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Abstract

It is widely known that, near spacelike singularities, most worldlines would undergo
the so-called Belinski-Khalatnikov-Lifshitz (BKL) singularity dynamics, which is an
infinite sequence of Kasner saddle states connected by Taub transitions. Some
worldlines however would undergo highly inhomogeneous spike dynamics, which is
an infinite sequence of Kasner saddle states connected by spike transitions. I will
describe these dynamics using the Hubble-normalised orthonormal frame
formulation of Einstein’s field equations, which is very useful for spatially
homogeneous models (we get a system of ordinary differential equations), and also
suitable for inhomogeneous models. My contributions in this area are the
discovery of the exact solutions which describe the spike transitions, and the
development of a numerical zooming technique specially designed for spike
simulations. I will illustrate the spike transitions with snapshots of the
Hubble-normalised state space trajectories, and point out interesting features.

Woei Chet Lim (University of Waikato) BKL and spike dynamics near spacelike singularities 2 / 59



The BKL Conjecture

How does a general cosmological solution of Einstein’s field equations (EFE)
behave near a spacelike initial singularity?

Conjecture by Vladimir Belinski, Isaak Khalatnikov and Evgeny Lifshitz:
[LK 1963, BKL 1970,1982]
A generic singularity is
1. Vacuum-dominated (“matter doesn’t matter”)
2. Local (spatial derivatives are negligible)
3. Oscillatory (an infinite sequence of Kasner states)
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Background: BKL dynamics in spatially homogeneous spacetimes
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Building blocks of the BKL dynamics are made of

1. the Kasner saddle states (Bianchi type I) [Kasner 1925]
2. the Taub transitions (Bianchi type II) [Taub 1951]

They are the two simplest vacuum, anisotropic, spatially homogeneous solutions of
the EFE.

Q: How do these solutions behave?

The EFE for spatially homogeneous spacetimes can be written as a system of first
order ODEs.
We will explain the evolution of the solution in the language of dynamical systems
(state space, equilibrium points, orbits, attractor).

The evolution of a solution is represented by an orbit in the state space. The
majority of the orbits may approach a special subset of the state space
asymptotically. We call that subset the attractor.
Self-similar solutions can be represented by equilibrium points if you use the right
state space variables.
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Orthonormal frame formalism of EFE

[Ehlers 1961, Ellis 1971, MacCallum 1973, van Elst & Uggla 1997]
An appropriate choice for the state space variables is the Hubble-normalized
scale-invariant variables of the orthonormal frame formalism.
Timelike congruence u. Decompose ua;b into irreducible parts.

ua;b = σab + ωab + 1
3Θ(gab + uaub)− u̇aub

Θ rate of expansion scalar.
σab rate of shear tensor. Symmetric traceless.
ωab vorticity tensor. Antisymmetric.
u̇a acceleration vector.

In cosmological context, Hubble scalar H = 1
3Θ is used.

We usually use u with zero vorticity.

Construct an orthonormal frame {e0, e1, e2, e3} with e0 = u and 3 spatial frame
vector e1, e2, e3.
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Orthonormal frame vector fields (assuming e0 has zero vorticity)

timelike e0 =
1

N

∂

∂t

spacelike eα = eα
i ∂

∂x i
, α = 1, 2, 3, i = 1, 2, 3.

N is the lapse function, and eα
i the frame variables.

Orthonormality: eα
ieβ

jgij = δαβ
eα

i has inverse eαi .

Related to the metric as follows

ds2 = −N2dt2 + δαβe
α
ie
β
j dx

idx j .

Further reduce the degrees of freedom by aligning the orthonormal frame vectors
to the coordinate vectors as much as possible. Later, for Gowdy spacetimes, we
align e2 with ∂y (no x and z components), and align e3 with a linear combination
of ∂y and ∂z (no x component).
The orthonormal frame vector fields are linear combinations of partial differential
operators with non-constant coefficients, and they do not commute.

