& UNIVERSITY
= OF WARSAW

Status of Birkhoff 's theorem in polymerized
semiclassical regime of Loop Quantum Gravity

Luca Cafaro

LC, Jerzy Lewandowski (2024) arXiv:2403.01910



https://arxiv.org/abs/2403.01910

Introduction

Classically: spherically symmetric vacuum =) Schwarzschild

Semiclassically: Spherically symmetric vacuum  m—) ?

Collapse of a spherically symmetric cloud of dust

» Modified Einstein’s equations

* Oppenheimer-Snyder model
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Classical theory

Spherically symmetric spacetime:

2
ds? = —Ndr2 + EX (dx + N* dr)? + E* (d62 + sin?6 dg?)

N = N(1,x) )  Lapse function
N* = N*(r,x) ) x-component of the Shift vector

B el E¥ = E*sin@ V=K
l. l. ; EY = E?sing vKé =K,
Ag = wa +YKq TR yK3 = K,sin 6
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Classical theory

Gravity + Dust:

e .
1 E ]/2 (axEx)Z < Ex)]
HI = — 2K K NE* + — (K3 +v?) — — y2JE*0,
2y2 \/_( ) 4 E R i

E.X'
HE = 4n\/p% + (£9)2 pZ(0,T)?

FA —(2E 0Ky — Kx0,E™)
Fi o= —4in0 T

V. Husain, T. Pawlowski (2012)
J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2022)




y

Classical theory

Dust Gauge (7 =171) o—) ING=5

X

E
}[d == 47T\/p72~ =ls (E¢)2 pgz"(axT)z = 47ij"

Hi = —4npr0,T =0

K
Areal Gauge (E* = x2) mosss——) N*=-—2
Y

[0)
HI = 2—1y(2E<PaxK(p — Ky, EY) et K, == 0,K,

K,.E* is atotal derivative

One dynamical pair {K,(y,),E®(y,)} =y8(y1 — ¥2)

V. Husain, T. Pawlowski (2012) F BNenTaen
J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2022) OF WARSAW
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Classical theory

KxE*+2K,E®
Gravity + Dust: S = fdrfdx[ L i

+4n Tpy — N(HYI + H) — N¥(HZ + ?f;?)]

DustGauge (T=17) ey N =1
Ko
Areal Gauge (E* = x?) mom) N*=-——

1%
K E®
=jdrjdx["’
1%

e s
H=—47tpT=——[—0 (x ]/x +}/ 2Y0, ( >]

— H] I {K(p (}’1);E¢(Yz)} =yY6(y1 — ¥2)

E®

V. Husain, T. Pawlowski (2012) # B
J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2022) gy o = OF WARSAW
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Classical theory — Dust density p

From the Dust Gauge: H = 4nps

By solving the Scalar Constraint: HI = —4npr = H

The density p is defined by H = [dO/qp

[ — p—T - — &
P=YE® ~ ~ 4mxE®

J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2022)
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Classical theory — LTB model

" (E?)? :
ds? = —dt? + S (Ca N* dt)? + x2dQ? PG: (1, x,0, ¢)
B
E? =+ n x 7\,?5_0715
\/ et ) e(t,x) = E(R)
Pl e (0 D e e SR -
ds< = —dT* + T dR* + &2dS) LTB: (T, R, 0, @)

¢ =¢(T,R)
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Classical theory - recap

{Ky(31), E®(y)} = v6(y1 — ¥2)

1 [E® YE? yx x?
= == g (k2 T
H i 0y (xK2) + ezl e yx<E<p
H
P = " anxEv

Three operators corresponding to  E ‘P,K(p,b%p




Quantum theory

YE® yx s
[—a (xK32) + = Eq)—Zyax((E(p)z)]

1) Discretization:

meeee—) () :

S B i 0 j

j By

j+1
) = fi = fx)
QS

Wj

O f (%)




