |𝐸𝑗

𝜑
⟩ =

0

൘
1
𝐸𝑗
𝜑 |𝐸𝑗

𝜑
⟩

If ෠𝐸𝑗
𝜑
|𝐸𝑗

𝜑
⟩= 0

If  ෠𝐸𝑗
𝜑
|𝐸𝑗

𝜑
⟩=𝐸𝑗

𝜑
|𝐸𝑗

𝜑
⟩

2) Quantization:

• Triad operator: ෠𝐸𝑗
𝜑
|𝐸𝑗

𝜑
⟩=𝐸𝑗

𝜑
|𝐸𝑗

𝜑
⟩

෠𝐸𝑗
𝜑
, ෡𝑈𝑗 ,

෢1

𝐸
𝑗

𝜑𝐸𝜑 , 𝐾𝜑,
1

𝐸𝜑

෡𝑈𝑗|𝐸𝑗
𝜑
⟩= |𝐸𝑗

𝜑
+ ҧ𝜇𝑗⟩

R. Gambini, J. Olmedo, J. Pullin (2023)

V. Husain, J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2022)

Polymerization



Quantum theory - semiclassical limit

The Hamiltonian operator is then written in terms of classical variables and finally the continuum limit is

recovered by 𝑥𝑗 → 𝑥.

Classical: 𝐻 = −
1

2𝛾

𝐸𝜑

𝛾𝑥
𝜕𝑥 𝑥𝐾𝜑

2 +
𝛾𝐸𝜑

𝑥
+

𝛾𝑥

𝐸𝜑
− 2𝛾𝜕𝑥

𝑥2

𝐸𝜑

Quantum:     ෡𝐻𝑗 = −
1

2𝛾

1

𝛾𝑥𝑗

෣
𝐸
𝑗

𝜑 1

𝜔𝑗

𝑥𝑗+1
3

Δ
𝑠𝑖𝑛2

Δ෡𝐾𝜑,𝑗+1

𝑥𝑗+1
−

𝑥𝑗
3

Δ
𝑠𝑖𝑛2

Δ෡𝐾𝜑,𝑗

𝑥𝑗

෣
𝐸
𝑗

𝜑
+

𝛾 ෠𝐸𝑗
𝜑

𝑥𝑗
+

𝛾𝑥𝑗
෠𝐸
𝑗
𝜑 +

1

𝜔𝑗

𝑥𝑗+1
2

෠𝐸
𝑗+1
𝜑 −

𝑥𝑗
2

෠𝐸
𝑗
𝜑

Semiclassical: 𝐻 = −
1

2𝛾

𝐸𝜑

𝛾Δ𝑥
𝜕𝑥 𝑥3𝑠𝑖𝑛2

Δ𝐾𝜑

𝑥
+

𝛾𝐸𝜑

𝑥
+

𝛾𝑥

𝐸𝜑
− 2𝛾𝜕𝑥

𝑥2

𝐸𝜑

EOM:  ሶ𝐴 = 𝐴, ׬ 𝑑𝑥 𝐻

V. Husain, J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2022)



Semiclassical theory

ሶ𝐸𝜑 = −
𝑥2

𝛾 Δ
𝜕𝑥

𝐸𝜑

𝑥
sin 𝛽 cos 𝛽

ሶ𝐾𝜑 =
𝛾𝑥

2 𝐸𝜑 2 −
𝛾

2𝑥
−
𝜕𝑥 𝑥3𝑠𝑖𝑛2𝛽

2𝛾Δ𝑥

𝜌 =
1

8𝜋𝑥𝐸𝜑
𝐸𝜑

𝛾2Δ𝑥
𝜕𝑥 𝑥3𝑠𝑖𝑛2𝛽 +

𝑥

𝐸𝜑
+
𝐸𝜑

𝑥
− 2𝜕𝑥

𝑥2

𝐸𝜑

𝑁𝑥 = −
𝑥

𝛾 Δ
sin 𝛽 cos 𝛽

} Polymerized Einstein Field Equations
(PEFE)

