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Motivation

Status Quo: Quantum Gravity is conjectured to explain the
breakdown of General Relativity at singularities as well as to
establish the rigorous definition of interacting 4-dim QFT

Meanwhile: Without experiments, it’s paramount to not only
study some conjectured quantum gravity models, but to
develop general tools (with potential applications outside of
QG)

Goal for today: We will present two frameworks on a fairly
general level and - to showcase their strength - apply them to
quantum cosmology
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Motivation

Loop Quantum Cosmology originates
as canonical quantisation of a
polymerised version of isotropic FLRW
cosmology

Isotropy = Invariance under symmetry
group (translations & rotations)

Classical only degree of freedom scale
factor p = a2 gives a phase space with
symplectic structure ωFRW = dp ∧ dc

Physical Hilbert space Hphys of LQC
are solutions to a “polymerized”
constraint operator

Construct coherent states, sharply
peaked Ψ(h,P) ∈ Hphys describing
semiclassical geometry

Klaus Liegener Towards cosmology in LQG
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Overview

1 Motivation

2 Classical: Symmetry Restriction
Determining special solutions wrt given symmetry group

3 Quantum: Quantum Speed Limit
Coherent states as proposal for semiclassical quantum cosmology

4 Conclusion & Outlook
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1) Symmetry Restriction
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Kinematical Setup

Let (M, ω) be a phase space characerised by coordinates and
momementa of a field theory over a spatial slice σ.

Let Φ be a group, which allows a representation on M in terms of
symplectomorphisms, that is:

For each ϕ ∈ Φ there exist ϕ : M 7→ M (extendable to act on
functions f ∈ C∞(M) via ϕ∗f := f ◦ ϕ−1 etc.)

Each ϕ preserves the symplectic structure ω, i.e.ϕ∗ω = ω (the
symplectic structure corresponds to a Poisson bracket:
{f , g} := −ω(χf , χg ), with χ being Hamiltonian vector fields)
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Invariant subspace

Our interest are phase space points invariant under Φ, i.e.

M := {m ∈ M : ϕ(m) = m ∀ϕ ∈ Φ} (1)

It is possible to restrict functions f and n-forms ω to M:

f |M := f (m) m ∈ M
ω(X1, ...Xn) := ω(X1, ...Xn)|M

It is possible to define a restricted Poisson bracket on M:

{f , g}|M := ω(χf , χg ) (2)

Question: In what cases can we analyse only the restricted system
without loosing information?
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Symmetry restriction of dynamics

One can show the following theorem to hold for finite-dim as well
as for infinte-dim phase spaces:

Symmetry restriction of dynamics [Kamiński, KL, ’20]

Let (M, ω) be the symmetry restriction of (M, ω) wrt Φ and let
H be a Φ-invariant function. Then, the flow generated by H|M
agrees with the flow of H on M.

In other words: the evolution wrt H of any observable
O : M → R, when restricted to M, agrees with the evolution of
O|M with respect to H|M computed via {., .}M:

{H,O}|M = {H|M,O|M}M (3)
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Symplectic Reduction vs Symmetry restriction

Symmetry restriction is closely related to the notion of constraint
systems.
A gauge group G describes symplectomorphisms, whose generators
are constraints J = {CI}I , giving rise to the constraint surface
J−1(0). In nice situations, (i.e. ∄ M for Φ ⊂ G )

M//G = {[m] : m ∈ J−1(0)} (4)

is manifold (the physical interesting part of phase space) and
allows reduction of the symplectic form (aka symplectic reduction).
Then: If H is G -invariant on J−1(0), its flow preserves J−1(0).
Symmetry restriction is complementary to the symplectic

reduction: first, we will symmetry reduce to M on which a
non-degenerate symplectic form exists – thereby taking care of the
singular points – and afterwards we can perform a symplectic
reduction with respect to the remaining symplectomorphisms in G.

