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1. Introduction

• In the case of spherical symmetry, an “unstoppable gravitational collapse” (resulting

in a spacetime singularity – within classical general relativity) necessarily leads to a

Schwarzschild black hole (cf. Oppenheimer & Snyder 1939) or, if there is some electric

charge, to a Reissner-Nordstrøm black hole.

• Without spherical symmetry, for example in the case of a collapsing rotating star,

the result of a complete collapse is much more difficult to predict. The (weak)

cosmic censorship conjecture (Penrose 1969), combined with (i) the assumption that

the exterior gravitational field settles down to a stationary state and (ii) the black

hole uniqueness (“no-hair theorem”: Israel, Carter, Hawking, Robinson, Mazur, . . . ),

predicts the formation of a Kerr (or Kerr-Newman) black hole.

• With rotation (and/or electric charge), quasi-stationary collapse scenarios, described

by sequences of equilibrium configurations becoming more and more compact, are

possible. Do they lead to black holes or to naked singularities?



• A continuous sequence of stationary and axisymmetric, uniformly rotating perfect

fluid bodies reaches a black hole limit if and only if the relation

M = 2ΩJ (G = c = 1)

is satisfied in the limit (Meinel 2006). The limit leads to an extreme Kerr black hole.

• The existence of such a limit was first demonstrated for rotating discs of dust,

numerically by Bardeen & Wagoner (1971) and analytically by Neugebauer & M.

(1995). This result is in remarkable agreement with cosmic censorship.

• Further numerical examples, for genuine fluid bodies, were provided by the

“relativistic Dyson rings” (Ansorg et al. 2003) and their generalizations.

• The black hole limit appears from the “exterior perspective”. From the “interior

perspective” the limit leads to a spacetime with extreme Kerr near-horizon asymptotics.

This motivates the systematic study of solutions to the Einstein equations with this

asymptotics.



2. Black hole limit of relativistic figures of equilibrium

(a) Necessary and sufficient conditions

Four-velocity of the fluid:

ui = e−V (ξi + Ω ηi), Ω = constant

with Killing vectors: ξ = ∂/∂t, η = ∂/∂ϕ

[ξiξi → −1 at spatial infinity. We assume asymptotic flatness; the spacetime

signature is chosen to be (+ + + −). The orbits of the spacelike Killing vector η

are closed and η is zero on the axis of symmetry.]

Ω = uϕ/ut, e−V = ut

uiui = −1 ⇒ (ξi + Ω ηi)(ξi + Ω ηi) = −e2V

Energy-momentum tensor: Tik = (µ+ p)uiuk + p gik



“Cold” equation of state, µ = µ(p), following from

p = p(µb, T ), µ = µ(µb, T )

for T = 0, where µb is the “baryonic mass-density” [with (µbu
i);i = 0] and T the

temperature. The specific enthalpy

h =
µ+ p

µb

can be calculated from µ(p) via the thermodynamic relation

dh =
1

µb

dp (T = 0)

leading to

dh

h
=

dp

µ+ p
⇒ h(p) = h(0) exp





p
∫

0

dp′

µ(p′) + p′



 .



[h(0) = 1 in most cases.]

T ik;k = 0 ⇒ h(p) eV = h(0) eV0 = constant

Relative redshift z of zero angular momentum photons emitted from the surface of the

fluid and received at infinity:

z = e
−V0 − 1

Equilibrium models, for a given equation of state, are fixed by two parameters, for

example Ω and V0. (When we discuss a “sequence” of solutions, what is meant is a

curve in the two-dimensional parameter space.)

Baryonic mass Mb, gravitational mass M and angular momentum J :

Mb = −
∫

Σ

µb ui n
idV, M = 2

∫

Σ

(Tik−
1

2
T jj gik)n

iξkdV, J = −
∫

Σ

Tik n
iηkdV,

where Σ is a spacelike hypersurface (t = constant) with the volume element dV =
√

(3)g d3x and the future pointing unit normal ni.



A combination of the previous relations leads to the formula

M = 2ΩJ + h(0) eV0
∫

µ+ 3p

µ+ p
dMb .

We assume µ and p to be non-negative and 0 < Mb < ∞, 0 < h(0) < ∞.

⇒ 1 ≤ (µ+ 3p)/(µ + p) ≤ 3 ⇒

M = 2ΩJ ⇔ V0 → −∞ (z → ∞)

• This condition is necessary and sufficient for approaching a black hole limit.

