

Theory of Relativity Seminar Wydział Fizyki UW and DBP NCBJ

5 May 2023

# Measuring the speed of light on extragalactic objects

## **Marek Biesiada**

Department of Astrophysics National Centre for Nuclear Research Warsaw, Poland

## Introduction

First measurements of c ever:
Ole Rømer (moons of Jupiter) 1676
James Bradley (aberration of light) 1728

2. VSL theories Moffat 1992; Magueijo + Albrecht 1999 (+Barrow, Smolin...)

3. Sobering remarks: only dimensionless constants are a legitimate subject of physical enquiry;

4. Constancy of c underlies Relativity; Maxwell equations



5. Modern revival Salzano, Dąbrowski, Lazkoz 2015

### Measuring the speed of light using extragalactic objects

### Salzano, Dabrowski, Lazkoz (2015) PRL, 114:101304 to be tested with future BAO data

Outline of their method



Comoving distance  $D(z) = \int_0^z \frac{c \, dz'}{H(z')}$ 

First proposal

homogeneous, isotropic **FLRW** models

$$ds^{2} = dt^{2} - a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega^{2}\right)$$



## **Baryon Acoustic Oscillations**



Credit: F. Leclercq, A. Pisani, B.D. Wandeldt arXiv:1403.1260v1

Planck

6000

5000 , 4000

D<sub>e</sub>[µK<sup>2</sup>] 000 000

2000

1000



Credit: PNtelis

Late time Observations

"Final" Conditions

Galaxy density, n

In the near past, z ~ [0.5,6]

**Observations** 

**Primordial Observations** 

"Initial" Conditions

Temperature, T

In the far past, z~1100

https://hal.archives-ouvertes.fr/tel-01674537/document

### Salzano, Dąbrowski, Lazkoz (2015)

PRL, 114:101304 to be tested with future BAO data



Figure 1. Method implementation: maximum redshift detection *left panel*; speed of light measurement *right panel*.

Implementation left for the future – when radial and tangential BAO modes will be accurately measured

## Measuring the speed of light using extragalactic objects

first measurement on extragalactic sources: Cao, Biesiada, Jackson, Zheng, Zhu (2017) JCAP 02, 012

$$D_A(z_{max})H(z_{max}) = c$$

H(z) from passive evolving galaxies;

D<sub>A</sub>(z) from intermediate L compact radio QSOs (standard rulers)





## **C**osmic Chronometers

#### Cosmology model independent Moresco (2015) MNRAS 450, L16 Gband Fe5270 1 dzH(z)Ca4455 1+z dt 1 Jimenez & Loeb (2002) $F_{\lambda}$ [unitless] Passive evolving galaxies red = 4000 - 4100 Å0.5 D4000 = F(red) / F(blue)blue = 3850 – 3950 Å 20 3000 4000 5000 6000 Restframe wavelength [Å] D4000 break – onset of series of metal dt absorption features Credit: M. Moresco. $H(z) = -\frac{1}{1+z}A(Z,SFH)\frac{dz}{dD4000}$ 16 Marcel Grossmann Meeting 2021 estimated from data

calibrated on different SPS modelS

## **Compact radio sources**



## Unified model of AGNs, QSOs and radio-sources

Jet orientation w.r.t. line of sight responsible for morphological differences

compact radio sources – we look along the jet angular size = size of the base of the jet

base of the jet – unit optical depth – Blandford – Koenigl (1979) model  $l_m \sim \nu^{-1}$ 



### EXPLORING THE PROPERTIES OF MILLIARCSECOND RADIO SOURCES

SHUO CAO<sup>1</sup>, MAREK BIESIADA<sup>1,2</sup>, XIAOGANG ZHENG<sup>1</sup>, AND ZONG-HONG ZHU<sup>1</sup>

<sup>1</sup> Department of Astronomy, Beijing Normal University, 100875, Beijing, China; zhuzh@bnu.edu.cn <sup>2</sup> Department of Astrophysics and Cosmology, Institute of Physics, University of Silesia, Universytecka 4, 40-007 Katowice, Poland Received 2015 January 7; accepted 2015 April 9; published 2015 June 9

### Preston et al. 1985 survey at 2 GHz 1398 radio sources – including 917 compact



Figure 3. Constraints on compact source parameters obtained from three subsamples with different optical counterparts.

