The Physical Relevance of the Fiducial Cell in Loop Quantum Cosmology

Johannes Münch¹

Relativity Seminar University of Warsaw Warsaw, Poland

based on

arXiv:2109.10663 [gr-qc] and arXiv:2109.XXXXX [gr-qc]

In collaboration with Fabio M. Mele²

¹ Aix-Marseille Université, Université de Toulon, CNRS, CPT, France ²Okinawa Institute of Science and Technology, Japan

24. September 2021

Motivation

Spacially flat cosmology

$$ds^{2} = -N(t)dt^{2} + a(t)^{2} (dx^{2} + dy^{2} + dz^{2})$$
(1)

Full theory perspective:

• Field theory:

$$G_{\mu\nu} = \kappa T_{\mu\nu}$$

• Insert Eq. (1)

No fiducial structures needed!

Mini-superspace:

- Eq. (1) into $S_{EH} = \int_M \mathrm{d}^4 x \sqrt{-g} R$
- Effective point particle
- Divergences: $\int_{\Sigma} \mathrm{d}^3 x \to \infty$

Need a fiducial regulator $V_o \subset \Sigma$!

How do both pictures fit together? How "fiducial" is the cell V_o ?

Plan of the Talk

- Part I: Classical Theory
 - Problem and Setup
 - Dependences on Fiducial Structures
 - Classical Dynamics
- Part II: Quantum Cosmology
 - Representations
 - Quantum Dynamics
 - Fluctuations

Part I: Classical Theory

The Problem

Spacially flat cosmology

Spacetime:
$$M=\mathbb{R} imes \Sigma$$

$$\mathrm{d}s^2 = -N(t)\mathrm{d}t^2 + a(t)^2\mathrm{d}\vec{x}^2$$

Action: ($\kappa=8\pi G,\ c=1)$ GR + massless scalar field ϕ

$$\mathcal{S} = \mathcal{S}_{EH} + \mathcal{S}_{M} = \int \mathrm{d}t \, \mathcal{L} + \mathsf{boundary\ terms}$$

$$\mathcal{L} = \int_{\Sigma} d^3 x \, \mathscr{L} = \underbrace{\int_{\Sigma} d^3 x}_{\infty} \left(-\frac{3}{\kappa} \frac{a \, \dot{a}^2}{N} + \frac{a^3 \dot{\phi}^2}{2N} \right)$$

Full Homogeneity is too strong!

Fiducial Structures

Impose homogeneity only on finite regions:

Topological decomposition in boxes of coordinate edge length $L_o/{
m volume}\ V_o$

Fields $q_{ab},\,P^{ab},\,\phi,\,p_{\phi}$ are constant only in V^n_o Decompose e.g.

$$\phi(x) = \sum_{n} \phi^{n} \chi_{V_{o}^{n}}(x) \quad , \quad \chi_{V_{o}^{n}}(x) = \begin{cases} 1 & x \in V_{o}^{n} \\ 0 & \text{else} \end{cases}$$

Boundary Conditions and Freedom

Remaining freedom

- 1. Coordinate transformations: $x \mapsto \beta x \Rightarrow L_o \mapsto \frac{L_o}{\beta}$ not considered
- 2. Rescaling of scale of homogeneity/periodicity

$$V_o \mapsto \alpha V_o$$
 , $L_o \mapsto \alpha^{1/3} L_o$

Does the physics change under 2.?

V_o -dependence: 1) Variables and Observables

Variables [Bodendorfer '16]

From full theory:

$$v(x) = \sqrt{q(x)}$$
 , $b(x) = -\frac{2q_{ab}P^{ab}(x)}{3\sqrt{q}}$

Partial homogeneity:

$$b(x) = \sum_{n} \chi_{V_o^n}(x) b^n$$
 , $v = \sqrt{\hat{q}} \sum_{n} \chi_{V_o^n}(x) v^n$

Poisson bracket: (see e.g. [Mele, JM to be published])

$$\{b^n, v^m\}_D = \frac{\delta_{nm}}{V_o}$$
 , $\{\phi^n, p_\phi^m\}_D = \frac{\delta_{nm}}{V_o}$