𝛽 ≔
∆

𝑥
𝐾𝜑

𝑑𝑠2 = −𝑑𝜏2 +
(𝐸𝜑)2

𝑥2
(𝑑𝑥 + 𝑁𝑥 𝑑𝜏)2 + 𝑥2𝑑Ω2

J. G. Kelly, R. Santacruz,  E. Wilson-Ewing. (2020)

V. Husain, J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2022)

𝜌 = −
𝐻

4𝜋𝑥𝐸𝜑

𝑁𝑥 = −
𝐾𝜑

𝛾



Interior     𝜌 ≠ 0, 𝜕𝑥𝜌 = 0

ሶ𝜀 = 𝜀′
8𝜋

3
𝜌𝑥2 + 𝜀 1 −

𝜌

𝜌𝑐
−

3

8𝜋𝜌𝑐

𝜀

𝑥2

𝑠𝑖𝑛2𝛽 = 𝛾2Δ
8𝜋

3
𝜌 +

𝜀

𝑥2
{PEFE

𝐸𝜑 = ±
𝑥

1 + 𝜀(𝜏, 𝑥)

𝜌𝑐 ≔
3

8𝜋𝛾2Δ

𝜕𝑇𝜉

𝜉

2

=
8𝜋

3
𝜌 +

𝐸

𝜉2
1 −

𝜌

𝜌𝑐
−

3

8𝜋𝜌𝑐

𝐸

𝜉2

𝑑𝑠2 = −𝑑𝑇2+
𝜕𝑅𝜉

2

1 + 𝐸(𝑅)
𝑑𝑅2 +𝜉2𝑑Ω2

𝑥 = 𝜉 𝑇, 𝑅
𝜏 = 𝑇
𝑁 𝑥 = −𝜕𝑇𝜉
𝜀 = 𝐸(𝑅)

M. Bojowald, J. D. Reyes, R. Tibrewala (2009)

K. Giesel, H. Liu, E. Rullit, P. Singh, S. A. Weigl (2023)



Interior – Friedmann equation

The Friedmann dust ball:      𝑑𝑠2 = −𝑑𝑇2 + 𝑎2𝑑𝑅2+ 𝑎2𝜒𝑘
2𝑑Ω2 with    𝜒𝑘 𝑅 =

1

𝑘
sin 𝑘𝑅

ሶ𝑎

𝑎

2

=
8𝜋

3
𝜌 −

𝑘

𝑎2
1 −

𝜌

𝜌𝑐
+

3

8𝜋𝜌𝑐

𝑘

𝑎2

From 𝑑𝑠2 = −𝑑𝑇2 +
𝜕𝑅𝜉

2

1+𝐸(𝑅)
𝑑𝑅2 + 𝜉2𝑑Ω2

𝑥 = 𝜉 = 𝑎(𝑇)𝜒𝑘 𝑅

𝜀 = −𝑘
𝑥

𝑎

2
= −𝑘𝜒𝑘

2 = 𝐸(𝑅)

