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Hamiltonian theory of cosmological perturbations

We work with the ADM formalism. We split the geometric and other
variables:

δqij = qij − q̄ij , δπ
ij = πij − π̄ij , N 7→ N + δN, N i 7→ N i + δN i .

We expand the Hamiltonian constraint:

H = NH(0)
0 +

∫
Σ

(
NH(2)

0 + δNδH0 + δN iδHi

)
d3x .

We reduce before quantizing:

δH0 = 0 = δHi and δC0 = 0 = δCi s.t. Det|{δHµ, δCµ}| 6= 0.

In the end we obtain the physical Hamiltonian in terms of δD,

Hphys = NH(0)
0 +

∫
T3

NH(2)
phys(δD) d3x .

(1) When forming Hamilton’s equations we neglect the backreaction. (2)
δD satisfy first-order constraints. (3) No backreaction.
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Dynamical law

Issue: How to impose the no-backreaction condition at the quantum
level. Forming the Schrödinger equation with

Hphys 7→ Ĥphys = Ĥ(0) + Ĥ(2)

would break that condition.

Let us assume:

|ψ〉 = |ψB〉 · |ψP〉 ∈ Hhom ⊗Hinhom.

We introduce the quantum action

SQ(ψ) :=

∫
〈ψ| i~ ∂

∂t
− Ĥphys |ψ〉 dt.

We fix |ψB〉,

i~
∂

∂t
|ψB〉 = Ĥ(0)|ψB〉,

and vary SQ(ψ) wrt δ|ψP〉,

i~
∂

∂t
|ψP〉 = 〈ψB |Ĥ(2)|ψB〉 · |ψP〉.
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Dynamical law

Given a state,

|ψ〉 = |ψ(1)
B 〉 · |ψ

(1)
P 〉+ |ψ(2)

B 〉 · |ψ
(2)
P 〉+ · · · ⊂ Hhom ⊗Hinhom,

the variational method yields

i~∂t

 |ψ
(1)
P 〉
...

|ψ(n)
P 〉

 =

 〈ψ
(1)
B |Ĥ(2)|ψ(1)

B 〉 · · · 〈ψ
(1)
B |Ĥ(2)|ψ(n)

B 〉
...

. . .
...

〈ψ(n)
B |Ĥ(2)|ψ(1)

B 〉 · · · 〈ψ
(n)
B |Ĥ(2)|ψ(n)

B 〉


 |ψ

(1)
P 〉
...

|ψ(n)
P 〉

 ,
where

i~
∂

∂t
|ψ(n)

B 〉 = Ĥ(0)|ψ(n)
B 〉.

The states need to satisfy 〈ψ(n)
B |ψ

(m)
B 〉 = δnm.
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Model

The FLRW universe filled with perfect fluid and gravitational
waves:

ds2 = −N2dt2 + a2(δab + hab)dxadxb, M = T3 × R.

Given ȟab → ȟ± decomposed into two polarization modes, the
Hamiltonian in (q, p, ȟ±, π̌±) reads:

Hphys = H(0) −
∑
~k

H
(2)
~k
, H(0) =

1

2
p2,

H
(2)
~k

=
1

2
q−2|π̌±(~k)|2 +

k2

2
q

6w+2
3−3w |ȟ±(~k)|2,

where w = pressure
energy density , k comoving wave number. The scale factor

a = q
2

3−3w and p ∝ the Hubble rate H. The dynamics occurs in the fluid
time,

ω
∣∣
C=0

= dq ∧ dp + dTdpT
∣∣
pT =−H(0) .
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Classical motion

The Hamilton equations yield the background
dynamics:

p =
√

4H(0), q = p(T − Ts),

0 1 2 3 4 5
-3

-2

-1

0

1

2

3

q

p

and the gravity-wave propagation equation in

internal conformal time, η =
∫
q

6w−2
3−3w dT :

µ′′±,~k +

(
k2 − (q

2
3−3w )′′

q
2

3−3w

)
µ±,~k = 0,

where µ±,k = q
2

3−3w h±,k and a = q
2

3−3w .

Q: How does quantization modify the above dynamics?
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Quantization

The phase space:

(q ∈ R+, p, ȟ±,~k , π̌±,~k).

