

New solutions to Petrov Type D equation

with $U(1)$ -symmetry

Maciej Ossowski

Faculty of Physics at the University of Warsaw

Plan of the talk

1

NUT spacetimes

- Plebański-Demiański spacetimes
- Kerr-NUT-adS and its problems
- Orbits of Killing vector fields and the bundle structure

2

Isolated Horizons and Type D equation

- Bundle structure of Isolated Horizons
- Petrov Type D equation

3

New solutions to Type D equations and their embeddings

- Horizons with bundle action transversal to the null direction
- Non-trivial horizons over higher genus surfaces

NUT spacetimes (with $U(1)$ -principle bundle structure)

- Most general Petrov Type D solution - Weyl tensor has 2 double principle directions
- Lambda-electro-vaccum solution to EEs in 4D, with EM field aligned with principal null directions
- Generalisation of Schwarzschild, Kerr etc ...
- Parameters:

$$\underbrace{M}_{\text{"mass"}}, \underbrace{a}_{\text{Kerr}}, \underbrace{\alpha}_{\text{acceleration}}, \underbrace{e, g}_{\text{e.m. charges}},$$
$$\underbrace{\Lambda}_{\text{cosmological constant}}, \underbrace{l}_{N(\text{ewmn})-U(\text{anti})-T(\text{amburino})}$$

- **No topology restriction.** Useful to distinguish 2D surfaces with curvature

$$\epsilon > \text{ or } = \text{ or } < 0$$

- 2 commuting Killing Vector fields \approx time translation, rotation symmetry

On conical singularity

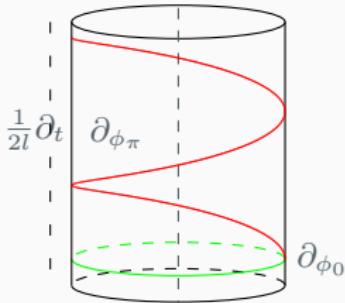
Axial and cyclic KVF

1. Cyclic - closed orbits
2. Axial - vanishes at axis (\leftrightarrow def of axis) $\implies \frac{\text{circumference}}{\text{radius}}$ test makes sense

Taub-NUT: $g = -f(r)(dt - 2l(\cos\theta - 1)d\phi)^2 + \frac{dr^2}{f(r)} + (r^2 + l^2)g^{S^2}$

$\partial_{\phi_0} = \partial_\phi$ for $\theta = 0$ Axial and cyclic.

$\partial_{\phi_\pi} = \partial_\phi + \frac{1}{2l}\partial_t$ for $\theta = \pi$ Axial but not cyclic!



How to calculate conical defect if KVF is cyclic?

1. Stop integrating when above (along $\frac{1}{2l}\partial_t$) starting point
2. Project $\partial_{\phi_\pi} =$ to space of orbits of $\frac{1}{2l}\partial_t$

Accelerated Kerr-NUT-adS and spherical troubles

$$ds^2 = -\frac{1}{F^2} \left[\frac{\mathcal{Q}}{\Sigma} (dt - Ad\phi)^2 + \frac{\Sigma}{\mathcal{Q}} dr^2 + \frac{\Sigma}{\mathcal{P}} d\theta^2 + \frac{\mathcal{P}}{\Sigma} \sin^2 \theta (adt - \rho d\phi)^2 \right]$$

$\mathcal{Q} = \mathcal{Q}(r)$ – zeros define Killing Horizon,

$\mathcal{P} = \mathcal{P}(\theta) > 0, \quad \Sigma = \Sigma(r, \theta) \neq 0, \quad \rho = \rho(r), \quad F = F(r, \theta) \neq 0$

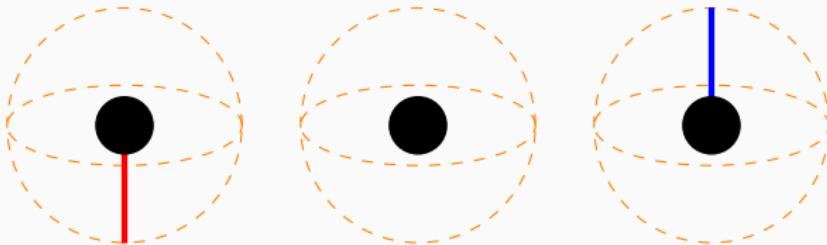
$A = a \sin^2 \theta - 2l (\cos \theta - 1), \quad A(\theta = 0) = 0, \quad A(\theta = \pi) = 4l \neq 0$

$\omega := dt - Ad\phi$ not continuous at $\theta = \pi \implies$ singular half-axis.