Klaus Liegener Towards cosmology in LQG
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Symmetry restriction applied: Symmetry group in GR

In GR, we are in the special situation that we are interested in symmetry
groups Ψ ⊂ Diff(σ), a gauge group of GR.
Connection formulation of GR: (qab = E a

I E
b
J δIJ/| det(E )|)

MO(3)
AB = {(EI ,A

J) ∈ (1C∞(σ), 1C
∞(σ)) , det(E ) ̸= 0} (6)

There is also the O(3) gauge group G := G+ × {1,−1}

G(O)(E ,A) := (OJ
I E

a
J ,O

I
JA

J
a +

1

2
ϵ IK

J (∂aO
J
L )O

−1L
K ) (7)

G(−1)(E ,A) := (−E a
I , 2Γ

I
a − AI

a) (8)

How to lift Ψ-action on σ to MO(3)
AB ?

Clearly, diff-part acts in natural way, but we have a freedom in defining
the action of the O(3)-part.
Lemma: Given some Eo such that qo = E I

oE
J
o δIJ is Ψ-invariant, choosing

ΦAB,Eo = {(D(ψ),E a
oJψ∗E

I
oa) : ψ ∈ Ψ} ⊂ D(Diff(σ))⋉G (9)

ensures that O(ψ)I
J ◦ ψ∗EoI (x) = EoJ(x).

Klaus Liegener Towards cosmology in LQG
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Symmetry restriction applied: FLRW cosmology

First: on non-compact topolgy restriction of ω is not well deifned:

ω =
2

κβ

∫
σ
d3x dE a

I (x) ∧ dAI
a(x) (10)

because Ψ := SO(3)⋊R3 has invariant subspace:

M = {(E a
I = pδa

I , A
I
a = cδI

a) : p, c ∈ R} (11)

Therefore: restriction to compact spatial slice (Torus σ = (R/T )3)

Constraints: One can show that symmetry restriction reduce the
constraints in the following way D⃗[N⃗] → the set of all N⃗ invariant
under Ψ. C [N] the set of all N invariant under Ψ.
Now, Ψ := SO(3)⋊R3 acts transitively (⇒ N = 1) and has no
invariant vector field (N⃗ = 0). Thus, we are left with one
constraint, explicitly

C [1]|M := − 6

κβ2
c2
√
|p|+ Cmatter|MAB

(12)

Klaus Liegener Towards cosmology in LQG
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Symmetry restriction applied: Lattice cosmology I

What is lattice GR ?

Truncation from continuum to discrete

(A,E ) ∈ MAB
GAB (O(3))−→ GAB(O)(A, e) ∈ MAB

↓ ↓
(h,P) ∈ Mγ

Gγ(O(3))−→ Gγ(g)(h,P) ∈ Mγ

with

Mγ = {(h,P) : h : γe → SU(2) , P : γe → su(2)} (13)

h(e) := P exp

(∫ 1

0

dt AJ
a(ek(t))τJ ė

a
k (t)

)
(14)

P(e) := h(e[0,1/2])

[∫
Se

dxh(ρx) ∗ E (x)h(ρx)
†
]
h(e[0,1/2])

† (15)

Klaus Liegener Towards cosmology in LQG
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Symmetry restriction applied: Lattice cosmology II

The symplectic form of the lattice GR reads:

ωγ =
∑

[e]∈γ[e]

ωe (16)

The symplectic form ωe is a symplectic form on T ∗SU(2) of a given
edge that is

ωe = dξe , ξe =
2

κβ
P I (e)ΩI (e), ΩI (e) := −2tr(τIdh(e) h

−1(e))

i.e. ΩI (e) is the right invariant Maurer-Cartan form on SU(2).