Observables

Extensive:

$$\operatorname{vol}(V) = \int_{V} \mathrm{d}^{3}x \sqrt{q} \overset{V \subset V_{o}^{n}}{\approx} V \cdot v^{n} \quad , \quad p_{\phi}(V) = \int_{V} \mathrm{d}^{3}x \, p_{\phi} \overset{V \subset V_{o}^{n}}{\approx} V \cdot p_{\phi}^{n}$$

Intensive:

$$b(V) = \frac{1}{\operatorname{vol}(V)} \int_{V} d^{3}x \sqrt{q} \, b(x) \overset{V \subset V_{o}^{n}}{\approx} b^{n}$$
$$\phi(V) = \frac{1}{\operatorname{vol}(V)} \int_{V} d^{3}x \sqrt{q} \, \phi(x) \overset{V \subset V_{o}^{n}}{\approx} \phi^{n}$$

V_o -dependence: 2) Poisson Structure

Choose $V, V' \subset V_o^n$ and $V, V' \subset \alpha V_o^n$ $(\alpha > 1)$

- $\operatorname{vol}(V)$ is the same observable from full theory perspective for V^n_o and αV^n_o
- similar $b(V) = b^n$ for both V_o^n and αV_o^n

$$\begin{split} \left\{b(V'), \operatorname{vol}(V)\right\}_{(D, V_o^n)} &= \frac{V}{V_o^n} \\ \left\{b(V'), \operatorname{vol}(V)\right\}_{(D, \alpha V_o^n)} &= \frac{V}{\alpha V_o^n} \end{split}$$

Poisson structure itself is V_o -dependent:

$$\{\,\cdot\,,\,\cdot\,\}_D\mapsto \frac{1}{\alpha}\,\{\,\cdot\,,\,\cdot\,\}_D$$

V_o -dependence: 3) Hamiltonian

Inserting piecewise homogeneity into the full theory Hamiltonian:

 $\mathcal{C}_a \sim \mathsf{boundary} \; \mathsf{terms} \; \mathsf{at} \; \partial V_o^n$

$$\mathcal{H} = \sum_{n} \left(-\frac{3\kappa}{4} v^n \left(b^n \right)^2 + \frac{\left(p_\phi^n \right)^2}{2 v^n} \right) + \text{ boundary terms at } \partial V_o^n$$

Total Hamiltonian: $(\kappa = 8\pi G, c = 1)$

$$H = \int_{\Sigma} d^3x \left(N\mathcal{H} + N^a \mathcal{C}_a \right) \approx \sum_n V_o^n N\mathcal{H}^n \rightarrow \text{divergent}$$

 \Rightarrow restrict to one cell only!

Truncation

- Neglect of boundary contributions (cross cell interactions)
- Restrict to only one cell (neglect of modes larger than one cell)

Truncation

Full theory:

$$H = \sum_{n} \int_{V_o^n} d^3x \, N\mathcal{H}^n$$
+ boundary terms at ∂V_o^n
(2)

Symmetry reduced: (n fixed)

$$H = V_o^n N \mathcal{H}^n \tag{3}$$

(2) contains non-homogeneous modes:

$$\begin{split} \tilde{b}(k) &= \int_{\Sigma} \mathrm{d}^3 x \sqrt{\tilde{q}} \, b(x) \, e^{-i \, \vec{k} \cdot \vec{x}} \\ &\leq C \prod_{\xi = x, \, y, \, z} \frac{\sin \left(V_o^{\frac{1}{3}} k_\xi / 2 \right)}{V_o^{\frac{1}{3}} k_\xi / 2} \end{split}$$

- (3) has only k = 0 mode
 - $ullet V_o^{rac{1}{3}} k_{\xi} \gg 1$ suppressed by homogeneity
 - $ullet V_o^{rac{1}{3}} k_{\xi} \ll 1$ ignored / irrelevant for large volumes

What is the dynamical relevance of small modes?

