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Motivation

CPT is a working model of gravity at cosmological scales. Consistent
quantization may explain (to some extent) the origin of primordial
structure. Anisotropy could play a significant role in the primordial
universe. The fewer primordial symmetries the better model.

Hamiltonian form of CPT provides a simple laboratory for
quantizations of gravity. Such issues as quantization prescription,
diffeomorphism invariance and time problem, semiclassical spacetime
reconstruction, etc can be studied within this framework.

Dirac method has purely classical applications: representations of
gravitational waves (the tensor part of the three-metric &
three-momentum perturbation is constrained in anisotropic
universe).
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Dirac’s method
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ADM formalism for cosmological perturbations

Split the geometric and matter variables in the ADM formalism:

δqij = qij − q̄ij , δπ
ij = πij − π̄ij , N 7→ N + δN, N i 7→ N i + δN i .

Expand the ADM Hamiltonian:

H = NH
(0)
0 +

∫
Σ

(
NH(2)

0 + δNδH0 + δN iδHi

)
,

where the constraints are first-class (up to first order):

{δHi , δHj} = 0, {δHj , δH0} = 0,

{H(0)
0 +

∫
Σ

H(2), δH0} = −ik jδHj , {H(0)
0 +

∫
Σ

H(2), δHi} = 0.
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Dirac method for cosmological perturbations

Reduction of a constrained system = establishing a reduced phase space
with a physical Hamiltonian.

At the background level:

H
(0)
0 = 0, t(0) = t, {H(0)

0 , t(0)} 6= 0

At the perturbation level:

δHµ = 0, δCν = 0, |{δHµ, δCν}| 6= 0

The Dirac bracket:

{·, ·}D = {·, ·}−{·, δΦµ}{δΦµ, δΦν}−1{δΦν , ·}, δΦν ∈ {δH0, . . . , δC0, . . . }

The choice of physical variables:

Hphys = H
(0)
phys(vphys) +

∫
Σ

H(2)
phys(δvphys).
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Dirac method: phase space picture

(t,q,p) ∈ R1 x phase space
ᵱ = dq∧dp - dt∧dh

constraint surface C=0
ᵱ|C=0= dq∧dp - dt∧dh

𝛿H𝜇 = 0
constraint surface

𝛿𝜉

    𝛿𝑐𝜇 = 0
   gauge-fixing surface

D 
Dirac space

 gauge orbit

canonical isomorphism

       𝛿𝑐’𝜇 = 0
  gauge-fixing surface

 gauge generator

𝛿𝜉

𝛿𝜉

7 / 26



Dirac method: spacetime picture

background manifold homogeneous spacetime inhomogeneous spacetime

8 / 26



Dirac method: gauge-invariant description

Dirac observables:

{δDI , δHµ} ≈ 0 for all µ.

Express them in terms the physical variables δvphys

δDI + ξµI δCµ + ζµI δHµ = δvphys,I ,

{δDI , δDJ} = {δDI , δDJ}D
= {δDI + ξµI δCµ + ζµI δHµ, δDJ + ξµJ δCµ + ζµJ δHµ}D
= {δvphys,I , δvphys,J}D ,

Substitute:
H

(2)
phys(δvphys,I ) −→ H

(2)
phys(δDI )
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Dirac method: spacetime reconstruction

The stability of gauge-fixing conditions:

{δCν ,H} = 0 ⇒ δNµ

N
= −{δCν , δHµ}−1{δCν ,H(0)

0 + H(2)} ⇒ δNµ

N
(δDI )

Reconstruction of the three-surfaces:

(δCν , δHµ, δDI )↔ (δqij , δπ
ij) ⇒ δqij(δDI )
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Kuchǎr parametrization

In kinematical phase space introduce a canonical parametrization:

(δqij , δπ
ij)︸ ︷︷ ︸

ADM

7→ (δHµ, δCµ,

δDJ︷ ︸︸ ︷
δQI , δPI )︸ ︷︷ ︸

Kuchar

The total Hamiltonian is given by HK = HADM + K , where
K =

∫
Σ
NK(2).

HK = N

∫
Σ

H(2)
phys

(
δQI , δPI

)︸ ︷︷ ︸
physical part

+
(
λ1IµδQ

I + λ2IµδP
I + λ3µνδHν + λ4µνδCν

)
δHµ︸ ︷︷ ︸

weakly vanishing part

1. λ1 and λ2 depend on δCµ,

δNµ
N

∣∣∣∣
δCµ

=
∂HK

∂δHµ

∣∣∣∣
δCµ

≈ −λ1IµδQ
I − λ2IµδP

I .

2. λ3 is completely irrelevant and can be disregarded.
3. λ4 is implied by the constraint algebra (gauge-invariant).
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Gauge transformations

Consider a canonical transformation:

(δHµ, δCµ, δQI , δPI ) 7→ (δHµ, δC̃µ, δQ̃I , δP̃I ).

