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Motivation

e CPT is a working model of gravity at cosmological scales. Consistent
quantization may explain (to some extent) the origin of primordial
structure. Anisotropy could play a significant role in the primordial
universe. The fewer primordial symmetries the better model.

@ Hamiltonian form of CPT provides a simple laboratory for
quantizations of gravity. Such issues as quantization prescription,
diffeomorphism invariance and time problem, semiclassical spacetime
reconstruction, etc can be studied within this framework.

@ Dirac method has purely classical applications: representations of
gravitational waves (the tensor part of the three-metric &
three-momentum perturbation is constrained in anisotropic
universe).
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Dirac’'s method
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ADM formalism for cosmological perturbations

Split the geometric and matter variables in the ADM formalism:

6q; = qij — Gyj, on =70 — 7V Ns N4+ 6N, N N' 45N

Expand the ADM Hamiltonian:
H = NH{ + / (NHE) + 6NGHo + 6N'SH;),
b
where the constraints are first-class (up to first order):

{0H;,6H;} =0, {0H;,dHo} =0,
{HY +/Z’H<2%6Ho} = ~iK'sH;, {Hy */ZHQ)"SH"} -0
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Dirac method for cosmological perturbations

Reduction of a constrained system = establishing a reduced phase space
with a physical Hamiltonian.

At the background level:
HO =0, t© =¢ (H? t@}£0
At the perturbation level:
dH, =0, 6C, =0, [{0H,,dC,}|#0
The Dirac bracket:
{3 ={,}-{,00,}{5b,,60,} s, -}, §&, c {0Ho,...,6Co,...}

The choice of physical variables:

0 2
Hohys = H;(yh)ys(vphyS) + /z anh)ys(d Vphys)-
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Dirac method: phase space picture

L

(tq.p) € R x phase space
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Dirac method:

spacetime picture
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Dirac method: gauge-invariant description

Dirac observables:
{6Dy,6H,} =0 for all p.
Express them in terms the physical variables dvppys

dD; 4+ £'6C,, + (' 0H, = dVphys 1,

{6Dy,6D,} ={6Dy,0D,}p
={0D; +&'0C, + (;'0H,,, 6D, + £56C, + ¢éH,}p
= {SVphys,la 5Vphys,J}Da

Substitute:

H;(zii/s((svphys,l) — H

ohys(0D1)
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Dirac method: spacetime reconstruction

The stability of gauge-fixing conditions:

NH
{6C,, H} =0 = 57 = —{6C,,6H,}71{6C,, HY + HA} =

SNH

—y(0D1)

Reconstruction of the three-surfaces:

(5C,,,5HM,5D/) <~ (5q,-j,57r"j) = 5q,-j(5D/)
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KuchaF parametrization

In kinematical phase space introduce a canonical parametrization:

oDy
" ——
(8g;,67Y) — (6H,,86C,,6Q;, 6P))
ADM Kuchar

The total Hamiltonian is given by Hx = Hapy + K, where
K= [z NK®.

Hy = /v/ HE) (6Q1,8P1) + (M1u0Q" + XaruP" + A3uv0HY + Xy 6CY ) SH
pX

physical part weakly vanishing part

1. A1 and A, depend on 6C,,,

o,
N

 OHxk
sc, OOHF

~ —)\1/M(SQI — )\2/#(5:‘3,.

Je ®

2. A3 is completely irrelevant and can be disregarded.
3. A4 is implied by the constraint algebra (gauge-invariant).
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Gauge transformations

Consider a canonical transformation:
(6H,,,6C,,,6Qs, 6P;) = (6H,,,6€,., Gy, 6P)).

Hence,

{6€, —6C,,,6H,} =0,
implying
6€,, = 0C, + 6P + B0 Q" + ~,,0H”,

where o and 8 are any dynamical parameters.

° (56# — 0C,, depend essentially on Dirac observables and shift the
vanishing of the gauge-fixing functions for each gauge orbit
independently

e Gauge-fixing functions §C,, are dynamical (chosen for each moment
of time)

@ At each moment of time the space of each gauge-fixing condition is
isomorphic to the (linear) space of Dirac observables, a choice of the
origin has to be made (FSG).
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Gauge transformations

The new KuchaF parametrization reads:

. 1
6C, = 6C, + adP' + B.6Q" + > (awiB,) — aup,) H,

Ypv
6Q = 6Q; + v dH”,
6P; = 6P — Bu0H",

1/, . . .
AK® = - (m,%’ - Bl,,a#’) SHYSHY + (6,y0P + B,16Q)oH".
Compute the stability of a new gauge:

o,
N

 OHk
5€,, OOHH

)