V_o -dependence: Summary

The choice of V_o

- 1. affects the available subset of full theory observables
- 2. transforms the Poisson structure inversely $\propto 1/V_o$
- 3. enters linearly the Hamiltonian
- ullet V_o labels a family of symmetry reduced theories (no canonical transformation)
- ullet there is a well defined map between different V_o 's

Implications on Classical Dynamics

(drop index n from now on)

Choose $V_o^{(1)}$ and $V_o^{(2)}$ + observable ${\mathcal O}$ defined in both

$$\dot{\mathcal{O}} = \left\{\mathcal{O}\,,\, H_T^{(1)}\right\}_{(1)} = \frac{V_o^{(2)}}{V_o^{(1)}} \left\{\mathcal{O}\,,\, \frac{V_o^{(1)}}{V_o^{(2)}} \cdot H_T^{(2)}\right\}_{(2)} = \left\{\mathcal{O}\,,\, H_T^{(2)}\right\}_{(2)}$$

 \Rightarrow Dynamics is independent of V_o On-shell the regulator can be removed $V_o \to \infty$

Alternative

- Start with full theory: $G_{\mu\nu}=\kappa T_{\mu\nu}$
- Restrict to FLRW-metrics + solve the system
- ullet construct dynamics of ${\cal O}$
- ightarrow No reference to any V_o needed!

Classical physics is local (up to boundary conditions)

Part II: Quantum Cosmology

Quantisation

Quantisation of the V_o -family of theories

Setup

• ϕ -clock de-parametrisation:

$$p_{\phi}(V_o) = \sqrt{\frac{3\kappa}{2}} V_o v b =: H_{true}$$

- polymer quantisation in b
- Hilbert spaces (different for each V_o)

$$\begin{split} \mathscr{H}_{LQC} &= L^2 \left(\mathbb{R}_{Bohr}, \mathrm{d} \mu_{\mathsf{Bohr}} \right) \quad , \quad \left| \psi \right\rangle = \sum_{\nu \in \mathbb{R}} \psi(\nu) \left| \nu \right\rangle \\ \left\langle \nu \mid \nu' \right\rangle &= \delta_{\nu,\nu'} \quad , \quad \left\langle b \mid \nu \right\rangle = e^{i\lambda b\nu} \quad , \quad \psi(\nu) = \left\langle \nu \mid \psi \right\rangle \; , \end{split}$$

 $|\nu\rangle$: Eigenstate of \hat{v}

 $|b\rangle$: Eigenstate of $\widehat{e^{i\nu\lambda b}}$

Operator Representations

Weyl Canoical Commutation Relations

$$\widehat{e^{-i\xi v}}\widehat{e^{-i\mu b}} = \widehat{e^{-i\mu b}}\widehat{e^{-i\xi v}}e^{-\frac{i\mu\xi}{V_o}}$$

 \Rightarrow operator representations have to contain $V_o!$

$$\hat{v} | \nu \rangle = \frac{\eta^{\gamma}}{V_o^{\gamma}} \nu | \nu \rangle$$
 , $\hat{e^{-i\lambda\mu b}} | \nu \rangle = | \nu - \frac{\lambda \mu}{\eta^{\gamma} V_o^{\delta}} \rangle$

$$\begin{array}{l} \gamma+\delta=1,\ \eta=\kappa^{3/2},\ \mu\in\mathbb{R},\ \text{polymerisation scale}\ \lambda\\ \text{Units}\ \hbar=1,\ [\kappa]=L^2,\ [\nu]=[\hat{v}]=[\mu]=1,\ [b]=[\lambda^{-1}]=L^{-3}. \end{array}$$

Transformation behaviour

$$\begin{split} \hat{v}|_{V_o^{(1)}} &= \left(\frac{V_o^{(2)}}{V_o^{(1)}}\right)^{\gamma} \, \hat{v}|_{V_o^{(2)}} \ , \ \widehat{e^{-i\lambda\mu^{(1)}b}} \bigg|_{V_o^{(1)}} = \widehat{e^{-i\lambda\mu^{(2)}b}} \bigg|_{V_o^{(2)}} \ , \\ \mu^{(1)} &= \left(\frac{V_o^{(2)}}{V^{(1)}}\right)^{\delta} \mu^{(2)} \end{split}$$

Quantum transformation behaviour is different from classical!