Hence,
{δC̃µ − δCµ, δHν} = 0,

implying

δC̃µ = δCµ + αµI δP
I + βµI δQ

I + γµνδH
ν ,

where α and β are any dynamical parameters.

δC̃µ − δCµ depend essentially on Dirac observables and shift the
vanishing of the gauge-fixing functions for each gauge orbit
independently

Gauge-fixing functions δCµ are dynamical (chosen for each moment
of time)

At each moment of time the space of each gauge-fixing condition is
isomorphic to the (linear) space of Dirac observables, a choice of the
origin has to be made (FSG).
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Gauge transformations

The new Kuchǎr parametrization reads:

δC̃µ = δCµ + αµI δP
I + βµI δQ

I +
1

2

(
ανIβ

I
µ − αµIβ I

ν

)
︸ ︷︷ ︸

γµν

δHν ,

δQ̃I = δQI + αµI δH
µ,

δP̃I = δPI − βµI δHµ,

∆K(2) =
1

2

(
β̇νIα

I
µ − βνI α̇ I

µ

)
δHνδHµ + (α̇µI δP

I + β̇µI δQ
I )δHµ.

Compute the stability of a new gauge:

δNµ
N

∣∣∣∣
δC̃µ

=
∂HK

∂δHµ

∣∣∣∣
δC̃µ

,

∂

∂̃δHµ

=
∂

∂δHµ
+
∂δCν

∂̃δHµ

∂

∂δCν
+
∂δQ I

∂̃δHµ

∂

∂δQ I
+
∂δP I

∂̃δHµ

∂

∂δP I
.
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Gauge transformations

δNµ
N

∣∣∣∣
δC̃µ

− δNµ
N

∣∣∣∣
δCµ

≈(
∂2H(2)

phys

∂δQ I∂δQJ
αJµ −

∂2H(2)
phys

∂δQ I∂δPJ
βµJ − β̇µI + λ4µνβνI

)
δQ I

+

(
∂2H(2)

phys

∂δP I∂δQJ
αµJ −

∂2H(2)
phys

∂δP I∂δPJ
βJµ − α̇µI + λ4µνανI

)
δP I .

Plug in the gauge transformation coefficients α and β, make use of the

physical Hamiltonian H(2)
phys and the constraint algebra λ4, and obtain the

new lapse and shifts.
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Partial gauge-fixing

Replace all or some of the gauge-fixing conditions with conditions on the lapse
and shift functions (example: the synchronous gauge).

It is “partial” because
δNµ
N

∣∣
δC̃µ
− δNµ

N

∣∣
δCµ
≈ 0 implies

α̇µI = α J
µ

∂2H(2)
phys

∂δQJ∂δP I
− β J

µ

∂2H(2)
phys

∂δPJ∂δP I
+ λ4µνα

ν
I ,

β̇µI = α J
µ

∂2H(2)
phys

∂δQJ∂δQ I
− β J

µ

∂2H(2)
phys

∂δPJ∂δQ I
+ λ4µνβ

ν
I .

For any (αµI (t0), βµI (t0)) a unique solution t 7→ (αµI (t), βµI (t)) exists.
Hence, there is complete freedom in fixing δC̃µ(t0).

Phase space picture: once δC̃µ(t0) is fixed at one time, it is determined at
all times.

Spacetime picture: δC̃µ(t0) are needed in order to unambiguously move
from the Kuchǎr to the ADM parametrization of the (intrinsic and
extrinsic) geometry. Hence, once an arbitrary initial three-surface with
space coordinates is chosen, it is propagated uniquely through the
four-dimensional spacetime if the lapse and shifts are fixed everywhere.
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Application:

Perturbed Bianchi I universe
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Perturbed Bianchi I universe

The background metric of the Bianchi Type I model reads:

ds2 = −N2dt2 +
∑

a2
i (dx i )2, a = (a1a2a3)

1
3 ,

where the coordinates (x1, x2, x3) ∈ [0, 1)3 are assumed.

The canonical perturbation variables read

δqij = qij − a2
i δij , δπij = πij − piδij , δφ = φ− φ̄, δπφ = πφ − π̄φ,

The Fourier transform of a perturbation variable δX ,

δX̌ (k) =

∫
Σ

δX (x)e−ikix
i

d3x ,

yields

{δφ̌(k), δπ̌φ(k ′)} = δk,−k′ , {δq̌ij(k), δπ̌lm(k ′)} = δ l
(i δ

m
j) δk,−k′ ,

(Σ ' T3, ki = 2πni , ni ∈ Z).
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Perturbed Bianchi I universe

(Fix conformal metric: γij = a−2q̄ij):

A1
ij = γij , A2

ij = k̂i k̂j −
1

3
γij ,

A3
ij =

1√
2

(
k̂i v̂j + v̂i k̂j

)
, A4

ij =
1√
2

(
k̂i ŵj + ŵi k̂j

)
,

A5
ij =

1√
2

(
v̂i ŵj + ŵi v̂j

)
, A6

ij =
1√
2

(
v̂i v̂j − ŵi ŵj

)
.