𝜌 =
𝐶

𝑎3

𝜕𝑇𝜉

𝜉

2

=
8𝜋

3
𝜌 +

𝐸

𝜉2
1 −

𝜌

𝜌𝑐
−

3

8𝜋𝜌𝑐

𝐸

𝜉2



Static Exterior     𝜌 = 0

𝑠𝑖𝑛2𝛽 = 𝛾2Δ
𝐵

𝑥2
+
2𝑀

𝑥3

ሶ𝐸𝜑 = −
𝑥2

𝛾 Δ
𝜕𝑥

𝐸𝜑

𝑥
sin 𝛽 cos 𝛽

𝐸𝜑 = 𝐴𝑥 = ±
𝑥

1 + 𝐵
ሶ𝐾𝜑 = 0

𝑁𝑥 2 =
2𝑀

𝑥
−
𝛼

𝑥2
𝑀

𝑥
+
𝐵

2

2

+ 𝐵

𝑑𝑠2 = −𝑑𝜏2 + 𝐴2(𝑑𝑥 + 𝑁𝑥 𝑑𝜏)2 + 𝑥2𝑑Ω2

In Schwarzschild coordinates: 𝑑𝑠2= −𝑓(𝑟)𝑑𝑡2 +
𝑑𝑟2

𝑓(𝑟)
+ 𝑟2𝑑Ω2

𝑓 𝑟 = 1 −
2𝑀

𝑟
+
𝛼

𝑟2
𝑀

𝑟
+
𝐵

2

2

𝛼 ≔ 4𝛾2Δ

= 0



Static Exterior - sin 𝛽

0 ≤ 𝑠𝑖𝑛2 𝛽 = 𝛾2Δ
𝐵

𝑥2
+
2𝑀

𝑥3
≤ 1

𝑥𝑏 = 2𝛾2Δ 𝑀 ൗ1 3 +
𝐵

6𝑀
2𝛾2Δ 𝑀 ൗ2 3 + 𝑂(Δ ൗ4 3)𝛾2Δ

𝐵

𝑥2
+
2𝑀

𝑥3
= 1

𝛾2Δ
𝐵

𝑥2
+
2𝑀

𝑥3
= 0 ቐ

𝑥 = ∞, 𝐵 ≥ 0

𝑥 =
2𝑀

𝐵
, 𝐵 < 0



Static Exterior - sin 𝛽

𝐵 ≥ 0 𝑥 ∈ [𝑥𝑏 , ∞) 𝐵 < 0 𝑥 ∈ 𝑥𝑏 ,
2𝑀

𝐵

Collapse:     sin𝛽 cos 𝛽 < 0
Expansion:   sin 𝛽 cos 𝛽 > 0

What is the sign of sin 𝛽?



Time dependent Exterior     𝜌 = 0

ሶ𝜀 = 𝜀 ′ 𝜀 +
2𝑀

𝑥
1 − 𝛾2Δ

𝜀

𝑥2
+
2𝑀

𝑥3

𝑠𝑖𝑛2𝛽 = 𝛾2Δ
𝜀

𝑥2
+
2𝑀

𝑥3
{PEFE

ሶ𝐸𝜑 = −
𝑥2

𝛾 Δ
𝜕𝑥

𝐸𝜑

𝑥
sin 𝛽 cos 𝛽 𝐸𝜑 = ±

𝑥

1+ 𝜀(𝜏, 𝑥)

𝜀 = 𝑐𝑜𝑛𝑠𝑡 or   𝜀 = 𝜀(𝜏, 𝑥)

If 𝜀 ≠ 𝜀(𝜏, 𝑥) then the only line element is given by   𝑓 𝑟 = 1 −
2𝑀

𝑟
+

𝛼

𝑟2
𝑀

𝑟
+

𝐵

2

2

BIRKHOFF’S THEOREM !!

≠ 0



Oppenheimer-Snyder model



Oppenheimer-Snyder model

DUST

𝑇, 𝑅, 𝜃, 𝜑

VACUUM

𝑡, 𝑟, 𝜃, 𝜑

𝑑𝑠2 = −𝑑𝑇2 + 𝑎2𝑑𝑅2+ 𝑎2𝜒𝑘
2𝑑Ω2 with    𝜒𝑘 𝑅 =

1

𝑘
sin 𝑘𝑅

ሶ𝑎

𝑎

2

=
8𝜋

3
𝜌 −

𝑘

𝑎2
1 −

𝜌

𝜌𝑐
+

3

8𝜋𝜌𝑐

𝑘

𝑎2

ሷ𝑎

𝑎
= −

4𝜋

3
𝜌 1 −

𝜌

𝜌𝑐
+

3

8𝜋𝜌𝑐

𝑘

𝑎2
+

8𝜋

3
𝜌 −

𝑘

𝑎2
3

2

𝜌

𝜌𝑐
−

3

8𝜋𝜌𝑐

𝑘

𝑎2

𝑑𝑠2= −𝑓(𝑟)𝑑𝑡2 +
𝑑𝑟2

𝑓(𝑟)
+ 𝑟2𝑑Ω2

𝑓 𝑟 = 1−
2𝑀

𝑟
+
𝛼

𝑟2
𝑀

𝑟
−
𝑘𝜒𝑘,0

2

2

2

𝜌 =
𝐶

𝑎3

J. Lewandowski, Y. Ma, J. Yang, C. Zhang   (2023)



Critical mass and horizons

𝑓 𝑟 = 1−
2𝑀

𝑟
+
𝛼

𝑟2
𝑀

𝑟
−
𝑘𝜒𝑘,0

2

2

2

• If 𝑀− ≤ 𝑀 ≤ 𝑀+ ⇒ ∄ real solutions of  𝑓 𝑟 = 0 (no horizons)