Quantum Dynamics

$$i\frac{\partial}{\partial\phi}|\psi\rangle = \hat{H}_{true}|\psi\rangle$$
 , $|\psi;\phi\rangle = e^{i\phi\hat{H}_{true}}|\psi\rangle$

Hamiltonian

Regularisation [Martín-Benito, Maruguán, Olmedo '09]:

$$\hat{H}_{true} = \sqrt{\frac{3\kappa}{2}} V_o \sqrt{|\hat{v}|} \left(\frac{\widehat{\sin{(\lambda b)}}}{2\lambda} \mathrm{sign}\left(\hat{v}\right) + \mathrm{sign}\left(\hat{v}\right) \frac{\widehat{\sin{(\lambda b)}}}{2\lambda} \right) \sqrt{|\hat{v}|}$$

Action:

$$\hat{H}_{true}\psi(\nu) = \frac{i}{4}\sqrt{\frac{3\kappa}{2}} \cdot \left(s_{+}(n)\sqrt{|n||n+1|}\psi\left(\theta\cdot(n+1)\right) - s_{-}(n)\sqrt{|n||n-1|}\psi\left(\theta\cdot(n-1)\right)\right)$$

$$\nu = \frac{\lambda}{\eta^\gamma V_o^\delta} n \quad , \quad n \in \mathbb{R} \quad , \quad \theta = \frac{\lambda}{\eta^\gamma V_o^\delta} \quad , \quad s_\pm(n) = \mathrm{sign}(n\pm 1) + \mathrm{sign}(n)$$

Eigenstates depend only on n=
u/ heta: Look for $\Psi_E:\mathbb{R} o\mathbb{C}$ with

$$-\frac{i}{2}\sqrt{\frac{3\kappa}{2}}\cdot\left(s_{+}(n)\sqrt{|n||n+1|}\Psi_{E}\left(n+1\right)-s_{-}(n)\sqrt{|n||n-1|}\Psi_{E}\left(n-1\right)\right)=E\Psi_{E}(n)\;.$$

It follows: $\psi_E(\nu) = \Psi_E\left(\frac{\nu}{\theta}\right)$

Quantum Dynamics preserving Isomorphism

Consider two quantisations with $V_o^{(1)}$ and $V_o(2)$ Eigenstates:

$$\psi_{E}^{(1)}\left(\nu\right) = \Psi_{E}\left(\frac{\nu}{\theta^{(1)}}\right) = \Psi_{E}\left(\frac{\theta^{(2)}}{\theta^{(1)}}\frac{\nu}{\theta^{(2)}}\right) = \psi_{E}^{(2)}\left(\left(\frac{V_{o}^{(1)}}{V_{o}^{(2)}}\right)^{\delta}\nu\right)$$

Identification of E-eigenstates in different Hilbert spaces

Isomorphism

$$\begin{split} \mathscr{I}: \ \mathscr{H}_{LQC}^{(1)} &\longrightarrow \mathscr{H}_{LQC}^{(2)} \quad \text{by} \quad \psi^{(1)} \longmapsto \psi^{(2)} = \mathscr{I}\left(\psi^{(1)}\right) \\ & \psi^{(2)}(\nu) = \psi^{(1)}\left(\left(\frac{V_o^{(2)}}{V_o^{(1)}}\right)^\delta \nu\right) \; . \end{split}$$

Dynamics of $\psi^{(1)}$ and $\psi^{(2)}$ is the same as

$$\left\langle \psi_E^{(1)} \mid \psi^{(1)} \right\rangle_{(1)} = \left\langle \psi_E^{(2)} \mid \psi^{(2)} \right\rangle_{(2)} \quad \forall E$$

Quantum dynamics can be made V_o independent!

Quantum Fluctuations

A quantum theory is more than dynamics!

Expectation values under \mathscr{I} For $\psi^{(2)} = \mathscr{I}\left(\psi^{(1)}\right)$: $\left\langle \left. \hat{H}_{true} \right|_{V_o^{(1)}} \right\rangle_{\psi^{(1)}} = \left\langle \left. \hat{H}_{true} \right|_{V_o^{(2)}} \right\rangle_{\psi^{(2)}}$ $\left\langle \hat{v} \big|_{V_o^{(1)}}^n \right\rangle_{\psi^{(1)}} = \left(\frac{V_o^{(2)}}{V_o^{(1)}} \right)^n \left\langle \hat{v} \big|_{V_o^{(2)}}^n \right\rangle_{\psi^{(2)}}$ $\left\langle \widehat{e^{-i\lambda\mu b}} \right|_{V_0^{(1)}}^n \right\rangle_{cb(1)} = \left\langle \widehat{e^{-i\lambda\mu b}} \right|_{V_0^{(2)}}^n \right\rangle_{cb(2)}$

Fiducial Cell and Uncertainty Relation

[Ashtekar, Bojowald, Lewandowski '03]

$$\begin{split} \operatorname{Recall} \widehat{\operatorname{vol}(V_o)} &= V_o \hat{v} \\ & \left< \left. \left< V_o^{(1)} \hat{v} \right|_{V_o^{(1)}}^n \right>_{\psi^{(1)}} = \left< \left. \left< V_o^{(2)} \hat{v} \right|_{V_o^{(2)}}^n \right>_{\psi^{(2)}} \right. \end{split}$$

Invariant, but observable changes!