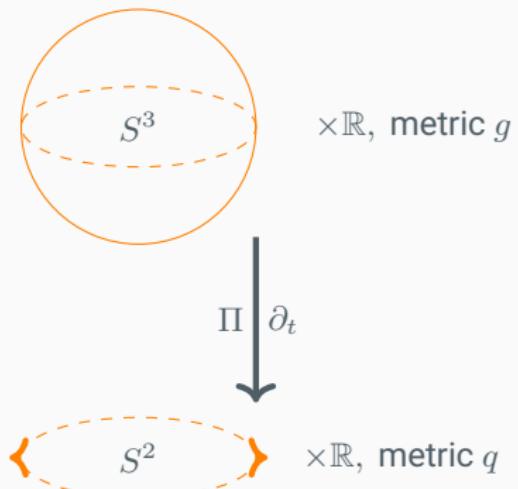
Misner interpretation

$t' := t - 4l\phi \implies \omega := dt - A'd\phi, \quad A' = a \sin^2 \theta - 2l (\cos \theta + 1)$

t is **cyclic** with period $8\pi l!$ $\partial_t, \partial_{\phi_\pi}$ - cyclic



Orbits of Killing vector fields and the bundle structure

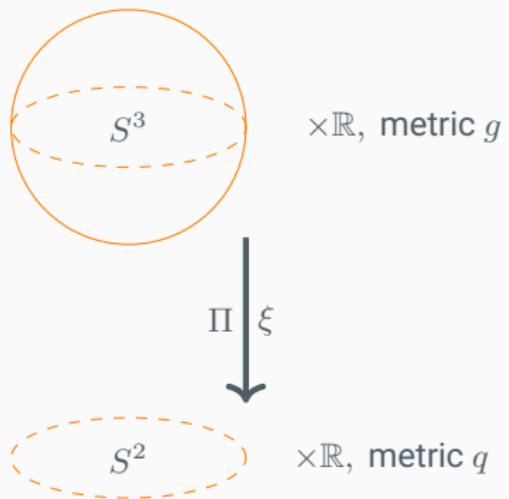
 $U(1)$ -principle bundle

- Base space: $S^2 \times \mathbb{R}$
- Fibres: group $U(1)$
- Total space:
 $S^3 \times \mathbb{R} \stackrel{\text{locally}}{\approx} S^2 \times U(1) \times \mathbb{R}$
- $U(1)$ preserves fibres and acts on them:
 - Freely: no non-trivial fixed points
 - Transitively: every point is reachable from any other

$$g = - \underbrace{(\Pi^* f)}_{\text{lapse function}} \omega \otimes \underbrace{\omega}_{\text{connection}} + \Pi^* \underbrace{q}_{\text{orbit-space metric}}, \quad (\partial_t)^\mu (\partial_t)_\mu = -(\Pi^* f)$$

Residual conical singularity on the space of the orbits!

Orbits of Killing vector fields done right



Non-singular spacetimes

- Generically: $\xi = \partial_t + b\partial_\phi$, $b \in \mathbb{R}$
- Exactly 2 (equivalent) choices of ξ with no conical singularity

$$\mathcal{P}(0) = \frac{\mathcal{P}(\pi)}{|(1 - 4bl)|}$$

- Generates horizon if $\xi = \ell = \partial_t + \frac{a}{\rho(r_H)\partial_\phi}$ & constraint on parameters.
- $\omega := \frac{g(\xi, \cdot)}{g(\xi, \xi)}$

$$g = - \underbrace{(\Pi^* f)}_{\text{lapse function}} \omega \otimes \underbrace{\omega}_{\text{connection}} + \underbrace{\Pi^* q}_{\text{orbit-space metric}}, \quad \xi^\mu \xi_\mu = -(\Pi^* f)$$

Every component is well defined \implies the spacetime is non-singular, including horizon as a 3D manifold.

