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Introduction

Black holes are simple (or are they?)

Well-known fact
Black holes are described only by a few parameters: its mass M, angular
momentum J and charge Q.

It’s no longer true when we include Λ!
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Introduction

Physics in AdS

source: ncatlab.org

AdS (even its covering space) is not a globally hyperbolic spacetime. As a
result, we need to impose boundary conditions at infinity.
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Introduction

Physics in AdS

As a result, we need to impose boundary conditions at infinity. For
example, we may impose:

lim
r→∞

gµν(r , xµ) = hµν(xµ)

lim
r→∞

Aµ(r , xµ) = pµ(xµ)
(1)

Clearly, if h, p are not axially symmetric, the whole spacetime cannot be
described by Kerr-Newman-AdS!
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Introduction

Temperature

Let ℓa∂a be a null Killing vector field generating the horizon H. Then,
under reasonable assumptions:

∇ℓℓ
a|H = κ(ℓ)ℓa (2)

and κ(ℓ) is a constant. It may be identified with the Hawking temperature:

TH = κ

2π
. (3)

If κ(ℓ) = 0, we call the horizon extremal.
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Introduction

Why should you care?

No Hawking radiation – simplified quantum description?
Motivation for Weak Gravity Conjecture
In the AdS/CFT dictionary, extremal black holes’ horizons describe IR
fixed points
All susy black holes are automatically extremal
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Introduction

Near horizon limit

Near the extremal horizon, we may write the fields as

g = 2dv
(

dr + rhadxa + 1
2Fr2dv

)
+ γabdxadxb

F = Ψdv ∧ dr + rWadv ∧ dxa + Zadr ∧ dxa + 1
2Babdxa ∧ dxb

(4)

and consider a 1-parameter (ϵ > 0) family of diffeomorphisms
ϕϵ(v , r , xa) = (ϵ−1v , ϵr , xa). Surprisingly, ϕ⋆

ϵg , ϕ⋆
ϵF have good limits as

ϵ → 0 and they define a new solution to the Einstein–Maxwell-(AdS)
EOMs which describes only region very closely to the horizon.
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Introduction

NHG equations

The limiting spacetime satisfy a simpler equation (B = 0):

Rab = 1
2hahb − D(ahb) + Λγab + 2

D − 2γabΨ2

(Da − ha) Ψ = 0

F = 1
2h2 − 1

2Daha + Λ − 2
(D − 3

D − 2

)
Ψ2

(5)

It can be further simplified if we assume that the spacetime is static – then

dF = Fh. (6)
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Introduction

Extremal BHs – uniqueness

Uniqueness theorem [Chruściel, Tod ’07, Kunduri, Lucietti ’09]

The only static charged extremal horizon in D = 4 is
Reissner-Nordström-(AdS).

This suggests that perhaps extremal black holes are (in some sense)
simpler?
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Introduction

Almost all extremal black holes
in AdS are singular
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4d

Setting

On the background of the extremal RN-AdS

g = (ρ − r+)2F (r)dv2 + 2dvdρ + ρ2γ̊abdxadxb, (7)

let us consider a massless scalar field gµν∇µ∇νϕ = 0. We are interested in
stationary solutions.

Since the background is spherically symmetric, we
can separate variables: ϕ =

∑
ℓ,m Yℓmϕℓm(ρ). EOMs read:

0 = (ρ − r+)2r2ϕlm,ρρ + ((ρ − r+)2r2F ),ρϕlm,ρ + l(l + 1)ϕlm. (8)

MP Kolanowski (FUW) Extremal BHs 12 / 36 April 14, 2023 12 / 36



4d

Setting

On the background of the extremal RN-AdS

g = (ρ − r+)2F (r)dv2 + 2dvdρ + ρ2γ̊abdxadxb, (7)

let us consider a massless scalar field gµν∇µ∇νϕ = 0. We are interested in
stationary solutions. Since the background is spherically symmetric, we
can separate variables: ϕ =

∑
ℓ,m Yℓmϕℓm(ρ). EOMs read:

0 = (ρ − r+)2r2ϕlm,ρρ + ((ρ − r+)2r2F ),ρϕlm,ρ + l(l + 1)ϕlm. (8)

MP Kolanowski (FUW) Extremal BHs 12 / 36 April 14, 2023 12 / 36



4d

Equations near the horizon

0 = (ρ − r+)2ρ2Fϕlm,ρρ + ((ρ − r+)2ρ2F ),ρϕlm,ρ + l(l + 1)ϕlm (9)

This is a simple ODE with ρ = r+ being its regular singular point. Thus,
near ρ = r+ we can approximate it by Euler equation:

0 = (ρ − r+)2r2
+F (r+)ϕ′′

lm + 2(ρ − r+)r2
+F (r+)ϕ′

lm + l(l + 1)ϕlm (10)

and so the leading order term is ϕlm ∼ (ρ − r+)γ , where

γ± =
±
√

1 + 4l(l+1)√
1−4Q2Λ

− 1

2 (11)

and we of course choose positive solution.
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4d

Consequences

If we choose ℓ = 1, we get γ < 1 as long as Q2Λ < 0. As a result:

Tρρ ∼ (ϕ,ρ)2 ∼ (ρ − r+)2(γ−1) → ∞ (12)

so the energy-momentum tensor is divergent at the horizon.

But does it actually matter?
After all, it’s just one component in a very specific coordinate system...
What about scalar quantities, like T or TµνT µν?
They are ALL finite. So maybe that’s just a problem with coordinates?
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4d

Consequences

Tρ ∼ (ϕ,ρ)2 ∼ (ρ − r+)2(γ−1) → ∞ (13)

Maybe that’s just a problem with coordinates?

No, because ∂γ is tangent to the affinely parametrized null geodesics, so
this component has well-defined interpretation! Moreover, it enters the
Raychaudhuri equation, so this is definitely a physical singularity.
As we will see
Result #1
For almost all extremal black holes in AdS tidal forces in the null direction
transversal to the horizon are infinite.

Notice that in this example (and in general) this is a statement
independent of any asymptotic conditions, spacetime does not even need
to be asymptotically AdS!
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4d

Setting

Since we are interested only in the near horizon behavior, we may write our
(generic yet stationary) fields as g = g̊ + δg , F = F̊ + δF , where

g̊ = 2 dv
(

dρ + ρ ha dxa − 1
2 ρ2 Cdv

)
+ qab dxa dxb (14a)

F̊ = E dv ∧ dρ + ρ Wa dv ∧ dxa + 1
2 Bab dxa ∧ dxb, (14b)

and δg , δF vanish at the horizon (and thus by continuity are small
nearby). Thus, it seems reasonable to expect that (δg , δF ) satisfies
linearized Einstein-Maxwell equations on the background of (g̊ , F̊ ).
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4d

Perturbations

Due to the symmetries, we may decompose our perturbations into
eigenspaces of ρ∂ρ − v∂v . They are thus of the form

δg = ργ
(
δF ρ2 dv2 + 2 ρ δha dv dxa + δqab dxa dxb

)
δF = ργ

(
δE dv ∧ dρ + ρ δWa dv ∧ dxa + ρ−1δZa dρ ∧ dxa + 1

2 δBab dxa ∧ dxb
)

.

It is not hard to check that this implies

δCρaρb ∼ γ(γ − 1)ργ−2 (15a)

δRρρ ∼ γ(γ − 1)ργ−2, (15b)

so the perturbations are singular, provided that γ < 2 (and γ ̸= 1).