Surface of the fluid: (ξi + Ω ηi)(ξi + Ω ηi) = −e2V0

Black hole horizon: (ξi + Ωh η
i)(ξi + Ωh ηi) = 0

Ωh : “angular velocity of the horizon” ; V0 → −∞ : Ω → Ωh



M = 2ΩJ ⇒ Impossibility of black hole limits of non-rotating (uncharged)

equilibrium configurations, cf. “Buchdahl’s inequality”.

Together with

Ω = Ωh =
J

2M2
[

M +
√

M2 − (J/M)2
]

⇒ J = M2 (extreme Kerr black hole).

Note: The last conclusion makes use of the Kerr black hole uniqueness including the

extreme case.



(b) Extreme Kerr uniqueness

In Weyl’s canonical coordinates, the stationary and axisymmetric vacuum line element

takes the form

ds
2
= e

2α
(d̺

2
+ dζ

2
) + ̺

2
e
−2ν

(dϕ− ω dt)
2 − e

2ν
dt

2
,

where

̺2 = (ξiηi)
2 − ξiξiη

kηk = (χiηi)
2 − χiχiη

kηk.

⇒ ̺ = 0 on the horizon (H: χiχi = 0, χiηi = 0 with χi ≡ ξi + Ωhη
i)

Therefore, the t = constant, ϕ = constant slice of the horizon of a single stationary

and axisymmetric black hole surrounded by a vacuum can only be a finite intervall or

a single point on the ζ-axis. In both cases, the corresponding boundary value problem

can uniquely be solved by means of the “inverse scattering method” .



✲

✻

ζ

̺

l

−l

HH: ̺ = 0,

|ζ| ≤ l
✲

✻

ζ

̺①
H

̺ = R sinϑ

ζ = R cosϑ

(0 ≤ ϑ ≤ π)

H: R = 0,

0 ≤ ϑ ≤ π

Result: Kerr with J < M2 Kerr with J = M2

[ l =
√

M2 − (J/M)2 ]

• The Kerr (-Newman) black holes – including the extreme case – are the only

stationary and axisymmetric black holes (with a single connected horizon) surrounded

by an asymptotically flat (electro-) vacuum (Meinel et al. 2008, Meinel 2012).

Other proofs of the extreme Kerr (-Newman) uniqueness have been published by

Amsel et al. (2010), Figueras & Lucietti (2010) and Chruściel & Nguyen (2010).



3. Rigorous results for discs of dust

Two parameters: ̺0, Ω

The exact solution to this problem has been found in terms of hyperelliptic theta

functions by solving the corresponding boundary value problem via the “inverse

scattering method” (Neugebauer & M. 1995). It depends on the normalized

coordinates ̺/̺0, ζ/̺0 or ̺/M , ζ/M and the previously introduced parameter V0,

which is given here by

e
2V0 = −(ξ

i
+ Ω η

i
)(ξi + Ω ηi)

∣

∣

∣

S
= constant.



Newtonian limit: |V0| ≪ 1, Black hole limit: V0 → −∞
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In the black hole limit, the disc shrinks to the origin of the ̺/M , ζ/M coordinate

system, since ̺0/M → 0; and the solution becomes precisely the extreme Kerr

solution (outside the horizon).

Note that the limit in the ̺/̺0, ζ/̺0 coordinates is different: It gives a non-

asymptotically flat solution with the extreme Kerr “throat geometry” at spatial infinity!



4. Numerical results for fluid rings with various equations of state

ds
2
= e

2α
(d̺

2
+ dζ

2
) +W

2
e
−2ν

(dϕ − ω dt)
2 − e

2ν
dt

2
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Ansorg et al. (2003), Fischer et al. (2005), Labranche et al. (2007)



0 2 4 6 8 10 12 14 16
0

2

4

6

δ/M

√
gϕϕ

M

e2V0 = 10−1

0 2 4 6 8 10 12 14 16
0

2

4

6

δ/M

√
gϕϕ

M

e2V0 = 10−3

0 2 4 6 8 10 12 14 16
0

2

4

6

δ/M

√
gϕϕ

M

e2V0 = 10−5

0 2 4 −4 −2 0 2 4

̺ = M
0

2

4

6

δ/M ∆/M

√
gϕϕ

M

inner world extreme Kerr solution

2π
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gϕϕ(̺, 0) = 2πW (̺, 0)e−ν(̺,0) :

proper circumference of a circle ̺ = constant

in the “equatorial plane” (ζ = 0, t = constant)