Generically ($\xi \neq \ell$) space of the null orbits is not smooth - quotient by two different vector fields.

Isolated Horizons and Type D equation (with $U(1)$ -principle bundle structure)

Intrinsic structure of Isolated Horizons

Definition: *Non-expanding horizon* (H, g, ∇)

- $H = 3D$ null surface with q of signature $(0++)$ and topology of bundle $\Pi : H \rightarrow S$. S compact 2D surface with Riemannian ${}^{(2)}q$ (generalisation of $H = S^2 \times \mathbb{R}$)
 - $q = \Pi^* {}^{(2)}q$.
- Non-expanding: $\ell \in \Gamma(TH)$ s.t. $q(\ell, \cdot) = 0 \implies \ell$ is Killing, $\mathcal{L}_\ell q = 0$
 - ℓ symmetry $\implies \ell' = f\ell$ also.
- H -null $\implies \nabla$ is not unique, instead given externally s.t. $: {}^{(2)}\nabla {}^{(2)}q = 0$

Definition: *Isolated Horizon* $(H, g, [\ell], \nabla)$

- "Stationary to the second order": $[\mathcal{L}_\ell, \nabla] = 0$
- Now $\ell \mapsto c_0\ell, c_0 \in \mathbb{R}$
- Rotation 1-form $\omega^{(\ell)} : \nabla\ell =: \omega^{(\ell)} \otimes \ell, \mathcal{L}_\ell \omega^{(\ell)} = 0$
 - Surface gravity: $\nabla_\ell \ell = \kappa^{(\ell)} \ell$, assume its constant on H
 - Pseudo-scalar invariant: ${}^{(2)}d\omega^{(\ell)} = \Omega {}^{(2)}\eta$
- For IH: ω - unique, ℓ and κ up to a real const \implies either $\underbrace{\kappa^{(\ell)} = 0}_{\text{extremal}}$ or $\underbrace{\kappa^{(\ell)} \neq 0}_{\text{not}}$

Principle bundle structure

- So far: fibre bundle $\Pi : H \rightarrow S$
- More: principle bundle $G \hookrightarrow H \xrightarrow{\Pi} S$
 - G acts via the flow of ℓ
 - Connected group: $G = \mathbb{R}$ or $U(1)$. Classification by S and G .
- Bundle connection (choice of horizontal v.f. via $\ker \tilde{\omega}$) $A = \tilde{\omega} \otimes \ell^*$ if
 - $\mathcal{L}_\ell \tilde{\omega} = 0 \checkmark$
 - $\tilde{\omega}(\ell) = 1 \implies \tilde{\omega} = \frac{\omega}{\kappa}$
- Bundle curvature $F = \frac{1}{\kappa} d\omega \otimes \ell^*$
- $\tilde{\omega}$ and shorthand for principal bundle connection
- Characterisation of $U(1)$ -bundles
 - $\int_S K^{(2)} \eta = 2\pi \chi_E(S) = 2 - 2\text{genus} \in \mathbb{N}$ - Euler characteristic
 K Gaussian curvature of $(S, {}^{(2)}q)$
 - $\int_S \Omega^{(2)} \eta = 2\pi \chi_C(S) \in \mathbb{N}$ - Chern number