5C,,

0 0 06C, 0 00Q; 0 0oP; 0

= = + = = = .
96H, OH, ~ 9éH, 90C, ~ OH, DOQ;  DéH,, DOP,
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Gauge transformations

ONu| Ny
N 5€,, N 5C,
827{ hys 827'[ hys .
(350’5(;@ Wé)péylﬂﬁw — Byt + N B | 6Q
32 hys (9 H h s .
(&;P’@p(;yQ-’ Qps — %P/i(;(;ypjﬁht — Cpt + Aapn iy 5P

Plug in the gauge transformation coefficients o and (3, make use of the
physical Hamiltonian 7—[22,1)},5 and the constraint algebra \4, and obtain the
new lapse and shifts.
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Partial gauge-fixing

Replace all or some of the gauge-fixing conditions with conditions on the lapse
and shift functions (example: the synchronous gauge).

It is

. 5N
u " u
partial” because —/*

SN, L
- ‘ ~ 0 implies

’(SC u 5C,,

PHP P
J_7 Ttphys g J 7 Ttphys v
o 35QJ85P’ B a5PIospPl T a0’y
- PH 9PH®
Jiphys _gd_ T phys v
Bu = 30Q795Q! " 95PIOsQ! + X 8.

CYM/

For any (aui(to), Bui(to)) a unique solution t = (cvu(t), Bui(t)) exists.
Hence, there is complete freedom in fixing 6C,.(to).

Phase space picture: once 6C,(to) is fixed at one time, it is determined at
all times.

Spacetime picture: 6(~:u(to) are needed in order to unambiguously move
from the Kucha¥ to the ADM parametrization of the (intrinsic and
extrinsic) geometry. Hence, once an arbitrary initial three-surface with
space coordinates is chosen, it is propagated uniquely through the
four-dimensional spacetime if the lapse and shifts are fixed everywhere.
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Application:

Perturbed Bianchi | universe
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Perturbed Bianchi | universe

The background metric of the Bianchi Type | model reads:
ds? = —N2dt? + Z a?(dx")?, (313233)%
where the coordinates (x*, x2,x3) € [0,1)* are assumed.

The canonical perturbation variables read
5qj = qij — a2, ont =al —pisi Sp=¢— @, dmy=my — Ty,
The Fourier transform of a perturbation variable 6 X,
5X (k) = /X SX (%)= dix,
yields
{00(k), 0% (K')} = 0, {005(K), 0% (K')} = 076" 0

(Z ~ T?’, ki =2mn;, n; € Z)
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Perturbed Bianchi | universe

(Fix conformal metric: v; = a~2§;):

|
1 2
Aj =5, Ay = kiki = 37

1 1
Agzﬁ(k,vﬁv,-kj), Ajj——z(k, i+ Wik )
s L (o 6 L (oo

5qn = 0G; AL om" = SxIAL.
The Poisson bracket now reads
{00(k), 07°(K')} = b —sr» {0Gn(k), 07™(K')} = 6,70, —sr-

n ijr . . oA A
Ajj's and Al's are in general time-dependent as ;; and (ki, Vi, W;) evolve.
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The Fermi-Walker basis

The Fourier transform fixes a slicing of the spatial coordinate space

(x, x2,x3) with the wavefronts of plane waves. In the physical space, the
wavefronts are not fixed but being continuously tilted and anisotropically
contracted or expanded. The tangent basis (7, W) can be Fermi-Walker
transported along the (future-oriented) null vector field 5 whose spatial

component is dual to the wavefront k of a gravitational wave,
p=k+ man )

where Vzp = 0. Field p' may be identified with tangents to null geodesics
associated with rays of gravitational waves in the eikonal approximation
(i.e., for large wavenumbers):

dv o o dw/ o j oj
= 0wV — OywW, = —OwwW —OowV,
dn dn

(unfortunately, not suitable for quantization).
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Reduction of the ADM formalism

Set gauge-fixing functions (flat slicing gauge):
(5C1 = (5(]1, (5C2 = (56]2, (5C3 = (5(73, (5C4 = (5(]4.

A complete set of second-class constraints:

d®, = {0Cy,0C5,6C3,0C4,0Ho, 0H,, 0H,, 0H,, }, det{o®,,0®,} # 0.

Introduce Dirac’s bracket:

{ o ={}-{,00,}{s®, 50,}7 {50, }.

Reduce the Hamiltonian:
= / NHS
5C=0 b

By removing (dq;, m;), i =1,2,3,4, we obtain

Hphys = / (NHE) + 5NH6H,)
p

6C=0

oMY | oMY |
5= N sC - _N 0 Isc
%9 aor " 96q

where (6q, 571') € {((5(]5, 571'5)7 ((Sq(,, (571'6), ((5¢, (57T¢)}.

