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Motivation

Spacially flat cosmology

ds® = —N(t)dt* + a(t)? (da® + dy® + d2°) (1)

Full theory perspective: Mini-superspace:

° Eq. (1) into

Sgu = [,,d*z/—gR
G = KTy e Effective point particle
e Divergences: [ d*z — oo

Need a fiducial regulator V,, C X!

e Field theory:

e Insert Eq. (1)

No fiducial structures needed!

How do both pictures fit together? How “fiducial” is the cell V,?
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Part I: Classical Theory



The Problem

Spacially flat cosmology

Spacetime: M =R x X
ds® = —N(t)dt® + a(t)?dz”

Action: (k = 817G, ¢ = 1) GR + massless scalar field ¢

S=8Segrg+Sm = /dt[, + boundary terms
3 3 3CLCL 3(252
L= /dazﬂ /d ( N

Full Homogeneity is too strong!




Fiducial Structures

Impose homogeneity only on finite regions:

Topological decomposition in boxes of coordinate edge length L,/volume V,

Fields gas, P%°, ¢, pg are constant only in V"
Decompose e.g.

1 zeV)
0 else

A =D ) )= {




Boundary Conditions and Freedom

> e
aV, }Z)

L,
L,in x , 3 in B-x, Lphys = Loa

Remaining freedom

1. Coordinate transformations: = — Sx = L, — % not considered

2. Rescaling of scale of homogeneity/periodicity

Vo aV, , Low a'?L,

Does the physics change under 2.7



V,-dependence: 1) Variables and Observables

Variables [Bodendorfer '16]

From full theory:

v(z) =vq(x) , blx) =
Partial homogeneity:

b(x) =Y xvp@b” . v=v§Y xvp(xp"

n

B 2¢ab P ()
34

Poisson bracket: (see e.g. [Mele, JM to be published])

n o m 5n’m n o_m 5nm
{b,U }D:7o ) {¢7p¢}D:7O

Observables

Extensive:
g \Aa%e " 2 \Aa%e n
volV)= | d°zvq =" V-v" |, pe(V)= [ d’zpg ~" V-py
. 14 \%
Intensive: )= 1 / 2 s vevn .
= iy J, $EVabl@) =
1 vcvry




V,-dependence: 2) Poisson Structure

Choose V, V' C V and V, V' C aV* (a > 1)

e vol(V) is the same observable from full theory perspective for V,*
and aV!

e similar b(V') = b" for both V* and aV*

v
(CRZOINVZD

1%
, =7
{b(V )aVOl(V)}(D,aVO”) T aVr

{b(V"),vol(V)}

Poisson structure itself is V,-dependent:

{"‘}DHé{'v'}D



V,-dependence: 3) Hamiltonian

Inserting piecewise homogeneity into the full theory Hamiltonian:

Co ~ boundary terms at 9V)"

24— Z( 3K " n) + (é)z) >+ boundary terms at 9V"

Total Hamiltonian: (k = 87G, ¢ =1)

H= / &’z (NH + N°Ca) = > V'NH" — divergent
)

n

= restrict to one cell only!

Truncation

e Neglect of boundary contributions (cross cell interactions)

e Restrict to only one cell (neglect of modes larger than one cell)




Truncation

Full theory:

H = Z/ &Br NH" Symmetry reduced: (n fixed)

H =V NH" (3)
+ boundary terms at 9V,

)

(2) contains non-homogeneous
modes:

B(k) = /): dszﬂb(z) 67“;'5
sin <VO% k€/2>

<cC T
f=2.u.x VB ke/2

(3) has only k =0 mode
1
o V,3ke > 1 suppressed by homogeneity

1
o V,3ke < 1 ignored / irrelevant for large volumes
What is the dynamical relevance of small modes?




V,-dependence: Summary

The choice of V,
1. affects the available subset of full theory observables
2. transforms the Poisson structure inversely o 1/V,

3. enters linearly the Hamiltonian

e V, labels a family of symmetry reduced theories (no canonical
transformation)

e there is a well defined map between different V,'s
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Implications on Classical Dynamics

(drop index n from now on)

Choose Vo<1) and VD(Z) + observable O defined in both

(2)

OIS 2 W ' @

=- Dynamics is independent of V,
On-shell the regulator can be removed V, — oo

. J

Alternative

e Start with full theory: G = KTy

e Restrict to FLRW-metrics + solve the system
e construct dynamics of O

— No reference to any V, needed!

Classical physics is local (up to boundary conditions)
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Part Il: Quantum Cosmology
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Quantisation

Quantisation of the V,-family of theories

e ¢-clock de-parametrisation:

pd’(VO) H 3K:VUb - Htrue

e polymer quantisation in b
e Hilbert spaces (different for each V)

e%iQC' = L2 (RBohrz d,UfBohr) ) W’) = Z w(’/) 14

vER

| v)y=06,0 , (blv)=e | p)=(]|y),

|v): Eigenstate of ©
|b): Eigenstate of e?¥A?