A&A 606, A15 (2017) DOI: 10.1051/0004-6361/201730551 © ESO 2017 Astronomy Astrophysics

Ultra-compact structure in intermediate-luminosity radio quasars: building a sample of standard cosmological rulers and improving the dark energy constraints up to  $z \sim 3$ 

Shuo Cao<sup>1</sup>, Xiaogang Zheng<sup>1,2</sup>, Marek Biesiada<sup>1,2</sup>, Jingzhao Qi<sup>1</sup>, Yun Chen<sup>3</sup>, and Zong-Hong Zhu<sup>1</sup>

Steps: 1. expansion rate reconstruction from H(z) data (cosmic chronometers)

2. robust selection of luminosity sample

3. calibration of standard rulers – intermediate luminosity QSO (ILQSO) $10^{27}$  < L [W/Hz] <  $10^{28}$ 



120 compact radio sources (QSOs) at 2 GHz



Fig. 4. Corrected linear size of compact quasars derived in a cosmological model independent way, using the observational H(z) data.



## 5. Use calibrated ILQSO to test cosmological models

### Some constraints on the parameters of $\Lambda$ CDM (and beyond)



ournal of Cosmology and Astroparticle Physics

## Measuring the speed of light with ultra-compact radio quasars

Shuo Cao,<sup>a</sup> Marek Biesiada,<sup>a,b</sup> John Jackson,<sup>a</sup> Xiaogang Zheng,<sup>a</sup> Yuhang Zhao<sup>a</sup> and Zong-Hong Zhu<sup>a</sup>



$$D_A(z_{max})H(z_{max}) = c$$



## Measuring the speed of light using extragalactic objects - strong gravitational lensing



## Measuring the speed of light using extragalactic objects - strong gravitational lensing Version 1

$$\Delta t_{ij} = \frac{D_{\Delta t}(1+z_l)}{c} \Delta \psi_{ij}$$

Time delays

Fermat potential difference

Time delay distance

$$D_{\Delta t} = \frac{D_l^A D_s^A}{D_{ls}^A} \qquad D_{ls}^A = \frac{1}{1+z_s} D_{ls}$$

Distance sum rule

$$D_{ls} = \sqrt{1 + \Omega_k D_l^2} D_s - \sqrt{1 + \Omega_k D_s^2} D_l$$

Flat universe

$$D_{ls} = D_s - D_l$$

$$c = \frac{D_l^A (1+z_l) D_s^A (1+z_s)}{(1+z_s) D_s^A - (1+z_l) D_l^A} \frac{1}{\Delta t_{ij}} \Delta \psi_{ij}$$

THE ASTROPHYSICAL JOURNAL, 867:50 (6pp), 2018 November 1 © 2018. The American Astronomical Society. All rights reserved.



### Testing the Speed of Light over Cosmological Distances: The Combination of Strongly Lensed and Unlensed Type Ia Supernovae

Shuo Cao<sup>1</sup>, Jingzhao Qi<sup>1</sup>, Marek Biesiada<sup>1,2</sup>, Xiaogang Zheng<sup>1</sup>, Tengpeng Xu<sup>1</sup>, and Zong-Hong Zhu<sup>1</sup>, Department of Astronomy, Beijing Normal University, Beijing 100875, People's Republic of China; zhuzh@bnu.edu.cn <sup>2</sup> Department of Astrophysics and Cosmology, Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland; marek.biesiada@us.edu.pl *Received 2018 August 4; revised 2018 September 23; accepted 2018 October 1; published 2018 October 30* 