Uncertainty relation: [Rovelli, Wilson-Ewing '14]

$$\left. \Delta_{\psi} \ \widehat{\text{vol} \left(V_o \right)} \right|_{V_o} \Delta_{\psi} \ \frac{\widehat{\sin \left(\lambda b \right)}}{\lambda} \right|_{V_o} \geq \frac{1}{2} \left| \left\langle \widehat{\cos \left(\lambda b \right)} \right|_{V_o} \right\rangle_{\psi} \right|$$

When ψ saturates the inequality, $\mathscr{I}(\psi)$ does to, too!

Removing the Regulator

Volume of the fiducial cell is independent of V_o : $(\psi=\delta_{
u,
u_o})$

$$\left\langle \widehat{\operatorname{vol}\left(V_{o}\right)}\right\rangle _{\delta_{\nu,\nu_{o}}}=V_{o}\frac{\eta^{\gamma}}{V_{o}^{\gamma}}\nu_{o}\stackrel{\gamma+\delta=1}{=}V_{o}^{\delta}\eta^{\gamma}\nu_{o}=\lambda n_{o}$$

Homogeneity on full Σ is obtained for ψ with

$$\left<\widehat{\operatorname{vol}(V_o)}\right>_{\psi} \to \infty$$

Sub-volumes

A reasonable observable is $V \subset V_o$

$$\left\langle \widehat{\mathrm{vol}(V)} \right\rangle_{\psi} = \frac{V}{V_o} \left\langle \widehat{\mathrm{vol}(V_o)} \right\rangle_{\psi} \xrightarrow{\frac{V}{V_o} \to 0 \,, \left\langle \widehat{\mathrm{vol}(V_o)} \right\rangle_{\psi} \to \infty} \text{ finite}$$

No fluctuations left:

$$\Delta_{\psi}\widehat{\operatorname{vol}(V)}\Delta_{\psi}\frac{\widehat{\sin{(\lambda b)}}}{\lambda} \geq \frac{V}{2\,V_o}\left|\widehat{\cos{(\lambda b)}}\right| \to 0$$

Conclusions

Classical theory

- Understanding of the truncation
- ullet Is local and dynamics is independent of V_o
- Fully homogeneous spatial slices can be considered

Quantum theory

- ullet Isomorphism ${\mathscr I}$ makes dynamics V_o independent
- ullet Quantum fluctuations depend on the physical size $\left.\left<\widehat{\mathrm{vol}(V_o)}
 ight>_\psi$
- ullet Full homogeneity is obtained by choosing ψ s.t. $\left<\widehat{\operatorname{vol}(V_o)}\right>_\psi o\infty$
- Quantum fluctuation of finite volumes become arbitrarily small

Future Directions

- What is the physical scale of homogeneity?
- What is the role of inhomogeneities? [Bojowald '20; ...]
- Take renormalisation into account [Bodendorfer, Han, Haneder 21;
 Bodendorfer, Wuhrer 20; Bodendorfer, Haneder 19;]

Conclusions

Classical theory

- Understanding of the truncation
- ullet Is local and dynamics is independent of V_o
- Fully homogeneous spatial slices can be considered

Quantum theory

- ullet Isomorphism ${\mathscr I}$ makes dynamics V_o independent
- ullet Quantum fluctuations depend on the physical size $\left<\widehat{\mathrm{vol}(V_o)}
 ight>_\psi$
- Full homogeneity is obtained by choosing ψ s.t. $\left<\widehat{\mathsf{vol}(V_o)}\right>_\psi o\infty$
- Quantum fluctuation of finite volumes become arbitrarily small

Future Directions

- What is the physical scale of homogeneity?
- What is the role of inhomogeneities? [Bojowald '20; ...]
- Take renormalisation into account [Bodendorfer, Han, Haneder 21;
 Bodendorfer, Wuhrer 20; Bodendorfer, Haneder 19;]