Quantum theory

fr sy 1 L
. = s 50 5
2) Quantization: (E‘P,K(p,E(p> —»( f’Uf’E.“’)
J
[ E) Joi o)
1-dimensional graph: —) O O ’x
Xj_1 X; Xj+1
 Triad operator: Ej‘” |E]fp)=Ej‘p|Ej‘p)
3 S Polymerization g.—ot  sin(i;K,(x;))
o Holonomy: = el.u'jK(p(xj) ) J "] — ]_(P J
/i J 21puj i
R A e
b Ui |E;")= |E;" +i;)
P P \_
5 0 if £° [E)=0
* Inverse triad: _¢|EFP> =i 5 LR
Eee) /E_(,,|Ej) If B B )=E] |E})
j

R. Gambini, J. Olmedo, J. Pullin (2023)
V. Husain, J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2022)




Quantum theory - semiclassical limit

Classical: H = ——y == 5 (xK3) +_ "'_ — 2y0y (;_;)]

3 T 1 s
Quantum: ﬁj e ¢ Ll e S iy 2 <_\/ZK<PJ+1) g2 \/ZKq)] Ego YE , s yx] s b
2y \vx;j ] w;j A Xjt1 j w; ]+1 j

The Hamiltonian operator is then written in terms of classical variables and finally the continuum limit is
recovered by x; — x.

: (Al it o1 0% VAKp\| | YE® | yx _ xZ
Semiclassical: H = ZV{YA Oy [x sin ( g )]+ —t 2o~ 2Y0, (Eq,)}

EOM: A ={4, [dxH}

V. Husain, J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2022)
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Semiclassical theory

2 2 s 2 2102
ds< = —dt° + — (dx + N* d1)“ + x“dQ
X
VA
.B = TK(p
. x? E®
E? = ———0,|— )sinf cos
yVA x(x) B Ry e :
3 .2 Polymerized Einstein Field Equations
; Yx v o sindB)
ke = i ot (PEFE)
2(BL)2 0 Px 2y Ax
L il E(pa(3'2)+x+E¢ 20 x
,0=—4an¢ ) P—8an<p 2Ax (x°sin“ o T \ Fo
K

X

Nx:—7<p EEna— < \j = y\/ZSinﬁCOS,B

J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2020) UNIVERSITY
V. Husain, J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2022) My e o OF WARSAW
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Interior

(p#0, dp=0)

PEFE
sin? B = y2A : i
3 P
P 3%
Ti=¢F V) A ) R 2 2102
Nl ) ds° = —dT*+ 1+E(R)dR + &2dS)
e =E(R)

M. Bojowald, J. D. Reyes, R. Tibrewala (2009)
K. Giesel, H. Liu, E. Rullit, P. Singh, S. A. Weigl (2023)

% 81y 2A
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Interior — Friedmann equation

2
From ds?= —dT? + & gp2 4 £2da?
1+E(R)

x =¢ =a(T)xx(R)
2
e=-k(%) =-kpf =E®)

The Friedmann dust ball:  ds? = —dT? + a?dR? + a?y?d0? with y,(R) = \/LE sin(\/ER)




Static Exterior (p=0)

2

: N E?¢
B — ——6x(—)sin,8cos,8: 0

yvaA T\ x
E® A iy % — K‘P 0
= x:_ —
v1+ B
2
B 2M 2M a (M B
O ei) =y A2 MLEA] 2P o Nx2=———— —_ B
sin“f yA<x2+x3> —  (N*) = x2<x+2> -

ds? = —dt* + A*(dx + N* d1)* + x%dQ?