Petrov Type D Equation

- For embedded IH: Type D \Leftrightarrow Weyl tensor is Type D at the horizon
 $C^\alpha{}_{\beta\gamma\delta} \Big|_{\text{Horizon}}$
- For un-embedded IH: Type D $\Leftrightarrow K + i\Omega - \frac{\Lambda}{3} \neq 0$
- Null co-frame on S : m_A ($A, B \in 1, 2$)
- Einstein Eqs $|_{\text{horizon}} \implies$ Petrov Type D eq:
$$\bar{m}^A \bar{m}^B \nabla_A \nabla_B \left(K + i\Omega - \frac{\Lambda}{3} \right)^{-1/3} = 0$$
- Known solutions:
 - $H = S \times \mathbb{R}$, S - smooth Riemann surface with genus > 0 ¹
 - $H = S^2 \times \mathbb{R}$ with axial symmetry²
 - $H = S^3 \rightarrow S^2$, Hopf bundle with axial symmetry³
 - $H = S^3 \rightarrow S^2$, Hopf bundle with axial symmetry and conical singularities⁴
 - $H \rightarrow S$, with structure of $U(1)$ –non-trivial bundle over S , smooth Riemann surface with genus > 0 ⁵
- Spherical and non-axially symmetric solution - open problem!

¹ Physics Letters B 783 (2018) 415–420, Denis Dobkowski-Ryłko, Wojciech Kamiński, Jerzy Lewandowski, Adam Szereszewski

² Phys. Rev. D 98 (2018), Denis Dobkowski-Ryłko, Jerzy Lewandowski, and Tomasz Pawłowski

³ Phys. Rev. D 100 (2019), Denis Dobkowski-Ryłko, Jerzy Lewandowski, and István Rácz

⁴ Phys. Rev. D 108 (2023), Denis Dobkowski-Ryłko, Jerzy Lewandowski, and MO

⁵ In preparation, Jerzy Lewandowski, and MO

New solutions to Type D equations and their embeddings

(mostly with $U(1)$ -principle bundle structure)

Definition: Conical singularity

Discontinuity of the metric tensor at the pole of rotational symmetry due to wrong choice of the range of angular coordinate, $\phi \in [0; 2\pi\beta[, \beta \neq 1$.

May be different at different poles

However, always to regularize one of them!

Idea: Construct a smooth horizon at the cost of $U(1)$ -bundle structure.

Take 2 horizons

- $\mathcal{H} = (S^2 \setminus \{p_\pi\}) \times S^1$ with
 - coordinates (θ, ϕ, v) and
 - metric $q = U^2(\theta) \left[d\theta^2 + f^2(\theta) \sin^2 \theta \left(\frac{1}{f(0)} d\phi + \left(\frac{1}{f(\pi)} - \frac{1}{f(0)} \right) dv \right)^2 \right]$
- $\mathcal{H}' = (S^2 \setminus \{p_0\}) \times S^1$ with
 - coordinates (θ', ϕ', v') and
 - metric $q' = U^2(\theta') \left[d\theta'^2 + f^2(\theta') \sin^2 \theta' \left(\frac{1}{f(\pi)} d\phi' + \left(\frac{1}{f(0)} - \frac{1}{f(\pi)} \right) dv' \right)^2 \right]$

and transition map

$$\theta = \theta', \quad \phi = -\phi', \quad v = v' - \phi', \quad \text{for } \theta, \theta' \neq 0, \pi.$$

Horizons with bundle structure transversal to ℓ

Modelled after S^3 with 3 left and right invariant vector fields.

However only 1 right invariant v.f. - ∂_v - and 1 left - $\partial_\phi + \frac{1}{2}\partial_v$ - are Killing:

- $\ell = f(\pi)\partial_v + (f(\pi) - f(0))\partial_\phi$ - null direction (generates the horizon)
- ∂_v - generates $U(1)$ -action

To be a rotation 1-form ω has to be well defined in both maps.

By inspection: always can find κ such that it is.