[e0, eα] 6= 0, [eα, eβ] 6= 0.
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Frame commutator coefficients

The orthonormal frame vectors do not commute as operators. The commutator
coefficients are

[e0, eα] = u̇αe0 − (Hδα
β + σα

β − εαγβΩγ)eβ

[eα, eβ] = −(2a[αδβ]
γ + εαβδn

δγ)eγ

Ωα is the angular velocity of the spatial frame eα, and is determined by the
alignment of the frame vectors with the coordinate vectors.

aα and nαβ (symmetric) determine the curvature of the spacelike hypersurface
t = const.

The commutator coefficients are essentially partial derivatives of the lapse N and
the frame variables eα

i .
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Choosing the right state space variables
Divide these variables by H to give the Hubble-normalized variables.

1

NH
=

1

H

1

N
, (Eα

i )H =
1

H
eα

i ,

ΣH
αβ =

1

H
σαβ , U̇H

α =
1

H
u̇α, RH

α =
1

H
Ωα,

AH
α =

1

H
aα, NH

αβ =
1

H
nαβ

The Hubble-normalized variables have the nice property of being constant for
self-similar solutions. (A self-similar solution is a scaled version of itself at
anytime.)
Gauge choice is to choose timelike congruence orthogonal to the spatially
homogeneous slices, and NH = 1. This leads to u̇α=0. Orthonormal frame
alignment earlier gives RH

1 = −ΣH
23, RH

2 = −ΣH
31, RH

3 = ΣH
12.

(Eα
i )H decouple from the ODEs. H also decouples.

Reduced state space variables are ΣH
αβ ,A

H
α ,N

H
αβ .

This means that the self-similar solutions are represented by equilibrium points in
the reduced state space of Hubble-normalized variables.
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Spatially homogeneous solutions

These are models with (at least) 3 spacelike Killing vector fields acting on 3D
manifolds. As a result, the state space variables ΣH

αβ ,A
H
α ,N

H
αβ are functions of

time only.

Spatially homogeneous solutions play an important role in describing
asympotically local dynamics.
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Spatially homogeneous solutions are classified into different
Bianchi types

In 1898, Luigi Bianchi classified three-dimensional Lie groups of isometries of a
Riemannian manifold.

Bianchi class Bianchi type Eigenvalues of nαβ
A I 0 0 0

(aα is zero) II 0 0 +
VI0 0 + −
VII0 0 + +
VIII − + +
IX + + +

B V 0 0 0
(aα is nonzero) IV 0 0 +

VIh 0 + −
VIIh 0 + +

Bianchi VIh has h < 0 while Bianchi VIIh has h > 0. Bianchi III is Bianchi VI−1.
Bianchi VI−1/9 has an exceptional class denoted Bianchi VI∗−1/9.
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The Kasner solution is a self-similar solution

For the Kasner solution,

ΣH
αβ = diag(−2ΣH

+,Σ
H
+ +
√

3ΣH
−,Σ

H
+ −
√

3ΣH
−).

where (ΣH
+,Σ

H
−) are constant and satisfy ΣH

+
2

+ ΣH
−
2

= 1. All other
Hubble-normalized variables are zero.

In the Hubble-normalized state space, each Kasner solution is represented by an

equilibrium point on the unit circle ΣH
+
2

+ ΣH
−
2

= 1.
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The Taub solution is asymptotic to Kasner solutions

For the Taub solution,

ΣH
αβ = diag(−2ΣH

+,Σ
H
+ +
√

3ΣH
−,Σ

H
+ −
√

3ΣH
−),

NH
αβ = diag(NH

11, 0, 0).

where (ΣH
+,Σ

H
−,N

H
11) satisfy ΣH

+
2

+ ΣH
−
2

+ 1
12 (NH

11)2 = 1. All other
Hubble-normalized variables are zero. The explicit expression for (ΣH

+,Σ
H
−,N

H
11) is

not needed here.

In the Hubble-normalized state space, each Taub solution is represented by an
orbit connecting two Kasner equilibrium points (one source and one sink).

There are two other orientations diag(0,NH
22, 0) and diag(0, 0,NH

33).
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Kasner points and Taub orbits

3 orientations of Taub orbits projected onto the (ΣH
+,Σ

H
−) plane.

Arrows indicate evolution towards singularity.