Lastly, truncations of the constraints:

G [Λ] =
∑
v∈γ

ΛI (v)G
I (v), G I (v) =

∑
e∈γ : e(0)=v

P I (e) (17)

and scalar constraint a function such that limϵ C
ϵ(v) = C (x = v)

(next slide)

Klaus Liegener Towards cosmology in LQG
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Intermezzo

C ϵ[N] :=
∑

v

C ϵ(v)N(v) (18)

Based on regularisation of Thiemann, we introduce the following
discretisation (one of many possible) specialised to cubic lattices

C ϵ(v) := CE (v) + CL(v) + C ϵ
matter(v), (19)

CE (v) =
−1

2κ2β

∑
i,j,k∈L

ϵ(i , j , k)Tr
(
[h(□v ,ij)− h†(□v ,ij)]h(k, v){h†(k, v),V ϵ[σ]}

)
CE [σ] =

∑
v

CE (v), V ϵ[σ] =
∑

v

√∑
ijk∈L

ϵIJK

48
ϵ(i , j , k)P I (i , v)PJ(j , v)PK (k, v), K = {CE [σ],V

ϵ[σ]}

CL(v) =
8(1 + β2)

κ4β7

∑
ijk∈L

ϵ(i , j , k) (20)

× Tr
(
h(i , v)†{h(i , v),K}h(j , v)†{h(j , v),K}h(k, v)†{h(k, v),V }

)
where □v ,ij denotes a plaquette starting at v in direction i and returning
along direction j and ϵ(i , j , k) := sgn det(i , j , k) = sgn(ijk)ϵ|i||j||k|.

Klaus Liegener Towards cosmology in LQG
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Symmetry restriction applied: Lattice cosmology III

Cosmology of Lattice GR, where σ = (R/T )3 gets restricted lattice
with M-many points: ϵ = µo = T/M with T = 1 as period of the
torus.
We perform symmetry restriction via symmetry group:

Ψγ = Z3
M × {Rek

(n π/2) : k = 1, 2, 3, n = 0, 1, 2, 3} (21)

The points MFRW
γ ⊂ Mγ invariant under group ΦAB,Eo (Ψ

γ) are

(P(e), h(e)) = (µ2
o p τl , e

iµo c τl ) (22)

and the symplectic structure reduces

(
∑

e

ωe)|MFRW
γ

=
6

κβ
dp ∧ dc (23)

Finally restriction of the scalar constraints give:

C ϵ[1]|MFRW
γ

=
6N
κ

√
p

[
sin(cµo)

2

µ2
o

− 1 + β2

β2

sin(2cµo)
2

4µ2
o

]
(24)

Klaus Liegener Towards cosmology in LQG
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Symmetry restriction: Lessons learned

Symmetry restriction is a framework to identify symmetric solutions
that will keep their symmetry at all times. In applications, it allows
to transform complex computations on an infinite-dimensional
phase space to one with finitely many degrees of freedom.

Comments:

Challenge in applications is to find suitable symmetry group

Obtained insights on how gauge groups (e.g. SU(2), SO(3))
change under truncation to lattice and symmetry restriction

Correctly reduce the phase space of gauge-covariant fluxes
instead of postulating it

Sym. Res. is applicable to many systems [Kamiński, KL ’20] (k = ±1
cosmologies, Bianchi I, Bianchi I on lattice etc.)

Big Bounce happens solely due to discretisation artefacts and
is not genuine quantum prediction

Klaus Liegener Towards cosmology in LQG
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2) Quantum Speed Limit
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Setting the stage for Quantum

We have convinced us that classically a restriction of the
Hamiltonian dynamics of full General Relativity to cosmology is
possible. How does this translate to the quantum level?

We introduce the kinematical Hilbert space of Loop Quantum
Gravity restricted to a finite lattice

Coherent state can be sharply peaked on a semiclassical
configuration mimicking cosmology

We develop all necessary tools in order to compute exectation
values of polynomial operators including first order quantum
corrections

Via the quantum speed limit, we can draw information on the
dynamical behaviour of said coherent states

Klaus Liegener Towards cosmology in LQG
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The basic Hilbert space L2(SU(2), dµH)

Classically: on every edge of the lattice lives a SU(2)-valued
holonomy

We denote the space of square-integrable functions over
SU(2) by He := L2(SU(2), µH) with Haar measure dµH

The Peter-Weyl theorem tells us that these functions have a
basis with the irreducible representations of SU(2)

f (g) =
∑
j ,m,n

c(j ,m, n) D
(j)
mn(g) ∈ He (29)