Solutions Type D Equation with conical singularity

- Complex frame adapted to axial symmetry:

$$m_A dx^A = \frac{R}{\sqrt{2}} \left(\frac{1}{P(x)} dx - iP(x)d\varphi \right).$$

- $\implies g_{AB} dx^A dx^B = R^2 \left(\frac{1}{P^2(x)} dx^2 + P^2(x) d\varphi^2 \right)$

- Type D Equation reduces to ODE for $K + i\Omega - \frac{\Lambda}{3}$
- $x = \pm 1 \sim$ poles of the sphere

- Assume $P^2(\pm 1) = 0$, behaves like $\sin^2 \theta$

Geometric characterization of generic horizon of accelerated KNAdS

- Do not assume continuity $\partial_x P^2(\pm 1) = \mp 2 \implies$ conical singularity

- Classes of solutions

- $\Omega = \text{const}$, embeddable in Taub-NUT-adS, $\partial_x P^2(\pm 1) = \mp 2$ always satisfied

- $\Omega = \Omega(x)$, $P^2 = R^2 \frac{-\frac{\Lambda}{3}x^2 + Cx + D}{x^2 + Ax + B} (x^2 - 1)$, embeddable in accelerated-Kerr-NUT-(anti-) de Sitter

- Option 1: Use $P(x)$ and $\Omega(x)$ construct a non-singular horizon with a Hopf bundle structure with action transversal to null direction or ...
- Option 2: ... simply construct $H = S \times \mathbb{R}$, where S is 2-sphere with conical singularities

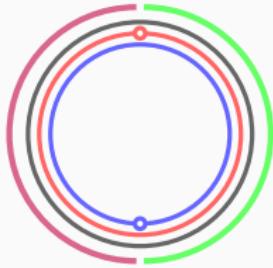
Higher genus horizon: trivial case

- S - smooth, oriented, compact, Riemann surface \implies topologically characterized only by genus
- $K = \text{const}, \Omega = \text{const}$ (actually $\Omega = 0$)
- Toroidal case: $\psi, \phi \in [0, 2\pi[$
 - ${}^{(2)}g = \frac{1}{P_0^2} (a^2 d\phi^2 + 2ab d\psi d\phi + (1 + b^2) d\psi^2)$ $a, b, P_0^2 \in \mathbb{R}, a > 0$ - flat metric
 - ${}^{(2)}\omega = A d\phi + B d\psi, A, B \in \mathbb{R}$ - essentially ${}^{(2)}\omega$ closed
- Genus > 1 : $K = \frac{4\pi(1-\text{genus})}{\text{Area}}$, except $K = \frac{\Lambda}{3}$

Higher genus horizons: non-trivial case

- $K = \text{const}$, $\Omega = \text{const}$ still hold! (but now $\Omega \neq 0$)
- $\text{Prin}_{U(1)}(S) \cong H^2(S; \mathbb{Z})$ (\sim first Chern class)
 - If S is oriented, compact manifold without boundary (\checkmark), then $H^2(S; \mathbb{Z}) \cong \mathbb{Z}$
 - $\text{Prin}_{U(1)}(S) \cong \mathbb{Z}$,
- ${}^{(2)}\omega$ defined up to
 - $U(1)$ gauge
 - 1-forms $\alpha_1, \dots, \alpha_{2g}$ generating the first de Rham cohomology group $H^1(S, \mathbb{R}) \cong \mathbb{R}^{2\text{genus}}$

Toroidal horizons



Again ${}^{(2)}g = \frac{1}{P_0^2} (a^2 d\phi^2 + 2ab d\psi d\phi + (1 + b^2) d\psi^2)$

- flat metric Looking
for two 1-forms on \mathbb{T}^2 satisfying the curvature condition

$$\kappa {}^{(2)}dA_{(1/2)} = {}^{(2)}d\omega_{(1/2)} = \Omega {}^{(2)}\eta, \quad 1 = \text{red} \times S^1 \quad 2 = \text{blue} \times S^1$$

and $U(1)$ - gauge transformation

$$a_{12}(\psi, \phi) := \begin{cases} 1 & \text{at purple} \times S^1 \\ \exp(im\phi) & \text{at green} \times S^1 \end{cases}$$

$${}^{(2)}A_{(2)} = {}^{(2)}A_{(1)} + ia_{12}^{-1} da_{12},$$

For example

$${}^{(2)}A_{(1)} = \frac{\Omega a}{\kappa P_0^2} \psi d\phi + Ad\phi + Bd\psi \text{ at red} \times S^1,$$

$${}^{(2)}A_{(2)} = \begin{cases} \frac{\Omega a}{\kappa P_0^2} \psi d\phi + Ad\phi + Bd\psi, & \text{at purple} \cup \{0\} \times S^1, \\ \frac{\Omega a}{\kappa P_0^2} (\psi - 2\pi) d\phi + Ad\phi + Bd\psi & \text{at green} \cup \{2\pi\} \times S^1. \end{cases}$$