The canonical prescription q 7→ Q̂ and p 7→ P̂ does not work as P̂ is
nonself-adjoint. The dilation operator, D̂ = 1

2 (Q̂P̂ + P̂Q̂), is

self-adjoint and 1
i~ [Q̂, D̂] = Q̂. U(q, p) := e ipQ̂e−i ln(q)D̂ is UIR of

the affine group of real line U(q′, p′)U(q, p) = U(qq′, p
q′ + q′).

The quantum Hamiltonian, p2 7→ ( D̂

Q̂
)2 is self-adjoint for a wide class

of symmetric orderings. In generally,

p2 7→ P̂2 + ~2 K

Q̂2
, K >

3

4
,

where the repulsive potential ∝ Q̂−2 removes the singularity.

Closed algebra:

[Q̂2, Ĥ(0)] = 4i D̂, [D̂, Ĥ(0)] = 2iĤ(0), [Q̂2, D̂] = 2i Q̂2.
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Quantization

The nonsingular semiclassical dynamics,

q = qb
√

(kmaxT )2 + 1, p =
2(qbkmax)(kmaxT )√

(kmaxT )2 + 1
.

Free parameters: r , w , K .

Observable volume: Vb ∝ K
1

1−w

r
2

1−w
. Energy density: ρb ∝ r

2(1+w)
1−w

K
1+w
1−w

.

The quantum perturbation Hamiltonian reads:

Ĥ
(2)
~k

=
1

2
Q̂−2|π̂±(~k)|2 +

k2

2
Q̂

6w+2
3−3w |ĥ±(~k)|2.
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Quantization

We will assume: |ψ〉 = |ψB〉 · |ψP〉,

i~
∂

∂T
|ψP〉 = 〈ψB |Ĥ(2)|ψB〉 · |ψP〉,

where 〈ψB |Ĥ(2)
~k
|ψB〉 = 1

2 〈Q̂
−2〉|π̂±(~k)|2 + k2

2 〈Q̂
6w+2
3−3w 〉|ĥ±(~k)|2.

No SEMICLASSICAL spacetime!
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Quantum dynamics

In analogy with the classical case, we introduce

µ̂±,k = 〈Q̂−2〉
1

3w−3 ĥ±,k , η =

∫
〈Q̂−2〉

3w−1
3w−3 dT .

The choice of the moments is arbitrary and physically irrelevant.
The Heisenberg form of e.o.m.:

µ̂′′±,~k +

k2c2
g −

(
〈Q̂−2〉

1
3w−3

)′′
〈Q̂−2〉

1
3w−3

 µ̂±,~k = 0,

where c2
g = 〈Q̂

6w+2
3−3w 〉 〈Q̂−2〉

3w+1
3−3w . The essential moment is

〈Q̂−2〉 ≡ 〈â3w−3〉. The physical scale factor is a|sem = 〈â3w−3〉
1

3w−3 .
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Initial state

We introduce the mode functions:

µ̂~k(t) =
1√
2

(
â~kµ
∗
k(t) + â†

−~k
µk(t)

)
, [â~l , â

†
~k

] = δ~l,~k , W (µk , µ
∗
k) = 2i~.

The Bunch-Davies vacuum is set as the initial condition:

µk =

√
~

c∞g k
, µ́k = i

√
~c∞g k ,

(limt→±∞ cg = c∞g ). The mode functions hk are obtained from the
formal solution:

hk = A1(k)+A2(k)

∫ η dη′

〈Q̂−2〉
2

3w−3

−k2

∫ η

dη′c2
g 〈Q̂−2〉

2
3w−3 hk

∫ η′ dη′′

〈Q̂−2〉
2

3w−3

or numerically.

=⇒ First I will study the semiclassical bounce. Then I will study the
WKB bounce. I will use the WKB approximation to get an analytical
result depending on σ.
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Semiclassical dynamics

In the semiclassical dynamics,

ρ(x ,T ) = δ(x − q(T )), q(T ) = 〈Q̂〉(T ),

〈Q̂n〉 = 〈Q̂〉n for any n. It follows that c2
g = 1 and the e.o.m. reads

µ̂′′±,~k +

(
k2 − (q

2
3−3w )′′

q
2

3−3w

)
µ̂±,~k = 0,

where the scale factor is replaced with a|sem = q
2

3−3w depending on a
single parameter, K .
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Final state

The final state is a squeezed vacuum for two modes of a standing wave.
The perturbations emerge coherently. In the standard coherent state
representation, the probability distribution reads:

ρ(z) = π−1|〈z |0BD〉|2 =
e−|z|

2

e
Re[z̄2

β|k|
α|k|

]

π|α|k||2

The observable we study is the primordial amplitude spectrum δh.