A irrep D(j) associates with every g ∈ SU(2) a dj -dim matrix

D(j)(g) and its matrix elements are thus D
(j)
mn(g) ∈ C

The irreps form an orthogonal basis on He : (dj = 2j + 1)

⟨D(j)
mn,D

(j ′)
m′n′⟩ =

1

dj
δjj ′δmm′δnn′ (30)

Klaus Liegener Towards cosmology in LQG
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Coherent states for SU(2)

Complexifier coherent states are for each H ∈ SL(2,C) [Hall,

Thiemann, Winkler]

ψt
H :=

∑
j≥1/2

dj e
−j(j+1)t

j∑
m=−j

D
(j)
mm(H† g) (31)

where t > 0 controls the spread of the state.

A useful decomposition of H is (τ3 = −iσ3/2)

H = ne−(ξ−iη)τ3 ñ (32)

Terminology “semiclassical” is fitting beccause for t << 1:

⟨ĥab⟩ = ne−ξτ3 ñ +O(t), ⟨P̂ I ⟩ = iℏκ
η

t
D

(1)
−I 0(n) +O(t)

with the basic operators

(ĥabf )(g) := D
(1/2)
ab (g)f (g), (P̂ I f )(g) = iℏκ

d

ds
f (esτI g)|s=0

Klaus Liegener Towards cosmology in LQG
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Coherent states and the volume operator

Coherent states for the whole lattice γ:

Ψz := ⊗e∈γψ
t
He (z) (33)

where He(z) ∈ SL(2,C) captures the discretised geometry on edge
e of z = (ξ, η), i.e. for every edge in direction a:

He(a)(z) = nae
i(ξ+iη)τan†a, n1 =

1√
2

(
1 −1
1 1

)
, n1 =

1√
2

(
1 i
i 1

)
, n3 = id

These states have that for some polynomial function F :

⟨Ψz ,F (ĥ, tP̂)Ψz⟩ = F (h,P) +O(t) (34)

Question: What are explicit formulas for the expectation values of
polynomial operators when including quantum corrections?

Klaus Liegener Towards cosmology in LQG
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Explicit formulas for coherent states expectation values

The basic operators for SU(2) are

(ĥ
(k)
ab f )(g) := D

(k)
ab (g)f (g), (P̂ I f )(g) = iℏκ

d

ds
f (esτI g)|s=0

together with the left-invariant vector field

(L̂I f )(g) = iℏκ
d

ds
f (gesτI )|s=0 (35)

Further, we make use of the following identity: [Dapor, KL ’17]

⟨ψH , ...L̂
JψH⟩ = D

(1)
JM(n)e−izMD

(1)
MS(n

′)⟨ψH , ...P̂
SψH⟩ (36)

and standard SU(2) recoupling theory

ĥ
(k1)
ab ĥ

(k2)
cd =

k1+k2∑
K=|k1−k2|

dK

(
k1 k2 K
a c M

)(
k1 k2 K
b d N

)
(−1)M−N ĥ

(K)
−M−N

to see that we have full control ⇔ we know the exp. value of

ĥ
(K)
MN P̂

I1 ...P̂ IN (37)

Klaus Liegener Towards cosmology in LQG
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Explicit formulas for coherent states expectation values

The basic operators for SU(2) are

(ĥ
(k)
ab f )(g) := D

(k)
ab (g)f (g), (P̂ I f )(g) = iℏκ

d

ds
f (esτI g)|s=0

The general formula including everything up to O(t2) corrections
reads: [KL, Zwicknagel 2020]

⟨ĥ
(j)
ab

PK1 ...PKN ⟩
ψt

HI

= ⟨1⟩
(

iη

t

)N

D
(1)
−K1−S1

(nI )...D
(1)
−KN−SN

(nI )

j∑
c=−j

(
δ

S1
0 ...δ

SN
0 δaa′ + (38)

+
t

2η

[
δaa′δ

S1
0 ...δ

SN
0 N

(
N + 1

2η
− coth(η)