Higher genus horizons

- No practical (easy?) coordinate system
- As in trivial case $K = \frac{4\pi(1-\text{genus})}{\text{Area}}$
 - Now $\Omega \neq 0$ so $K = \frac{\Lambda}{3}$ ok
- $\Omega = \frac{2\pi\chi_C\kappa}{\text{Area}}$ - gauge and cohomology invariant

Embedding spacetimes

Generalised Taub-NUT-(anti-) de Sitter (M, l, Λ)

$$g = -f(r) \left(dt + l \frac{i(\zeta d\bar{\zeta} - \bar{\zeta} d\zeta)}{1 + \frac{1}{2}\epsilon\zeta\bar{\zeta}} \right)^2 + f(r)^{-1} dr^2 + (r^2 + l^2) \frac{2d\zeta d\bar{\zeta}}{(1 + \frac{1}{2}\epsilon\zeta\bar{\zeta})^2},$$

$$f(r) = \frac{\epsilon(r^2 - l^2) - 2Mr - \Lambda(\frac{1}{3}r^4 + 2l^2r^2 - l^4)}{r^2 + l^2}, \quad \epsilon = 0, \pm 1$$

Interpreted a'la Misner: t cyclic.

Limits:

- Spherical: $\epsilon = 1, \zeta = \sqrt{2} \tan \frac{1}{2}\theta \exp(i\phi)$
 - $l = 0$ Schwarzschild-(anti-) de Sitter
- Planar: $\epsilon = 0, \mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$
- Hyperbolic: $\epsilon = -1, S$ with genus $> 1, S = \mathbb{H}/\Gamma, \Gamma \subset \text{PSL}(2, \mathbb{R})$

Embedding spacetime

Take:

- S compact Riemann surface with Riemannian g^ϵ and curvature $\epsilon = 0, \pm 1$
- $U(1)$ -bundle $\pi : P \rightarrow S$ with
 - Connection A satisfying $dA = \tilde{\Omega}\pi^*\eta^\epsilon$, $\tilde{\Omega} \in \mathbb{R}$
 - $U(1)$ -action generated by ℓ null w.r.t. $\tilde{\pi}^*g^\epsilon$, $A(\ell) = 1$
- $g = -h(r)A^2 + \frac{dr^2}{f(r)} + (r^2 + l^2)g^\epsilon$, $N \in \mathbb{R}$

Solving E.E. $\implies h(r) = N^2 f(r)$, $N \in \mathbb{R}$, $f(r)$ as in generalised Taub-NUT-(a)dS.
Finally Eddington-Finkelstein-like co-frame transformation

$$NA' := NA + \frac{dr}{f(r)}.$$

Well defined on horizon

$$g = -f(r)N^2 A'^2 + 2NA' dr + (r^2 + l^2)g^\epsilon.$$

Embedding

To embed IH with given Ω and K choose l and κ so that $(f(r_H) = 0)$

$$\Omega = \frac{\kappa}{r_H^2 + l^2} \frac{2\pi\chi_C}{\text{Area}(g^S)} = \frac{\epsilon - (r_H^2 + l^2)\Lambda}{r_H(r_H^2 + l^2)}$$

Bundle structure extends to entire spacetimes

$$U(1) \hookrightarrow P \times \mathbb{R} \xrightarrow{\Pi} S \times \mathbb{R}.$$

with connection

$$A_{\text{ST}} := \frac{g(\ell, \cdot)}{g(\ell, \ell)} = A$$

(A defined up to $H^1(S, \mathbb{R}) \implies$ Gravitational Aharonov-Bohm)

The End

Thank you for your attention!