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1. Introduction

e In the case of spherical symmetry, an “unstoppable gravitational collapse” (resulting
in a spacetime singularity — within classical general relativity) necessarily leads to a
Schwarzschild black hole (cf. Oppenheimer & Snyder 1939) or, if there is some electric
charge, to a Reissner-Nordstram black hole.

e Without spherical symmetry, for example in the case of a collapsing rotating star,
the result of a complete collapse is much more difficult to predict. The (weak)
cosmic censorship conjecture (Penrose 1969), combined with (i) the assumption that
the exterior gravitational field settles down to a stationary state and (ii) the black
hole uniqueness (“no-hair theorem”: Israel, Carter, Hawking, Robinson, Mazur, ...),
predicts the formation of a Kerr (or Kerr-Newman) black hole.

e With rotation (and/or electric charge), quasi-stationary collapse scenarios, described
by sequences of equilibrium configurations becoming more and more compact, are
possible. Do they lead to black holes or to naked singularities?



e A continuous sequence of stationary and axisymmetric, uniformly rotating perfect
fluid bodies reaches a black hole limit if and only if the relation

M = 2QJ (G=c=1)
is satisfied in the limit (Meinel 2006). The limit leads to an extreme Kerr black hole.

e The existence of such a limit was first demonstrated for rotating discs of dust,
numerically by Bardeen & Wagoner (1971) and analytically by Neugebauer & M.
(1995). This result is in remarkable agreement with cosmic censorship.

e Further numerical examples, for genuine fluid bodies, were provided by the
“relativistic Dyson rings” (Ansorg et al. 2003) and their generalizations.

e The black hole limit appears from the “exterior perspective”. From the “interior
perspective” the limit leads to a spacetime with extreme Kerr near-horizon asymptotics.
This motivates the systematic study of solutions to the Einstein equations with this
asymptotics.



2. Black hole limit of relativistic figures of equilibrium
(a) Necessary and sufficient conditions

Four-velocity of the fluid:

u=e V(" +Qn"), Q= constant

with Killing vectors: & = 0/0t, n = 0/0p

[£'¢; — —1 at spatial infinity. We assume asymptotic flatness; the spacetime
signature is chosen to be (+ + 4+ —). The orbits of the spacelike Killing vector n
are closed and 7 is zero on the axis of symmetry.]

Q=u?/u", eV =u

wup = -1 = (£ +Qn)(&+ Q) = —e?

Energy-momentum tensor: T, = (u + p) wiug + p gik



“Cold” equation of state, u = u(p), following from

p=pp, T), p=pusT)

for T = 0, where p, is the “baryonic mass-density” [with (u,u’).; = 0] and T the
temperature. The specific enthalpy

Y
b

h

can be calculated from w(p) via the thermodynamic relation
1
dh =—dp (T =0)
Hb

leading to

dh _ _dp = h(p) = h(0) exp [/ dp } :

Ou@9+ﬂ




[A(0) = 1 in most cases.]
T%,=0 = h(p)e’ = h(0)e"0 = constant

Relative redshift z of zero angular momentum photons emitted from the surface of the
fluid and received at infinity:

. v
z—=e 0_—-1

Equilibrium models, for a given equation of state, are fixed by two parameters, for
example €2 and V. (When we discuss a “sequence” of solutions, what is meant is a
curve in the two-dimensional parameter space.)

Baryonic mass M, gravitational mass M and angular momentum J:

: 1 ; '
My, = — /,ub u;n'dV, M = 2/(Tik_§T;gik)nZ§kdva J = - /Tik n'n"dV,
)y > =

where X is a spacelike hypersurface (¢ = constant) with the volume element dV =
v/ ®) g d*x and the future pointing unit normal n".



A combination of the previous relations leads to the formula

pn—+ 3p
n+p

M = 2QJ + h(0) eVO/ d My, .

We assume p and p to be non-negative and 0 < M}, < oo, 0 < h(0) < oo.
= 1< (p+3p)/(h+p)<3 =

M=20J & Vj— —oc0 (22— o0)
e This condition is necessary and sufficient for approaching a black hole limit.
Surface of the fluid: (¢ + Qn") (& + Q) = —e2'0
Black hole horizon:  (£' 4+ Qun") (& + Qun;) =0

)y, : “angular velocity of the horizon” ; Vj — —oco : Q — Q4



M = 2QJ = Impossibility of black hole limits of non-rotating (uncharged)
equilibrium configurations, cf. “Buchdahl’s inequality”.

Together with
J
Q=0 =
2 M? [M + /M2 (J/M)?]
= J=M? (extreme Kerr black hole).

Note: The last conclusion makes use of the Kerr black hole uniqueness including the
extreme case.