δqn = δq̌ijA
ij
n , δπn = δπ̌ijAn

ij .

The Poisson bracket now reads

{δφ̌(k), δπ̌φ(k ′)} = δk,−k′ , {δqn(k), δπm(k ′)} = δ m
n δk,−k′ .

An
ij ’s and Aij

n ’s are in general time-dependent as γij and (k̂i , v̂i , ŵi ) evolve.
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The Fermi-Walker basis

The Fourier transform fixes a slicing of the spatial coordinate space
(x1, x2, x3) with the wavefronts of plane waves. In the physical space, the
wavefronts are not fixed but being continuously tilted and anisotropically
contracted or expanded. The tangent basis (v̂ , ŵ) can be Fermi-Walker
transported along the (future-oriented) null vector field ~p whose spatial
component is dual to the wavefront k of a gravitational wave,

~p = k + |k |∂η ,

where ∇~p~p = 0. Field ~p may be identified with tangents to null geodesics
associated with rays of gravitational waves in the eikonal approximation
(i.e., for large wavenumbers):

dv̂ j

dη
= −σvv v̂ j − σvw ŵ j ,

dŵ j

dη
= −σww ŵ j − σwv v̂ j ,

(unfortunately, not suitable for quantization).
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Reduction of the ADM formalism

Set gauge-fixing functions (flat slicing gauge):

δC1 := δq1, δC2 := δq2, δC3 := δq3, δC4 := δq4.

A complete set of second-class constraints:

δΦρ = {δC1, δC2, δC3, δC4, δH0, δHk , δHv , δHw}, det{δΦρ, δΦσ} 6= 0.

Introduce Dirac’s bracket:

{·, ·}D = {·, ·} − {·, δΦρ}{δΦρ, δΦσ}−1{δΦσ, ·}.

Reduce the Hamiltonian:

Hphys =

∫
Σ

(
NH(2)

0 + δNµδHµ

)∣∣∣∣
δC=0

=

∫
Σ

NH(2)
0

∣∣∣∣
δC=0

.

By removing (δqi , δπi ), i = 1, 2, 3, 4, we obtain

δq̇ = N
∂H(2)

0

∣∣
δC

∂δπ
, δπ̇ = −N

∂H(2)
0

∣∣
δC

∂δq
,

where (δq, δπ) ∈ {(δq5, δπ5), (δq6, δπ6), (δφ, δπφ)}.
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Physical Hamiltonian

After rescaling (δq5, δπ5), (δq6, δπ6), (δφ, δπφ):

HBI =
N

2a

[
δπ̃2

5 + δπ̃2
6 + δπ̃2

φ + (k2 + U5)δq̃2
5 + (k2 + U6)δq̃2

6 + (k2 + Uφ)δφ̃2

+ C1δq̃5δq̃6 + C2δq̃5δφ̃+ C3δq̃6δφ̃

]
.

Rename the dynamical variables:

HBI =
N

2a

[
δP2

1 + δP2
2 + δP2

3 + (k2 + U5)δQ2
1 + (k2 + U6)δQ2

2 + (k2 + Uφ)δQ2
3

+ C1δQ1δQ2 + C2δQ1δQ3 + C3δQ2δQ3

]
,

where δQI and δPI are Dirac observables s.t.:

δQ1

∣∣
δC

= δq̃5, δQ2

∣∣
δC

= δq̃6, δQ3

∣∣
δC

= δφ̃,

δP1

∣∣
δC

= δπ̃5, δP2

∣∣
δC

= δπ̃6, δP3

∣∣
δC

= δπ̃φ.
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Dirac observables

δQ1 =
1
√

2a
δq5︸ ︷︷ ︸

+
2Pvw

aPkk

(δq1 −
1

3
δq2),

δQ2 =
1
√

2a
δq6︸ ︷︷ ︸

+
Pvv − Pww

aPkk

(δq1 −
1

3
δq2),

δQ3 = aδφ +
pφ

aPkk

(δq1 −
1

3
δq2)

︸ ︷︷ ︸
,

δP1 =
√

2aδπ5 +

5
6

(TrP) − Pkk
√

2a3
δq5︸ ︷︷ ︸
−

2Pvw
√

2a3Pkk

(
Pvv − Pww

2
δq6 + Pvw δq5

)
,

+ F(Pvw , Pkv Pkw )(δq1 −
1

3
δq2) −

Pvw

a3Pkk

(
3Pkkδq1 + a2pφδφ

)
+

√
2

a3

(
Pkw δq3 + Pkv δq4

)