### from lensed images of host galaxy

$$c = \frac{D_l^A (1+z_l) D_s^A (1+z_s)}{(1+z_s) D_s^A - (1+z_l) D_l^A} \frac{1}{\Delta t_{ij}} \Delta \psi_{ij}$$

from redshift matched unlensed SNIa

from lensed SNIa

| the Accuracy of $c$ Measurement |                                 |                                |                           |                                |  |
|---------------------------------|---------------------------------|--------------------------------|---------------------------|--------------------------------|--|
|                                 | $\delta \Delta t$               | $\delta \Delta \psi$           | $\delta$ LOS              |                                |  |
| Lensed SNe Ia                   | 1%                              | 3%                             | 1%                        |                                |  |
|                                 | $\sigma_{\rm meas}~({\rm mag})$ | $\sigma_{\rm int}~({\rm mag})$ | $\sigma_{\rm lens}$ (mag) | $\sigma_{\rm sys}~({\rm mag})$ |  |
| Unlensed<br>SNe Ia              | 0.08                            | 0.09                           | $0.07 \times z$           | 0.01<br>(1 + z)/1.8            |  |



Figure 1. Individual measurements of the speed of light from the forthcoming LSST survey.



Figure 2. Probability distribution of the speed of light *c* possible to obtain from the forthcoming LSST survey.

= 0.005

## Measuring the speed of light using extragalactic objects - strong gravitational lensing Version 2

### Spherically symmetric power-law mass density profile

 $\rho \propto r^{-\gamma}$ 

**Strong lensing**: mass inside the Einstein radius

**stellar dynamics** (spherically symmetric Jeans equation): mass projected inside aperture radius scaled to the Einstein radius



$$M_{\rm dyn} = \frac{\pi}{G} \sigma_{\rm ap}^2 R_{\rm E} \left(\frac{R_{\rm E}}{R_{\rm ap}}\right)^{2-\gamma} f(\gamma)$$
$$= \frac{\pi}{G} \sigma_{\rm ap}^2 D_1 \theta_{\rm E} \left(\frac{\theta_{\rm E}}{\theta_{\rm ap}}\right)^{2-\gamma} f(\gamma)$$

$$c = \sigma_{ap} \sqrt{\frac{4\pi}{\theta_E} \left(1 - \frac{1 + z_l}{1 + z_s} \frac{D_l^A}{D_s^A}\right) \left(\frac{\theta_E}{\theta_{ap}}\right)^{2 - \gamma} f(\gamma)}$$

Speed of light



### Precise Measurements of the Speed of Light with High-redshift Quasars: Ultra-compact Radio Structure and Strong Gravitational Lensing



obtainable from (redshift matched) ultra-compact radio QSOs Monthly Notices efthe ROYAL ASTRONOMICAL SOCIETY MNRAS **506**, 2181–2188 (2021) Advance Access publication 2021 July 6

https://doi.org/10.1093/mnras/stab1868

#### Consistency testing for invariance of the speed of light at different redshifts: the newest results from strong lensing and Type Ia supernovae observations

Tonghua Liu,<sup>1,2</sup> Shuo Cao,<sup>2,3</sup>\* Marek Biesiada,<sup>2,4</sup>\* Yuting Liu,<sup>2</sup> Yujie Lian<sup>2</sup> and Yilong Zhang<sup>2</sup>

$$T_{zs} = \frac{c(z_s, z_l)}{c_0}$$
 distances from redshift matched  
SNIa (standard candles)  
$$T_{zs} = \frac{\sigma_{\rm ap}}{c_0} \sqrt{\frac{4\pi}{\theta_{\rm E}} \left(1 - \frac{1 + z_1}{1 + z_s} \frac{D_l^A}{D_s^A}\right) \left(\frac{\theta_{\rm E}}{\theta_{\rm ap}}\right)^{2 - \gamma} f(\gamma)}.$$

We used a catalog of 161 lensing systems from SLACS, BELLS, LSD and SL2S (Chen Y., et al. 2019, MNRAS 488, 3745)