(b) Extreme Kerr uniqueness

In Weyl’'s canonical coordinates, the stationary and axisymmetric vacuum line element
takes the form

ds® = e*“(do” 4+ d¢°) + o°e ' (dp — w dt)* — e*Vdt?,
where
0® = (&) — €& e = (xX'm)* — x'xin" M-
= =20 onthehorizon (H:x'x; =0, x'ni =0 with x'=¢&"+ Qun’

Therefore, the t = constant, ¢ = constant slice of the horizon of a single stationary
and axisymmetric black hole surrounded by a vacuum can only be a finite intervall or
a single point on the ¢-axis. In both cases, the corresponding boundary value problem
can uniquely be solved by means of the “inverse scattering method” .



¢ ¢ o = Rsinv

¢ = Rcosd
l (0 <9 <)
H: o0 =0, H H
¢l <1 ° I °
—1 H: R =0,
0<I9<nrm
Result: Kerr with J < M?* Kerr with J = M?

[l =/ M?>— (J/M)?]

e The Kerr (-Newman) black holes — including the extreme case — are the only
stationary and axisymmetric black holes (with a single connected horizon) surrounded
by an asymptotically flat (electro-) vacuum (Meinel et al. 2008, Meinel 2012).

Other proofs of the extreme Kerr (-Newman) uniqueness have been published by
Amsel et al. (2010), Figueras & Lucietti (2010) and Chrusciel & Nguyen (2010).



3. Rigorous results for discs of dust

-

S
< Two parameters: oq, €2
Qo

The exact solution to this problem has been found in terms of hyperelliptic theta
functions by solving the corresponding boundary value problem via the “inverse
scattering method” (Neugebauer & M. 1995). It depends on the normalized
coordinates o/ 0o, (/00 Of o/M, (/M and the previously introduced parameter Vj,
which is given here by

e? 0 = —(&"+ Q") (& + Q) = constant.



Newtonian limit: |V| < 1, Black hole limit: Vj — —oo
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In the black hole limit, the disc shrinks to the origin of the o/M, (/M coordinate
system, since po/M — 0; and the solution becomes precisely the extreme Kerr
solution (outside the horizon).

Note that the limit in the o/00, (/0o coordinates is different: It gives a non-
asymptotically flat solution with the extreme Kerr “throat geometry” at spatial infinity!



4. Numerical results for fluid rings with various equations of state

a = oo,
ds® = e**(do” + d¢°) + W?e *(do — wdt)® — e’ dt” (e,¢)

v =v(p,()
w = w(o,()
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Q a(e’,0) 3 1
A= [e*dp
M



e The extreme Kerr throat geometry or “extreme Kerr near-horizon geometry” can be
obtained from the extreme Kerr metric in Boyer-Lindquist coordinates 7, 6, @, t by
means of the coordinate transformation

reM g — 35— Qf, t=~f (with Q=Q,= 1)
,_Y ? - Y 90_90 ’ —’Y — h—2M

T =

in the limit v+ — 0 (Bardeen & Horowitz 1999).

e In addition to /0t and 9 /0 it has two more Killing fields (Wolf 1998):

t? 1 o o 1 0 o o
— 4+ — rt— — b —r—
2 8r2Q4 ) Ot or  2rQ29d¢p ot or




5. Solutions with extreme Kerr near-horizon asymptotics (M. & Kleinwachter 2020)
e It is well known that the stationary and axially symmetric vacuum Einstein equations
are equivalent to the Ernst equation
(RE)VE = (VE)?
[V as in Euclidean 3-space with spherical coordinates r, 8 and ¢ and € = £(r, 0)]
ds® = f ' h(dr® + r°d0?®) + r’sin® 0 do’] — f(dt + a dy)®

with f = R &£; the other metric functions h and a can also be obtained from £.

e Ernst potential of the extreme Kerr near-horizon geometry:

2(1 + icos 60)?
( )Jr

1 —icos@

. 2
sin” 0

Enta = —Ur°H(0), H(0) =



e Backlund transformation formula (Neugebauer 1980):

( 1 1 1 1 \
o7y Q11 Q2 A2 Q2 A2p
1 (A)? (A2)? (A2n)?
& 041(>\1)3 042()\2)3 a2n()\2n)3
det | 1 () () (A2n)*
ap a1(A)? aa(Ae)® 2, (A2n)’
L1 T (2)™ )
1 1 1 1
( 1 01\ 0o\ Qap Aon, \
1 (A)° (A2)? (A2n)?
1 041()\1)3 a2(>\2)3 Oégn(>\2n)3
det | 1 (\)* (X2)? (Aap)?
1 a1(M) aa(Xo)’ azn(Aan)’
1T (o) (Aan)®™ )



The entries in the two (2n 4+ 1) X (2n + 1) matrices are given by

E” K, — ret? :
ap = ——2, N\ = - — (N > e?asr — o)
K, — re-1?

and solutions «; to the total Riccati equations

(Eo+ &) da; = [85(% A) + Bai(aiki — 1)) d

+ [52 (= A7) + BRai(ain - 1)] d2

with the complex coordinates

. —i6 * . i6
Z = 1Te€e y Z = —I1Tre

The (finite) constants K; must either be real (K; = K7), resulting in \; = 1/X7, or
complex conjugate pairs (K; = K;), to ensure A\; = 1/X7. The integration constants
of the Riccati equations have to be chosen such that o; = 1/«; or a; = 1/,
respectively.