δP2 =
√

2aδπ6 +

5
6

(TrP) − Pkk
√

2a3
δq6︸ ︷︷ ︸
−

Pvv − Pww
√

2a3Pkk

(
Pvv − Pww

2
δq6 + Pvw δq5

)

+ F

 Pvv − Pww

2
,
P2
kv − P2

kw

2

(δq1 −
1

3
δq2) −

Pvv − Pww

2a3Pkk

(
3Pkkδq1 + a2pφδφ

)
+

√
2

a3

(
Pkv δq3 − Pkw δq4

)

δP3 =
1

a
δπφ −

(TrP)Pkk + 3p2
φ

6aPkk

δφ −
3pφ

2a3
δq1 +

2(TrP)Pkk pφ − 6a6PkkV,φ − 3p3
φ

6a3P2
kk

(δq1 −
1

3
δq2)

︸ ︷︷ ︸
−

pφ
√

2a3Pkk

(
Pvv − Pww

2
δq6 + Pvw δq5

)
−

pφ

(
(Pvv − Pww )2 + 4P2

vw

)
2a3P2

kk

(δq1 −
1

3
δq2).
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Dirac observables

The rotation of the Dirac observables in the (v̂ , ŵ)-plane:

Rk̂(θ)δQ1 = cos(2θ)δQ1 − sin(2θ)δQ2

Rk̂(θ)δP1 = cos(2θ)δP1 − sin(2θ)δP2

Rk̂(θ)δQ2 = cos(2θ)δQ2 + sin(2θ)δQ1

Rk̂(θ)δP2 = cos(2θ)δP2 + sin(2θ)δP1

Rk̂(θ)δQ3 = δQ3

Rk̂(θ)δP3 = δP3

where Rk̂(θ) is the rotation around k̂ = v̂ × ŵ by the angle θ.
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Physical metric

δN

N

∣∣∣∣
FS

= − Pvw

aPkk
δQ1 −

Pvv − Pww

2aPkk
δQ2 −

pφ
2aPkk

δQ3

δNk

N

∣∣∣∣
FS

= δQ1

(
Pvw

2a2
− 2PkvPkw

a2Pkk

)
+ δQ2

(
P2
kw

a2Pkk
− P2

kv

a2Pkk
+

Pvv − Pww

4a2

)
+ δQ3

(
a4V,φ
2Pkk

− pφ(TrP)

2a2Pkk
+

3pφ
4a2

)
+

Pvw

Pkk
δP1 +

Pvv − Pww

2Pkk
δP2 +

pφ
2Pkk

δP3

δNv

N

∣∣∣∣
FS

= δQ1

(
2PkvPvw

a2kPkk
+

2Pkw

a2k

)
+ δQ2

(
Pkv (Pvv − Pww )

a2kPkk
+

2Pkv

a2k

)
+

Pkvpφ
a2kPkk

δQ3

δNw

N

∣∣∣∣
FS

= δQ1

(
2PkwPvw

a2kPkk
+

2Pkv

a2k

)
+ δQ2

(
Pkw (Pvv − Pww )

a2kPkk
− 2Pkw

a2k

)
+

Pkwpφ
a2kPkk

δQ3

δq5 =
√

2aδQ1

δq6 =
√

2aδQ2
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Gravitational waves in anisotropic universe

Scalar gravity gauge:

δC̃1 = δq2, δC̃2 := δq3, δC̃3 := δq4, δC̃4 := δq5.

Det {δH, δC̃} = −8i
√

2k2Pvw

a
,

δQ1 =
2Pvw

aPkk
δq1,

δQ2 =
1√
2a
δq6 +

Pvv − Pww

aPkk
δq1,

δÑµ
N

∣∣∣∣
SG

− δNµ
N

∣∣∣∣
FS

= AµδQ1 + BµδP
1.
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Conclusions

Hamiltonian form of CPT can be a useful playground for
quantizations of gravity. Such issues as quantization prescription,
diffeomorphism invariance and time problem, semiclassical spacetime
reconstruction, . . . can be studied within this framework.

The reduced phase space for anisotropic CPT can be easily derived
with the Dirac method. Anisotropic CPT brings in some interesting
issues: the dynamical triad (k̂ , v̂ , ŵ), new gauges including the
representation of a gravitational wave by a scalar metric
perturbation, richer dynamics of perturbations, . . .

The structure of the theory is conveniently displayed in the Kuchǎr
parametrization. The gauge transformations can be conveniently
formulated and gauge-fixing can be achieved in various way.
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