20/26



Physical Hamiltonian

After rescaling (6gs, 6ms), (0ge,0ms), (90, 9m4):

N

Hg =
BI 23

[67"1% + 07 + 675 + (K* + Us)3d2 + (K> + Us)ddg + (K + Uy)6¢°
+ G10d5686 + 208506 + 636616&5].

Rename the dynamical variables:

Hpg :2—’\2 [5P12 + 0P34+ 6P5 + (K> + Us)3QF + (k* + Us)d @3 + (K* + Uy)d Q3
+ GOQIQr + CoQ16Qs + C35025Q3],

where §Q; and 6P, are Dirac observables s.t.:

6Qusc = 65, 6Qa|sc = 65, 0Qs|5c = 09,

5P1|;c = 675, 6P, ;e = 0, OP3|;c = 07ty

|6C ‘5C
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Dirac observables

1 2Py 1
§Qp = —&8a5 + (6g1 — —dq2),
V2 aPyy 3
N
1 Py — Puww 1
6Q) = ——dag +—— " (5q1 — ~bap),
V2a aPpy 3
N
P, 1
5Q3 = 366 + —2—(5qy — - 6ap),
Py 3

5

3(TP) — P, 2P, Pw — P

3P) = V2admy + A kk g5 — w w WW(S% +va545>,
Vaa3 V2a3Py 2

vw

1 P,
2
+ F(Puws Pl P )01 = - 002) = (3Pukdar + @ 80) + — (P 503 + Py 54)
Pk

S
@)

3(TP) — P, Py — P, Py — P
6Py = V3abmg + 0 Kk sgg — —L MW (W T WY s+ Py Sas
V2a3 V2a3Pyy 2

2 2
Py, — P, PZ — P 1 Py — P, V2
+F (L ke ) (sgp — —6ap) — " (3PS + a7 pp6®) + — (Piy a3 — PhySaa)
2 2 3 2a3 Py a3
2 6 3
1 (TrP)Pyy + 3p 3p 2(TrP)Pypgy — 630 Py V o5 — 3p
5P3:—67r¢—7¢6 — D sar + ¢ 5 ¢ ? (sa1 — - 5a3)
a 6aPyy 2a3 6a3P2, 3

2 2
b Py, — P, Py ((Puw — Pww)® + 4P,
b ( v ww S5 + va5‘75) _Pe ( vw)
2

1
(5q1 — = 6ap)-
3p2
2a Pkk 3
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Dirac observables

The rotation of the Dirac observables in the (7, w)-plane:
R;(0)0Q1 = cos(20)d Q1 — sin(26)0 Q>

(20)

R;(8)6P1 = cos(20)5 Py — sin(20)0 P,

05(20)d Q> + sin(26)0 Qy
(20)

R;(0)0Qx =

R;(0)0P> = cos(20)d P2 + sin(26)6 Py
Ri(0)6Qs = 0Qs
R;(0)0P3 = 6P3

where R;(6) is the rotation around k = 0 x W by the angle 6.
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Physical metric

L Fsz—f,;;”k Q- D= Pg0, - Pl s
|, =00 (o ) voe(am - am )
+503<"’2;/k¢ p;’azT,;Z) ‘:’%) + PWchSPl + sz,_) TPy 4 5 0P
L 501(2;2P”W 2 )+ os(2elBe ) | 200 ), P s
6NW B wl(zalzklzvpkvw 2sz> L 5Q (Pkw(fzv;F;kwa) B 23/—:2W) N fzk:ﬁ 50,
5gs = V2a0Q:

5qs = V220 Qs
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Gravitational waves in anisotropic universe

Scalar gravity gauge:

6C€1 =68qgo, 6Cy:=40qs, 6C3:=0dqs, 6C4:=dgs.

H 2
Det {0H,5C} = —w,
2P,
Q=225
Ql alek qi,
1 P, — P
Q= 5qs + ———4q1,
Q2 25 de P o]}
SN, SN, 1
el R — ALSQy + BLSP
N SG N FS g g
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Conclusions

@ Hamiltonian form of CPT can be a useful playground for
quantizations of gravity. Such issues as quantization prescription,
diffeomorphism invariance and time problem, semiclassical spacetime
reconstruction, ...can be studied within this framework.

@ The reduced phase space for anisotropic CPT can be easily derived
with the Dirac method. Anisotropic CPT brings in some interesting
issues: the dynamical triad (k, ¥, W), new gauges including the
representation of a gravitational wave by a scalar metric
perturbation, richer dynamics of perturbations, . ..

@ The structure of the theory is conveniently displayed in the Kucha¥
parametrization. The gauge transformations can be conveniently
formulated and gauge-fixing can be achieved in various way.
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