)
+ i

N∑
A=1

δ
S1
0 ...�δ

SA
0 ...δ

SN
0

(
1 − sAtanh

(
η

2

))
D

(j)
−sA−L

(n
†
I

)[τL]
(j)

aa′

−
δaa′

sinh(η)

N∑
A<B=1

δ
S1
0 ...�δ

SA
0 ...�δ

SB
0 ...δ

SN
0 (δ

SA
+1δ

SB
−1 + δ

SA
−1δ

SB
+1 )eSAη

] D
(j)

aa′ (nI )e−iξc
γ

j
c D

(j)
cb

(n
†
I

) + O(t2),

with

γ
j
c = 1 − t

1

4

[
(j2 + j − c2)

tanh(η/2)

η/2
+ c2

]
, ⟨1⟩ : = ⟨ĥ

(0)
00 ⟩

ψt
HI

=

√
π

t3

2η eη
2/t

sinh(η)
et/4

. (39)
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Algorithm / code for polynomial operators

We developed a Mathematica code, to execute the expectation
values of complicated operators over the whole lattice, including
O(t) -corrections. [KL, Rudnicki ’20]

Input: A polynomial Operator built out of ĥab, P̂
K and Q̂ = Q(P̂)

(to approximate the Ashtekar-Lewandowksi volume operators à la
[Giesel, Thiemann ’06]), possibly involving commutators.

Applications

→ Quantum Gravity: Dynamics is driven by the
scalar constraint of which a version for LQG is known [Thiemann ’96].
E.g. its Euclidean part reads

ĈE [1] ∼
∑

v

∑
ei∩ej∩ek =v

ϵ(ei , ej , ek)×

tr((ĥ(i)ĥ(v + ei , j)ĥ(v + ei + ej ,−i)ĥ(v + ei ,−j)− c .c)ĥ†(k)[ĥ(k), V̂ ])

⟨ĈϵE [1]⟩ =
6

κϵ2

√
η sin(ξ)2

[
1 + t

(
−

1

4
−

13coth(η)

8η
+

11

8ηsinh(η)
+

9

32η2

)
+ t

3i

8η

sin(ξ/2)2

sin(ξ)

]
+ O(t2).
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Application in Quantum Gravity

Effective theory in the t → 0 limit ({⟨Ĉ ⟩, ⟨Ô⟩}) [Ashtekar, Singh,

Paw lowski, Taveras, Assanioussi, Dapor, KL,...]

Including O(t)-corrections, one can show that the effective
description breaks down ({⟨ĈE ⟩, ⟨Ô⟩} ≠ ⟨[ĈE , Ô]⟩) [Rudnicki, KL ’20]

Independently, first order corrections of the Lorentzian part of
scalar constraint were computed and investigated on the
effective level [Zhang, Song, Han ’21]

Formally, a power series expansion could remedy the short
commings of the effective framework (⟨[Ĉ , ..., [Ĉ , Ô]...]⟩)

Here: We investigate the dynamical properties of the
coherent state family Ψz [Rudnicki, KL ’21]
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Here: We investigate the dynamical properties of the
coherent state family Ψz [Rudnicki, KL ’21]

Klaus Liegener Towards cosmology in LQG



25/32

Application in Quantum Gravity

Effective theory in the t → 0 limit ({⟨Ĉ ⟩, ⟨Ô⟩}) [Ashtekar, Singh,
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Intermezzo

The quantum speed limit originates from the Heisenberg equality:

∆sÔ∆sĤ ≥ 1

2
|⟨Φs , [Ô, Ĥ]Φs⟩| (40)

with some family {Φs}s . If Ô = |Υ⟩⟨Υ| then one can rewrite:

τ ·∆oĤ/ℏ ≥ |A(0)− A(τ)| (41)

with A(s) = arccos
(√

|⟨Υ,Φs⟩|
)
.

In the special case that: Υ = Φ0 ⊥ Φτ

τ ≥ ℏπ
2∆oĤ

(42)

Many prominent applications:

Quantum information theory [Okuyama, Ohzeki, Mondal, Datta, Sazim,...]