𝑀±
2 =

𝛼

216
64 − 96 𝑘𝜒𝑘,0

2 + 30 𝑘2𝜒𝑘,0
4 + 𝑘3𝜒𝑘,0

6 ± 16 − 16 𝑘𝜒𝑘,0
2 + 𝑘2𝜒𝑘,0

4 ൗ3 2

• If 𝑀 ≥ 𝑀+ ∪ 𝑀 ≤ 𝑀− ⇒ ∃ 2 real solutions to 𝑓 𝑟 = 0

𝑟− =
𝛼𝑀

2

ൗ1 3

+
1 − 2 𝑘𝜒𝑘,0

2

6𝑀

𝛼𝑀

2

ൗ2 3

+
1 −𝑘𝜒𝑘,0

2 2

24 𝑀
𝛼 + 𝑂 𝛼 ൗ4 3

𝑟+ = 2𝑀−
1− 𝑘𝜒𝑘,0

2 2

8 𝑀
𝛼 + 𝑂 𝛼 ൗ4 3



k=0

• 𝑀− = 0,     𝑀+ =
4

3 3
𝛼

Exact solution to the PEFE with 𝐵 = 0

ሶ𝑎

𝑎

2

=
8𝜋

3
𝜌 1 −

𝜌

𝜌𝑐

• 𝑓 𝑟 = 1 −
2𝑀

𝑟
+ 𝛼

𝑀2

𝑟4

ሷ𝑎

𝑎
= −

4𝜋

3
𝜌 1 −

𝜌

𝜌𝑐
+ 4𝜋

𝜌2

𝜌𝑐

H. Ziaie, Y. Tavakoli (2020)

A. Parvizi, T. Pawlowski, Y. Tavakoli, J. Lewandowski  (2022)

J. Lewandowski, Y. Ma, J. Yang, C. Zhang   (2023)



k= -1

• 𝑓 𝑟 = 1 −
2𝑀

𝑟
+

𝛼

𝑟2
𝑀

𝑟
+

𝜒−1,0
2

2

2

Exact solution to the PEFE with 𝐵 = 𝜒−1,0
2

ሶ𝑎

𝑎

2

=
8𝜋

3
𝜌 +

1

𝑎2
1 −

𝜌

𝜌𝑐
−

3

8𝜋𝜌𝑐

1

𝑎2

ሷ𝑎

𝑎
= −

4𝜋

3
𝜌 1 −

𝜌

𝜌𝑐
−

3

8𝜋𝜌𝑐

1

𝑎2
+

8𝜋

3
𝜌 +

1

𝑎2
3

2

𝜌

𝜌𝑐
+

3

8𝜋𝜌𝑐

1

𝑎2



k=1

• 𝑓 𝑟 = 1 −
2𝑀

𝑟
+

𝛼

𝑟2
𝑀

𝑟
−

𝜒1,0
2

2

2

Exact solution to the PEFE with 𝐵 = −𝜒1,0
2 < 0 !!! 

ሶ𝑎

𝑎

2

=
8𝜋

3
𝜌 −

1

𝑎2
1 −

𝜌

𝜌𝑐
+

3

8𝜋𝜌𝑐

1

𝑎2

ሷ𝑎

𝑎
= −

4𝜋

3
𝜌 1 −

𝜌

𝜌𝑐
+

3

8𝜋𝜌𝑐

1

𝑎2
+

8𝜋

3
𝜌 −

1

𝑎2
3

2

𝜌

𝜌𝑐
−

3

8𝜋𝜌𝑐

1

𝑎2



k=1

Motionless ball at 𝑇 = 𝑇0:

• 𝑎0 =
2𝑀

𝜒1,0
3 , ሶ𝑎 = 0,   ሷ𝑎 < 0

• 𝑟0 = 𝑎0𝜒1,0 =
2𝑀

𝜒1,0
2

• 𝜌0 =
3

32𝜋

𝜒1,0
6

𝑀2

DUST

𝑇, 𝑅, 𝜃, 𝜑

VACUUM

𝑡, 𝑟, 𝜃, 𝜑

𝐵 = −𝜒1,0
2 < 0 𝑠𝑖𝑛2𝛽 = 𝛾2Δ

𝐵

𝑥2
+

2𝑀

𝑥3
> 0 for  𝑥 = 𝑟 < 𝑟𝑀𝐴𝑋 =

2𝑀

𝜒1,0
2



k=1

𝑇0

iPEFE

𝑇1 > 𝑇0

iPEFE

ePEFE

For 𝑟 < 𝑟0 the iPEFE are satisfied For 𝑟 < 𝑟1 the iPEFE are satisfied
For 𝑟1 < 𝑟 < 𝑟0 the ePEFE are satisfied

For 𝑟 > 𝑟0 this metric is not a solution to the PEFE



Conclusion

• Static exterior solutions to the Einsten’s equation are Schwarzschild-like but

depend on two parameters (M and B).

• There may exist other non-static solutions.

If this possibility is ruled out  ⇒ Birkhoff’s theorem.

• The OS model is everywhere a solution for 𝑘 = 0 and 𝑘 = −1.

It is only a local solution (𝑟 ≤ 𝑟0) when 𝑘 = 1. Bad choice of coordinates?
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