δh(k) =
|hk |
2π

k
3
2 .
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Semiclassical dynamics
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Figure: The evolution of the amplitude of a few selected modes (LEFT) and
the primordial amplitude spectrum δh (RIGHT) in the semiclassical universe.

One finds the primordial amplitude spectrum:

δh,Semi ∝
r√
K

(
k

k∗

) 6w
3w+1
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Semiclassical dynamics

The primordial amplitude at the pivot scale is constrained:

δh,Semi ∝
r√
K

. 10−5.

Figure: The white regions represent the admissible values of the parameter K
and the energy density ρb at the bounce as functions of w given the upper
bound on the primordial GW amplitude from CMB data (r = 2).
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Quantum spread

Semiclassical vs. quantum description of the background geometry:
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Quantum states produce nontrivial moments 〈Q̂n〉 to which the
gravity-wave speed c2

g and the gravitational potential V are sensitive.
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WKB dynamics

We assume the solution to the background geometry

〈x |ψB〉(t) = A(x , t) exp [iS(x , t)/~], A,S ∈ R.

The Schrödinger eq. expanded in ~ yields at lowest order,

∂tS = −1

2

(
S2
,x +

~2K

x2

)
, ∂tA

2 = −∂x(A2S,x),

where S is Hamilton’s principal function

S(t, x) =
1

2

∫ t,x (1

4
x2
,t′ −

K

x2

)
dt ′,

where the integral is taken over the semiclassical trajectories with fixed
initial conditions, and A2 behaves like the density of particles following
the semiclassical trajectories.
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WKB dynamics

Let us assume the density distribution at the bounce to read

ρ(x) =
x

2q2
bσ
χ[qb(1−σ),qb(1+σ)](x),

where χ[qb(1−σ),qb(1+σ)](x) is the characteristic function, qb is a fixed
bouncing point and 0 < σ < 1 is a free dimensionless parameter. For
σ → 0,

ρ(x) → δ(x − qb),

〈Q̂2〉 = q2
b

(
1 + σ2 +

ln
∣∣ 1+σ

1−σ

∣∣
2σ

(kmax t)2

)
→ q2

b

(
1 + (kmax t)2

)
= q2,

〈Q̂−2〉 =
1

8q2
bσ

ln

∣∣∣∣ (1 + σ)4 + (kmax t)2

(1− σ)4 + (kmax t)2

∣∣∣∣ → 1

q2
b(1 + (kmax t)2)

= q−2,

(∆Q̂)2
∣∣
t=0

= q2
bσ

2 → 0.

The parameter σ has the interpretation of the relative ‘volume’

dispersion, σ2 = (∆Q̂)2

〈Q̂〉2

∣∣∣∣
t=0

.
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WKB dynamics

E.o.m.:

µ′′±,k +
(
k2c2

g ,σ − Vσ
)
µ±,k = 0
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Figure: The gravitational potential V in the semiclassical and WKB universes
(LEFT). The gravity-wave speed in the semiclassical and WKB universes
(RIGHT).
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Results

Analytical result:

δh,WKB = (1 + σ2)−
1

3w+1 δh,Semi
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Figure: The evolution of a selected mode in the semiclassical and the WKB
universe (LEFT). The suppression of primordial gravitational wave amplitude
δh, as function of the dispersion σ (RIGHT).

Amplitude suppression with spectral index unaltered.
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Discussion

The full dynamical equation for the evolution of linear perturbations
on a quantum background leads to the multiverse scenario.

The quantum spread of the background geometry influences the
propagation of linear perturbations in the universe. A rough estimate
is given by the WKB calculation that yields an analytical result as
function of the value of spread.

The result: the spectral index is insensitive to the spread whereas the
overall amplitude may be significantly suppressed e.g. for negative
pressure fluids. The suppression could alleviate the large K problem.

Further questions: Other WKB states? What is beyond the WKB
approximation? Would the interference produce more effects? How
would the matter perturbations be affected by background
uncertainties?

I showed you a relatively small effect. In my opinion, it suggests the
possibility that significant physical effects in the primordial universe
might be neglected by semiclassical approaches, and more studies
are needed. In particular, the full dynamics needs to be studied.
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