For £y = Enxuc We obtain

H*
0=~
Ai, 0) — cip(— i, 0 .
ai:—w( ) — el ) (1=1,2,...,2n)
with

. AQ+ X))+ B(1-X\)+CA
- e—i@(A _ 619)2

’l,b(>\, 9) — [X(l/)‘*7 9)]

A:COSQ—I—i, B_ (1 —i)siné

T , C=—(1+1i)(cosh —1i)

cosf — i
The constants ¢; have to satisfy
c¢i = —c;, (forreal K;) or c¢; =—c; (forpairs K, = K)

1

They can also be chosen infinite, meaning a; = ¥ (—X;, 0)/x(—X;, 0)



Solutions with extreme Kerr near-horizon asymptotics

For the discussion of the asymptotic behaviour as » — oo a reformulation in terms of
n X n determinants (cf. Yamazaki 1983) is useful. With

—i6 Kieie Kie—ie
riE—Ai(Ki—re ):7” 1 — 1 —
T T

one obtains

Qprp —XqgTg
det (SREZRE + )

E=&
with
p=1,3,5,...,2n—1; q=2,4,6,...,2n
(This means: firstrow p = 1, secondrow p = 3, ..., n-throw p = 2n — 1 and first

column g = 2, second column g = 4, ..., n-th column g = 2n)



Forn = 1:

11 — aore + (K1 — Kb»)

E =&

X171 — XaT9 —|— K1 — K2

Expansion in powers of r~*:

>\’é79 — —
= a; = —L)+O(r Y=F(0) 4+ O ") fore; # oo
X()‘iae)
and
’l,b(—)\z,e) -1
oy = = G(0) + O(r for c; = oo
NES W) (0) + O )
with
F(9) = i(cos @ + i)* Qo) = i(cos 0 4 1)(6i — 15 cos @ — 6icos 260 — cos 30)

~ (cos@ —i)?’ ~ (cos @ —1)(6i+ 15 cos O — 6icos 26 + cos 36)



Because of

. r;
lim — =1
rT—00 ’r‘

we find (with £ = Exnc)

) E
lim

=1

for all & with FF(8) # G(0) if n of the 2n constants ¢;, say ¢, (with p =
1,3,5,...,2n — 1), are chosen finite and the other ones, say c, (with ¢ =
2,4,6,...,2n), are chosen infinite. This reduces the number of free real constants
contained in the K;’s and ¢;’s from 4n t0o 3n. Forn = 1, ¢; # oo and c; = oo
means that K; and K> must be real. For n > 1, pairs of complex conjugate
K’s are possible as well. It turns out that the so far excluded special values of 6
defined by F'(6) = G(0) are the same values for which «p = —H"/H = 1 holds
(cos® 8 = 2+/3—3), leading obviously to £ = Exng for all ». Hence our solutions have
the extreme Kerr near-horizon asymptotics whenever precisely n of the 2n constants
c; are chosen infinite.



e Explicit expressions for all metric functions can be calculated using the general
Backlund formalism.

e For the case n = 1, the three-parameter family of solutions with extreme Kerr near-
horizon asymptotics leads to the following expressions for the metric functions in

ds® = f ' h(dr® + r°d0®) + r’sin® 0 do’] — f(dt + ady)® :

F— R <5NHG 11 — Qary + ao( K1 — K2)>

ajry — oory + Ky — Ko
h = hoQ K ihrhatb (AN 4+ A Aa — anal — o) fy 2
a = (aopfo — 23@)]?_1

with

1
ho = hnace = Z(cos4 0+ 6cos” 0 — 3)

49%r%h, 2r sin® 6
, an = Q _ —
cos?26 + 1 0 NHG fo(cos?26 + 1)

fO — fNHG —



and

Y1 =P(A1,0) — c1p(—=A1,0), Yo = —ip(—X2,0)

Q- a171 (Ko — rcos0) — asre(Ky — rcos8) + iagfo( K1 — Ka2)

air; — aors + K1 — Ko

Note that
h a

lim — = lim — = lim — =1
r—oo f r—oo Ry T—00 a
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