δ =
∫̺

0

eα(̺
′,0)d̺′ : proper radius of that circle

(µ = constant, A = −0.7)

∆ =
∫̺

M

eα(̺
′,0)d̺′



• The extreme Kerr throat geometry or “extreme Kerr near-horizon geometry” can be

obtained from the extreme Kerr metric in Boyer-Lindquist coordinates r̃, θ̃, ϕ̃, t̃ by

means of the coordinate transformation

r =
r̃ −M

γ
, θ = θ̃, ϕ = ϕ̃− Ωt̃, t = γt̃ (with Ω = Ωh =

1

2M
)

in the limit γ → 0 (Bardeen & Horowitz 1999).

• In addition to ∂/∂t and ∂/∂ϕ it has two more Killing fields (Wolf 1998):

(

t2

2
+

1

8r2Ω4

)

∂

∂t
− rt

∂

∂r
− 1

2rΩ2

∂

∂ϕ
, t

∂

∂t
− r

∂

∂r



5. Solutions with extreme Kerr near-horizon asymptotics (M. & Kleinwächter 2020)

• It is well known that the stationary and axially symmetric vacuum Einstein equations

are equivalent to the Ernst equation

(ℜE)∇2E = (∇E)2

[∇ as in Euclidean 3-space with spherical coordinates r, θ and ϕ and E = E(r, θ)]

ds
2
= f

−1
[h(dr

2
+ r

2
dθ

2
) + r

2
sin

2
θ dϕ

2
] − f(dt+ a dϕ)

2

with f = ℜE ; the other metric functions h and a can also be obtained from E .

• Ernst potential of the extreme Kerr near-horizon geometry:

ENHG = −Ω2r2H(θ), H(θ) =
2(1 + i cos θ)2

1 − i cos θ
+ sin2 θ



• Bäcklund transformation formula (Neugebauer 1980):

E = E0

det































1 1 1 · · · 1

α0 α1λ1 α2λ2 · · · α2nλ2n

1 (λ1)
2 (λ2)

2 · · · (λ2n)
2

α0 α1(λ1)
3 α2(λ2)

3 · · · α2n(λ2n)
3

1 (λ1)
4 (λ2)

4 · · · (λ2n)
4

α0 α1(λ1)
5 α2(λ2)

5 · · · α2n(λ2n)
5

· · · · · · ·
· · · · · · ·
1 (λ1)

2n (λ2)
2n · · · (λ2n)

2n































det































1 1 1 · · · 1

1 α1λ1 α2λ2 · · · α2nλ2n

1 (λ1)
2 (λ2)

2 · · · (λ2n)
2

1 α1(λ1)
3 α2(λ2)

3 · · · α2n(λ2n)
3

1 (λ1)
4 (λ2)

4 · · · (λ2n)
4

1 α1(λ1)
5 α2(λ2)

5 · · · α2n(λ2n)
5

· · · · · · ·
· · · · · · ·
1 (λ1)

2n (λ2)
2n · · · (λ2n)

2n

































The entries in the two (2n + 1) × (2n + 1) matrices are given by

α0 = −E∗
0

E0

, λi =

√

Ki − reiθ

Ki − re−iθ
(λi → eiθ as r → ∞)

and solutions αi to the total Riccati equations

(E0 + E∗
0) dαi =

[

∂E∗0
∂z (αi − λi) +

∂E0
∂z αi(αiλi − 1)

]

dz

+
[

∂E∗0
∂z∗ (αi − λ−1

i ) +
∂E0
∂z∗αi(αiλ

−1
i − 1)

]

dz∗

with the complex coordinates

z = ire−iθ, z∗ = −ireiθ

The (finite) constants Ki must either be real (Ki = K∗
i ), resulting in λi = 1/λ∗

i , or

complex conjugate pairs (Kj = K∗
i ), to ensure λj = 1/λ∗

i . The integration constants

of the Riccati equations have to be chosen such that αi = 1/α∗
i or αj = 1/α∗

i ,

respectively.