Quantum optimal control [Wang, Allegra, Jacobs, Lloyd, Lupo, Mohseni,...]

Quantum batteries [Mohan, Pati, Campaioli, Pollock, Binder, Céleri, Gold, Modi,...]

Quantum Gravity [Now!]
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Quantum Speed Limit in Quantum Gravity I

Given a classical trajectory on phase space z(s) = (ξ(s), η(s)),
s ∈ R (the evolution by some H in lattice GR), we ask whether
there is a family of quantum states mimicking the same evolution:

{Ψz(τ)}τ∈R (43)

and what is the relation to the real evolution by the quantised Ĥ:

{e−i Ĥτ/ℏΨz(0)}τ∈R (44)

In the best possible case, we would have:

Ψz(τ) ≈ e−i Ĥτ/ℏΨz(0), ∀τ (45)

The Quantum speed limit for

Υ = Ψz(τ), Φs = e−i Ĥs/ℏΨz(0) (46)

and denoting A(s) = arccos
(√

|⟨Υ,Φs⟩|
)

τ ·∆oĤ/ℏ ≥ |A(0)− A(τ)| (47)
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Ψz(τ) ≈ e−i Ĥτ/ℏΨz(0), ∀τ (45)

The Quantum speed limit for

Υ = Ψz(τ), Φs = e−i Ĥs/ℏΨz(0) (46)
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Quantum Speed Limit in Quantum Gravity II

The Quantum speed limit for

Υ = Ψz(τ), Φs = e−i Ĥs/ℏΨz(0) (48)

and denoting A(s) = arccos
(√

|⟨Υ,Φs⟩|
)

τ ·∆oĤ/ℏ ≥ |A(0)− A(τ)| (49)

We want to test whether ⟨Ψz(τ), e
−i Ĥτ/ℏΨz(0)⟩ ≈ 1 (⇔ A(τ) = 0)

|A(τ)| ≥ |A(0)| − τ ·∆0Ĥ/ℏ (50)

Thanks to our tools we can compute (for short times)

(∆Ψz(0)
ĈE )

2 =
3

27

M3βℏ
ηκ

sin(ξ)2 (17 + 256η2 + (256η2 − 17) cos(2ξ)
)
+O(t).

A(0) = τ(∆Ψz(0)
ĈE )

2/ℏ2 − 3

26

M3β

ηκℏ
sin(ξ)4 +O(t),

It follows that 0 > |A(0)| − τ ·∆0Ĥ/ℏ on the whole parameter
space ξ, η ≥ 0! ⇒ QSL check is passed!
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space ξ, η ≥ 0! ⇒ QSL check is passed!

Klaus Liegener Towards cosmology in LQG



29/32

Quantum Speed Limit in QG: Lessons learned

Quantum Speed Limit puts tight bounds on the evolution of a
given quantum system. Moreover, it can serve in Quantum Gravity
as a necessary consistency check for any proposal of a stable
semiclassical system.

Comments:

QSL is easily violated: Given z ̸= z ′ for t → 0, then whenever
∆Ĥ <∞ the transition cannot occur.

In the limit t → 0 and huge fluxes, we can show that for ĈE

given fixed τ there is t << 1 such that the transition is
z → z(τ) occurs with controlled error.

Generalisation of the above statement might be possible
[Kamiński, KL, to appear]
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3) Conclusion and Outlook
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Conclusion and Outlook

While working on the quantisation of gravity, many fruitful
tools and methods may emerge

We have introduced Symmetry restriction, a framework to
determine whether it is possible to restrict to a symmetry
reduced setting without loss of information

It transpired that discretised GR has a cosmological sector
mimicking the effective behaviour of LQC

We presented an algorithmic approach to expectation values
in coherent states allowing the computation of polynomial
operators including O(t)-corrections

The quantum speed limit serves as a powerful consistency
check in QG that any proposal for a stable family of states
needs to pass

Both tools may have further applications when investigating
semiclassical limits of Loop Quantum Gravity
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THANK YOU!
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