2
In Schwarzschild coordinates: ds?= —f(r)dt? + % + r2dQ?

a = 4y2A




Static Exterior - sin 8

ety o 8 SR
0 < sin ,[?—)/Ax2+x3 <1

B 2M B
y2A< + ) =] — x, = (2724 M)'/3 + = (2y% M)°/3 + 0(a"3)

B 2M ) ok
yzA( 4 ):() —— _Z_M e




Static Exterior - sin 8

What is the sign of sin? Collapse:  sinfcosf <0
Expansion: sinfcosf >0
2M
BRI G =iy oo B<(0 ) xExb,m
Bounce Bounce

(o] (o]
J g J R B
7 ) w w
e NIE

Bounce Bounce

UNIVERSITY
b WAR ALA
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Time dependent Exterior (p=0)

X

' L EP=f——
Rt U Pt S oL
o +2M L e +2M
PEFE Galiaa o
A T e
Sin ,8—]/ A F-I_F
€ =const or €= ¢(t,x)
: - it 2M | a (M , B)?
If € # £(t,x) then the only line element is givenby f(r) =1 T S +§(7 + ;)

BIRKHOFF'S THEOREM !!

UNIVERSITY
# WF WARSAW



OPPENHEIMER-SNYDER MODEL
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Oppenheimer-Snyder model

dr?
VACUUM AR % 2,102
il e e (LS f(r)dt +f(r)+r dQ)
2
e M Mk
A= r +r2<r_ 2 )

ds? = —dT? + a?dR? + a2y2d0?  with y.(R) = \/—%sin(\/ﬁR)

G e N
3 a? p. 8mp.a?

T T N E T O
3 s 8Ep, . al 3 a’)\2p. 8mp.a?

J. Lewandowski, Y. Ma, J. Yang, C. Zhang (2023)



Critical mass and horizons

2

2M  a (M kxg,
f(">—1—7+ﬁ<7— 2

c If M_<M< M, = 7 real solutionsof f(r) =0 (no horizons)

a

M2 = —
7 216

3
[64 — 96 kxigo +30 k%xieo + k3xg o £ (16 — 16 kxi o + k%xio) /2]

If M> M, U M<M_. = 3 2real solutionsto f(r) =0

3 - 2 2/3 iy S
i (ﬁ) i 15 =17 ka,O (C{M) i (1 ka,O) Ao (a4/3)

2 6M 2 24 M

1—kxZ,)’
r+=2M—( 81\)511(’0) a+0(a4/3)




- fN=1-=+a— Exact solution to the PEFE with B = 0
17 r

H. Ziaie, Y. Tavakoli (2020)
A. Parvizi, T. Pawlowski, Y. Tavakoli, J. Lewandowski (2022)
J. Lewandowski, Y. Ma, J.Yang, C. Zhang (2023) B o M
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] 2M | a (M | X210 . ;
o f(r)=1- Ak ﬁ( - ) Exact solution to the PEFE with B = )(ELO

r 2

M2 M2

o3




k=1

c f=1-245(

2
M  Xio

r 2

43

43

;

Exact solution to the PEFE with B = —x7,< 0 !!!

M2
0.0 0:2 0.‘4 0.6 OIB 1.0
X1,0
ol
8mp, a?




k=1

Motionless ball at T = T:

VACUUM
(t,7,0,0)
Wk 5
. a0=—%0,a=0,
AR _2M
2o = Ao X1 0t i+
X1,0
A oe s o
Po = 5 M2

B
x2

E—— 50 [ )/ZA(

2M

_I__

x3

)

2M
>0 fOi’ x:r<TMAX:T

1,0




To AT
ePEFE
For r < 1, the iPEFE are satisfied For r < r; the iPEFE are satisfied

Forr; < r <1y the ePEFE are satisfied

For r > r, this metric is not a solution to the PEFE

UNIVERSITY
he, = OF WARSAW



Conclusion

Static exterior solutions to the Einsten’s equation are Schwarzschild-like but
depend on two parameters (M and B).

There may exist other non-static solutions.
If this possibility is ruled out = Birkhoff's theorem.

The OS model is everywhere a solution for k = 0 and k = —1.
It is only a local solution (r < ry) when k = 1. Bad choice of coordinates?
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