The Kasner points represent Kasner epochs and the Taub orbits represent the
transitions between two Kasner epochs.
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Vacuum Bianchi VIII and IX – the original BKL archetype

For Bianchi VIII and IX spatially homogeneous solutions, nαβ has 3 non-zero
eigenvalues and their eigenvectors do not rotate.

All Kasner equilibrium points are saddle points.

A Bianchi VIII or IX BKL orbit is built
from consecutive Taub orbits connecting
the Kasner points.

The BKL regime consists of quick Taub
transitions between long Kasner epochs.

A sequence of Kasner epochs with
alternatingly active pair of nαβ
eigenvalues defines a Kasner era.
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The BKL index u tracks the Kasner epochs within each
Kasner era

BKL introduced an index u that characterize a Kasner solution that is
independent of spatial frame orientation. It can be defined implicitly through

det ΣH
αβ = 2−

27(1 + u)(1 + 1
u )

(1 + u + 1
u )3

.

u satisfies u ≥ 1.

The Kasner map for each Taub transition is u → u − 1 if u ≥ 2.

A Kasner era ends when 1 ≤ u < 2.

Then the next Kasner era begins with the map u → 1

u − 1
.
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Vacuum Bianchi VI and VII – a single Kasner era

Vacuum Bianchi VI and VII can only sustain the BKL oscillation for a single
Kasner era, terminating at a final Kasner epoch.

nαβ has 2 non-zero eigenvalues and their eigenvectors rotates on one axis every
Kasner epoch.

The spatial frame has to rotate with the eigenvectors, so that the circle of Kasner
points remain on the (ΣH

+,Σ
H
−) plane.

This introduces a frame transition, whose orbit is a vertical line when projected
onto the (ΣH

+,Σ
H
−) plane.
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Bianchi VI0’s Taub transition orbits
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Bianchi VI0’s frame transition orbits
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Bianchi VI0’s Taub and frame transition orbits projected
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Bianchi VI0 orbit during a Kasner era
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Vacuum Bianchi VI∗−1/9 – the other BKL archetype

[Hewitt, Horwood & Wainwright 2003]
Vacuum Bianchi VI∗−1/9 can sustain the BKL oscillation indefinitely.

nαβ has 2 non-zero eigenvalues and their eigenvectors rotates on 2 axes – one
rotation occurs once every Kasner epoch, and the other rotation occurs only once
between two Kasner eras.

The spatial frame has to rotate with the eigenvectors to maintain the circle of
Kasner points on the (ΣH

+,Σ
H
−) plane.

This introduces two frame transitions.

Both BKL archetypes differ in details but the Kasner map is the same: u → u − 1.
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Bianchi VI∗−1/9’s Taub transition orbits
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Bianchi VI∗−1/9’s frame transition orbits
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Bianchi VI∗−1/9’s second frame transition orbits
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Bianchi VI∗−1/9’s Taub and frame transition orbits projected
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Bianchi VI∗−1/9’s BKL orbit
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Having understood BKL dynamics in spatially homogeneous models, we now turn
to BKL dynamics in spatially inhomogeneous models.
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OT G2 class of inhomogeneous spacetimes

OT G2 spacetimes

are vacuum models

admit 2 Abelian Killing vector fields (spacelike, G2 group action is
orthogonally transitive)

contain Bianchi VI0 as spatially homogeneous case.

This class can sustain the BKL dynamics for only a single Kasner era.

Surprise inhomogeneous feature: spikes.
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Discovery of spikes in OT G2 spacetimes

Spikes are small-scale spatial structures that form and then either remain there
(permanent spikes) or disappear (transient spikes).
Permanent spikes were discovered incidentally in numerical simulations of OT G2

models by Berger and Moncrief 1993, whose original goal was to understand the
nature of generic singularities.
There are isolated worldlines along which the BKL index u tends to u > 2 for their
final Kasner epoch, while along other typical worldlines u tends to u < 2.
i.e. u tends to its limit pointwise but not uniformly.
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Transient spikes in OT G2 spacetimes

Furthermore, before the final approach, at these same isolated worldlines,
recurring transient spikes form, and they smooth out after two Kasner epochs,
and then they form again at the next Kasner epoch.

Q: What is so special about these isolated worldlines?