This does not necessarily imply that those black holes are not weak
solutions. This happens only when γ ≤ 1

2 [Christodoulou ’09].
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4d

Static background
If g̊ is static, it follows that qab is maximally symmetric and we may
further decompose perturbations with respect to the symmetries of q:

(∆q + k2

r2
+

)S = 0 (16a)

Sa = 1
k DaS (16b)

Sab = DaDbS + qabk2

2r2
+

S (16c)

and then δqab = hLS + hTSab etc. For concreteness we will work only with
scalar modes, vector ones in 4d have the same exponents.
In this way, we reduce to linearized Einstein-Maxwell equations into a
system of homogeneous linear (algebraic) equations. Thus, non-trivial
solutions exists only when appropriate determinant vanishes and this leads
to conditions for γ. For each mode we find four possible values.
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4d

Spherical RN-AdS
If the cross-sections are spherical, we find

γ±± = 1
2

−1 ±

√√√√4ℓ(ℓ + 1) + 5σ ± 4
√

σ2 + 2ℓ(ℓ + 1)(1 + σ)
σ

 , (17a)

where
σ ≡ 1 +

6 r2
+

L2 . (17b)

γ−± is always negative and thus we discard it. (This is a choice of the
boundary conditions at the horizon)

ℓ = 1 mode is exceptional (since there are no gravitational dipoles) and
there are only two possible values of γ:

γ± = 1
2

−1 ±

√
16 + 9σ

σ

 . (18)
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4d

Exponents

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

Exponent as a function of Q and Λ = − 3
L2
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4d

Toroidal RN-AdS

We normalize q in such a way that the cross-section area is LxLy r2
+ with

x ∼ x + Lx and y ∼ y + Ly . Then,

γ±± = 1
6

±

√√√√45 + 6k̃2 ± 36

√
1 + k̃2

3 − 3

 , (19)

where k̃ ≡ kL/r+. There is a qualitative difference: if we take r+
sufficiently small, γ+± can become arbitrarily large and we avoid
singularity (although we still deal with solutions of finite smoothness). For
a torus obtained from a square with Lx = Ly = 2π, we have C2 solutions if

r+
L <

1√
36 + 12

√
3

. (20)
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4d

Hyperbolic RN-AdS

We normalize the radius r+ in such a way that R = − 2
r2
+

. For simplicity,
let us take Q = 0.

Then, we have

γ = 1
2
(
−1 +

√
9 + 4k2

)
, (21)

so this leads to singularity if we may have k2 < 4. The first non-zero
eigenvalue of the Laplacian on a compact Riemann surface is bounded by

k2 ≤ 2
g − 1⌊g + 3

2 ⌋ ≤ 4.

There is a better bound for g = 2: [Bonifacio ’21]

k2 ≤ 3.8388977,

so generic perturbation is not C2 as well.
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4d

Hyperbolic BHs cnd
When the black hole is charged, the situation is very different.
Gravitational and Maxwell perturbations are then coupled to each other,
and the two physical exponents become:

γ+± = 1
2

−1 +

√√√√
5 +

4k2 ± 4
√

σ2 + 2(σ − 1)(k2 + 2)
σ

 , (22)

where σ = 6 r2
+

L2 − 1. The minimal radius of the hyperbolic extremal horizon
is obtained with no charge, r+ = L√

3 , so σ ≥ 1. Notice that when
σ > 1

4
(
4 + 2k2 + k4), γ+− becomes negative. Thus the perturbation

blows up on the horizon and our perturbative scheme breaks down. It is
likely that some curvature invariants will now diverge. This also signals an
RG instability - a small change in the boundary conditions at asymptotic
infinity (UV) would lead to a drastic change in the near horizon (IR)
region.
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4d

A few remarks

The bigger r+, the bigger divergence we get and γ → 0 as Q2 → ∞
For r+ large enough, also modes with higher ℓs are divergent
Although we have restricted ourselves to the electrically charged black
holes, the same holds for magnetic ones
and for Λ > 0 although the results are less spectacular
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4d

Kerr AdS

We can analyze also stationary Kerr-AdS perturbations. It’s easier to use
the Teukolsky equations rather than deal with metric perturbations. Spin
s = +2 field describes at the horizon exactly Cρaρb which is our key
observable.