Absolute magnitude M<sub>B</sub> cancels !

$$T_{zs} = \frac{\sigma_{ap}}{c_0} \sqrt{\frac{4\pi}{\theta_{\rm E}}} \left(1 - \frac{1 + z_s}{1 + z_l} 10^{0.2\Delta m_{\rm B,corr}}\right) f(\gamma) \left(\frac{\theta_{\rm E}}{\theta_{ap}}\right)^{2-\gamma}$$
$$\Delta m_{\rm B,\,corr} = m_{\rm B,\,corr}(z_1) - m_{\rm B,\,corr}(z_s)$$

 $c = 2.950(\pm 0.04) \ km \ s^{-1}$ 





# Measuring the speed of light using extragalactic objects reconstructed distances D<sub>1</sub>(z) + expansion rate H(z)

Luminosity distance

Its derivative

Liu Y., Cao S., MB et al. 2023, ApJ accepeted

$$D_L(z) = c(1+z) \int_0^z \frac{dz'}{H(z')} \qquad D'_L(z) = c \int_0^z \frac{dz'}{H(z')} + c(1+z) \frac{1}{H(z)}$$

Idea

$$c = \frac{D'_L(z)H(z)}{1+z} - \frac{D_L(z)H(z)}{(1+z)^2}$$

One needs:

e.g. 
$$D_L(z) = \ln(10) \frac{c_0}{H_0} (x + ax^2 + bx^3), \quad x = \log(1+z)$$

H(z) (km/s/Mpc)

1.0

Functional form of  $D_L(z)$  – reconstructed from

- Standard candles SNIa
- QSO[UV-X] standard candles

Functional form of H(z) – reconstructed from

\* cosmic chronometers

\*GW observed by DECIGO



Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

#### MNRAS **507**, 919–926 (2021)

Advance Access publication 2021 July 31

## QSO as standard candles

## Hubble diagram at higher redshifts: model independent calibration of quasars

Xiaolei Li,<sup>1</sup>\* Ryan E. Keeley,<sup>2</sup>\* Arman Shafieloo<sup>(a)</sup>,<sup>2,3</sup>\* Xiaogang Zheng,<sup>4</sup> Shuo Cao,<sup>5</sup> Marek Biesiada<sup>5,6</sup> and Zong-Hong Zhu<sup>5</sup>







### Results

 $\eta = \frac{c}{c_0}$ 

**Table 1.** The weighted mean and median values of  $\eta$  parameter measuring the invariance of the speed of light from the QSO + H(z) and Pantheon + H(z) samples. The associated dispersion measures are: weighted standard deviation and median absolute deviation.

|                 | $\mathrm{Mean}(\eta)$ | $\mathrm{Median}(\eta)$ |
|-----------------|-----------------------|-------------------------|
| Pantheon + H(z) | $1.03\pm0.03$         | $1.04\pm0.05$           |
| QSO + H(z)      | $1.19\pm0.07$         | $1.22^{+0.05}_{-0.13}$  |



**Table 2.**  $\eta$  parameter measuring the invariance of the speed of light from the QSO + X(z) and Pantheon + X(z) samples and its precision.

|                 | η               | $\Delta \eta$ |
|-----------------|-----------------|---------------|
| Pantheon + X(z) | $1.002\pm0.001$ | $10^{-3}$     |
| QSO + X(z)      | $1.016\pm0.002$ | $10^{-3}$     |

## Conclusions

- Uncharted territory of measuring c using extragalactic sources is being conquered
- Other fundamental constants fine structure constant  $\alpha = \frac{e^2}{\hbar c}$ John Webb, Victor Flambaum et al. – many multiplets method

$$\frac{\Delta\alpha}{\alpha} = -1.09 \pm 0.36 \times 10^{-5} \qquad (0.6 < z < 1.6)$$

- Empirical support that the laws of physics are the same on Earth now as they were in a distant universe across its history
- Perhaps will lead to the unexpected?
- Could be used as a cross-check of cosmological probes.

## Thank you !