For E0 = ENHG we obtain

α0 = −H
∗

H

αi = −ψ(λi, θ) − ciψ(−λi, θ)
χ(λi, θ) + ciχ(−λi, θ)

(i = 1, 2, . . . , 2n)

with

ψ(λ, θ) = [χ(1/λ∗, θ)]∗ =
A(1 + λ2) + B(1 − λ2) + Cλ

e−iθ(λ− eiθ)2

A =
cos θ + i

1 + i
, B =

(1 − i) sin θ

cos θ − i
, C = −(1 + i)(cos θ − i)

The constants ci have to satisfy

ci = −c∗i (for real Ki) or cj = −c∗i (for pairs Kj = K∗
i )

They can also be chosen infinite, meaning αi = ψ(−λi, θ)/χ(−λi, θ)



Solutions with extreme Kerr near-horizon asymptotics

For the discussion of the asymptotic behaviour as r → ∞ a reformulation in terms of

n× n determinants (cf. Yamazaki 1983) is useful. With

ri ≡ −λi(Ki − re
−iθ

) = r

√

(

1 − Kieiθ

r

)(

1 − Kie−iθ

r

)

one obtains

E = E0

det
(

αprp−αqrq
Kp−Kq + α0

)

det
(

αprp−αqrq
Kp−Kq + 1

)

with

p = 1, 3, 5, . . . , 2n− 1; q = 2, 4, 6, . . . , 2n

(This means: first row p = 1, second row p = 3, . . . , n-th row p = 2n − 1 and first

column q = 2, second column q = 4, . . . , n-th column q = 2n)



For n = 1:

E = E0

α1r1 − α2r2 + α0(K1 −K2)

α1r1 − α2r2 +K1 −K2

Expansion in powers of r−1:

⇒ αi = −ψ(λi, θ)
χ(λi, θ)

+ O(r−2) = F (θ) + O(r−1) for ci 6= ∞

and

αi =
ψ(−λi, θ)
χ(−λi, θ)

= G(θ) + O(r−1) for ci = ∞

with

F (θ) =
i(cos θ + i)2

(cos θ − i)2
, G(θ) =

i(cos θ + i)(6i − 15 cos θ − 6i cos 2θ − cos 3θ)

(cos θ − i)(6i + 15 cos θ − 6i cos 2θ + cos 3θ)



Because of

lim
r→∞

ri

r
= 1

we find (with E0 = ENHG)

lim
r→∞

E
ENHG

= 1

for all θ with F (θ) 6= G(θ) if n of the 2n constants ci, say cp (with p =

1, 3, 5, . . . , 2n − 1), are chosen finite and the other ones, say cq (with q =

2, 4, 6, . . . , 2n), are chosen infinite. This reduces the number of free real constants

contained in the Ki’s and ci’s from 4n to 3n. For n = 1, c1 6= ∞ and c2 = ∞
means that K1 and K2 must be real. For n > 1, pairs of complex conjugate

Ki’s are possible as well. It turns out that the so far excluded special values of θ

defined by F (θ) = G(θ) are the same values for which α0 ≡ −H∗/H = 1 holds

(cos2 θ = 2
√
3−3), leading obviously to E = ENHG for all r. Hence our solutions have

the extreme Kerr near-horizon asymptotics whenever precisely n of the 2n constants

ci are chosen infinite.



• Explicit expressions for all metric functions can be calculated using the general

Bäcklund formalism.

• For the case n = 1, the three-parameter family of solutions with extreme Kerr near-

horizon asymptotics leads to the following expressions for the metric functions in

ds2 = f−1[h(dr2 + r2dθ2) + r2 sin2 θ dϕ2] − f(dt+ a dϕ)2 :

f = ℜ
(

ENHG

α1r1 − α2r2 + α0(K1 −K2)

α1r1 − α2r2 +K1 −K2

)

h = h0Ω
4K4

1ψ1ψ2ψ
∗
1ψ

∗
2(λ1λ

∗
2 + λ∗

1λ2 − α1α
∗
2 − α∗

1α2)f
−2
0

a = (a0f0 − 2ℑQ)f−1

with

h0 = hNHG =
1

4
(cos

4
θ + 6 cos

2
θ − 3)

f0 = fNHG =
4Ω2r2h0

cos2 θ + 1
, a0 = aNHG = − 2r sin2 θ

f0(cos2 θ + 1)



and

ψ1 = ψ(λ1, θ) − c1ψ(−λ1, θ), ψ2 = −iψ(−λ2, θ)

Q =
α1r1(K2 − r cos θ) − α2r2(K1 − r cos θ) + ia0f0(K1 −K2)

α1r1 − α2r2 +K1 −K2

Note that

lim
r→∞

f

f0
= lim

r→∞

h

h0

= lim
r→∞

a

a0
= 1
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