Two possible explanations:

1. The active eigenvalue of nαβ changes sign here.

2. The trace of nαβ changes sign here.
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The dynamical reason for spike formation is that the initial data straddle the
stable manifold of a saddle point.

Saddle pointStable manifold

Unstable manifold
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As the solution evolves, the data on either side of the stable manifold first
approach the saddle point and then leave the neighbourhood of the saddle point,
and diverge.

Woei Chet Lim (University of Waikato) BKL and spike dynamics near spacelike singularities 33 / 59



The one datum that lies on the stable manifold also approaches the saddle point,
but never leaves.

Initial data

Data at a later time
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As the data evolve, the one datum that lies on the stable manifold gets ever close
to the saddle point, while its neighbouring data points leave the saddle point.
This means that the data become very inhomogeneous in a short time.
In other words, the t = const profile of the data develops a spike or a step-like
structure.
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Transient spikes in general (non-OT) G2 spacetimes

In general (non-OT) G2 spacetimes, an additional shear component is non-zero.
This provides sufficient degree of freedom to the rotation of the nαβ eigenvector
to sustain an infinite sequence of BKL dynamics.

The BKL orbits are similar to those in Bianchi VI∗−1/9.

All spikes are transient here. The permanent OT G2 spike is a result of unfinished
spike transition.

The non-local nature of recurring transient spikes brings the the local nature of
the BKL conjecture into doubt.
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Exact spike solutions

The spike transitions are described by the exact spike solutions, which were
discovered in two stages.
The OT G2 spike solution [Lim 2008] was found by applying the Rendall-Weaver
transformation on a Kasner seed solution.
The non-OT G2 spike solution [Lim 2015] was found by applying the Geroch
transformation on a Kasner seed solution.

Numerical confirmation:
OT G2 spike, zooming technique [Lim, Andersson, Garfinkle, Pretorius 2009]
non-OT G2 spike [in progress]
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OT G2 spike orbits
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OT G2 spike orbits
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OT G2 spike orbits
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OT G2 spike orbits
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OT G2 spike orbits
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OT G2 spike orbits
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OT G2 spike orbits
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OT G2 spike orbits
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OT G2 spike orbits
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non-OT G2 spike orbits

τ = −3.7
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non-OT G2 spike orbits

τ = −3.5
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non-OT G2 spike orbits

τ = −1.5
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non-OT G2 spike orbits

τ = −0.4
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non-OT G2 spike orbits

τ = 0.1
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non-OT G2 spike orbits

τ = 5
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non-OT G2 spike orbits

τ = 10
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Spike numerics: obstacle and strategy

Goal: Develop a new algorithm to explore spikes numerically.

• Towards the singularity, subsequent spikes become so much narrower that even
numerical mesh refinement technique cannot provide reasonable resolution.
• When resolution is inadequate, numerical simulations give erroneous information
about spikes.
• Idea from the exact spike solution: zoom in.

No need for mesh refinement. No need to specify boundary conditions.
Use the classical 4th order Runge-Kutta method for accuracy.
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Numerical confirmation: recurring spikes and matching
each of them to an exact solution

[Lim, Andersson, Garfinkle & Pretorius 2009]
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Summary

The BKL conjecture:
A generic singularity is
1. Vacuum-dominated (“matter doesn’t matter”)
2. Local (spatial derivatives are negligible)
3. Oscillatory (an infinite sequence of Kasner states)

• BKL2 modified to account for transient spikes.
• The transitions that connect Kasner states in BKL3 now consist of the Taub
solution and the spike solutions.
• New numerical algorithm with zooming technique to simulate spike transitions.

Further developments:
• Spikes with electromagnetic field [Nungesser & Lim 2013]
• Spikes with matter [Coley, Lim, 3 papers 2012–2016]
• G1 spikes [Coley, Gregoris & Lim, 2 papers 2016–2017]
• Cylindrical spikes [Moughal & Lim 2021]
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Quantization?

Towards spacelike singularities, as the spacetime reaches the quantum regime,

most common: Kasner saddle states

common: Taub transitions

rare: transient OT G2 (same-Kasner-era) spike transitions

rarer: non-OT G2 (inter-Kasner-era) spike transitions

Try to quantize these solutions.
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