By stationary solutions, we mean stationary co-rotating with
the horizon – generally they are not stationary at infinity!
We can investigate it almost analytically - the angular equation (or rather:
eigenproblem) must be solved numerically. From the radial one we get
Cρaρb ∼ (ρ − r+)γ with γ being the function of the angular eigenvalue.
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4d

Kerr AdS
For ℓ = 2, m = 0 we find
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0.0

Exponent as a function of the area radius
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4d

Kerr AdS

As we saw, s = 2, ℓ = 2, m = 0 mode is always singular at the horizon.
However, this singularity is milder than for RN-AdS (γmetric > 1

2 for
Kerr-AdS).
However, if we additionally break U(1) symmetry (m ̸= 0), then certain
modes have complex γ with Re γ = −5

2 . This is a sign of superradiant
instability. We still don’t know what’s the endpoint of this instability.
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4d

Linear vs non-linear analysis

We presented our reasoning as a linearized analysis. However, it is a little
more than that. Have we considered instead a metric gRN + (r − r+)nδg ,
and solved full Einstein equations near the horizons, we would arrive at the
same solutions with the same conditions for n.
Thus, our results are exact as long as perturbations exhibit power-law
behavior near the horizon. We are unable to account for non-perturbative
corrections. To this end, we need to solve numerically Einstein equations
with appropriate (SO(3)-breaking) boundary conditions at infinity.
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4d

Black holes at T ≈ 0

For T ≈ 0, there is a huge near horizon region in which the spacetime
looks like T = 0. In particular, we have AdS2 factor.

Thus, we expect that
in this region tidal forces should have power-like growth. However, this
region ends shortly before the horizon and then we go to the horizon which
is located at ρ − r+ ∼ T .
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4d

Finite temperature
One can argue that Crarb ∼ T γ−2 with the same exponent γ as at T = 0
we have Crarb ∼ (ρ − r+)γ−2. This is the best way to probe these
exponents numerically with a high accuracy.
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4d

Finite temperature
By going to the second order in the perturbation theory, we can argue that
δS ∼ T 2γ . If γ < 1

2 , then, this is dominating over the usual relation
SRN−AdS = S0 + S1T + O(T 2). In particular, we would have
CQ = 2γT 2γ + O(T ) – this is a clear sign for the holographic theory!
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EFT

A (very) short introduction to EFTs

There are many reasons to believe that GR is in fact only a low-energy
description of whatever the fundamental theory is. Instead of constructing
UV completion, we could parametrize it as a series in derivatives (that
could be apriori derived from that theory). The first non-trivial terms are

L6 = ηκ2

2 R cd
ab R ef

cd R ab
ef (23a)

and
L8 = λκ4

2 (RabcdRabcd)2 + λ̃κ4

2 (R̃abcdRabcd)2 (23b)

We can ask what happens with the extremal Kerr for such a theory
(keeping only terms linear in η, λ, λ̃).
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EFT

Strategy

It is possible to find the EFT-corrected near-horizon limit of Kerr. Then,
on this background, we may look for transversal deformations. The whole
thing can be written down as sourced linearized Einstein equations. At the
end of the day, we find that the leading exponent is

γ = 2 + 24κ4η

7J4 − 21(32 + 45π)κ6λ

5J3 − 12(736 + 315π)κ6λ̃

5J3 + ... (24)

Note that this describes ’s-wave’ transversal deformation, which comes
just from the fact that our Kerr black hole is asymptotically flat and not
only near-horizon!
We thus see that whether we have a singularity depends highly on signs of
η, λ and λ̃.
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EFT

Signs

One can prove (using the analyticity and unitarity of the S matrix) that
λ, λ̃ > 0 in any consistent theory. That’s good because these Wilson
coefficients come with a minus sign to the exponent.

On the other hand, η has a logarithmic divergence. Close to the UV
cutoff, it behaves like

η ∼
∑(

1
m2

s
− 4

m2
f

+ 3
m2

v

)
. (25)

In particular, it is negative for the Standard matter content! That is good,
because it enters the exponent with a plus sign. On the hand, the
(two-loop) log divergences, make it positive in the infrared. Somehow
surprisingly, this is actually negligible even for supermassive black holes.
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EFT

Further directions

Quantum description of extremal black holes

Observational, astrophysical probes of a new physics?
Better understanding what happens in higher dimensions
Holographic understanding, especially in higher dimensions
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EFT

THANK YOU
FOR YOUR ATTENTION!
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