Operator Representations

Weyl Canoical Commutation Relations

— — £

—_— 4
e—ve—iub — g—ipbp—ilve™ V,

= operator representations have to contain V,!

. n’
V)

A
U|V>:V7V i )

) = - 2
y+06=1,1n=r%2 peR, polymerisation scale A
Units h=1, [x] = L% [V]=[0] =[] =1, p] = N} = L73.

Transformation behaviour

Z5AN HWH)
7 = 2 —iAptt)b
U'V,,(l) V(l) ’U|Va(2) , €
o

7
\.

_—
— e—ixu@p
VD

v
5
w_ (V&2 ©)
,u‘ - <1) ,u‘
o

Quantum transformation behaviour is different from classical!
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Quantum Dynamics

7’% WJ) = Ig{true |'¢> 0 |w7 ¢> = eilﬁﬁtv-ue |w>

Hamiltonian

Regularisation [Martin-Benito, Maruguan, Olmedo '09]:

Hou — \/37V0\/|7|<S1n2()1\b)sign( ) b (@ )sz(/\)\b)> ]

Action: .
IA{true'lp(V) = i\/; ( \/ |TLHTL+ 1 'l/] TL + 1
n) vnln — 1|9 (0 - (n — 1)) )

A A . .
Wn , neR |, =—— , s+(n)=sign(nkl)+sign(n)

v Ve

Eigenstates depend only on n = v/6: Look for Ug : R — C with

—%,/ ( n) VInln + 1% (n+ 1) — s—(n) VInlln — 1|5 (n — 1) ) = EUp(n) .

It follows: ¥r(v) = Vg (%) 16



Quantum Dynamics preserving Isomorphism

Consider two quantisations with V") and V,(2) Eigenstates:

O ) =g (L) =ws (P2 2 ) Z g0 [ (Yoo 5
E (1/)— E(W)— E Wﬁ —’l/JE VD(Q) v

Identification of E-eigenstates in different Hilbert spaces

. J

Isomorphism

5 Ao — HBo by P —e® =5 (p0)

@)\ °
@y — 0 [ [ Yo
' (v) = <Vo<1>> v

Dynamics of ¢V and ¢ is the same as

<¢§;1) ’ 1/1(1)>(1) - <1/J§32) ' ¢(2>><2> VE

\.

Quantum dynamics can be made V, independent!
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Quantum Fluctuations

A quantum theory is more than dynamics!

Expectation values under .#

For @ = .# (¢<1>):
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Fiducial Cell and Uncertainty Relation

[Ashtekar, Bojowald, Lewandowski ‘03]

Recall vo/l(vo) = Vob

vWgl” = (v®s|"
< 2R e ° :

Invariant, but observable changes!

Uncertainty relation: [Rovelli, Wilson-Ewing '14]

—— sin (\b) 1|/ —
(Vo > =
Ay vo (V)VDAw 3 2 2’<COS()\b) Vo>w

When 1) saturates the inequality, .#(¢)) does to, too!
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Removing the Regulator

Volume of the fiducial cell is independent of V,: (v = d,..,)

— Y —
<vo| (Vo)> = Vol v, " VI 0, = An,

Y, Vo

Homogeneity on full X is obtained for 1) with

(oI, o0

Sub-volumes

A reasonable observable is V C V,

VLO—>0 5 <vm)>w—>oo
finite

(5D, = ¥ (T2,

o

No fluctuations left:

vaﬁ(?mww > 2“// cm)‘ =0

20



Conclusions

Classical theory
e Understanding of the truncation
e Is local and dynamics is independent of V,

e Fully homogeneous spatial slices can be considered

r
\

Quantum theory
e Isomorphism .# makes dynamics V, independent

e Quantum fluctuations depend on the physical size <vm)>
P

e Full homogeneity is obtained by choosing v s.t. <v§(—vo)> — 0
P

e Quantum fluctuation of finite volumes become arbitrarily small

Future Directions

7
\.

e What is the physical scale of homogeneity?
e What is the role of inhomogeneities? [Bojowald '20; ..]

e Take renormalisation into account [Bodendorfer, Han, Haneder 21;
Bodendorfer, Wuhrer 20; Bodendorfer, Haneder 19;]
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Classical theory
e Understanding of the truncation
e Is local and dynamics is independent of V,

e Fully homogeneous spatial slices can be considered

r
\

Quantum theory
e Isomorphism .# makes dynamics V, independent
e Quantum fluctuations depend on the physical size <vm)>
P
e Full homogeneity is obtained by choosing v s.t. <v§(—vo)> — 00
¥

e Quantum fluctuation of finite volumes become arbitrarily small

Future Directions

7
\.

e What is the physical scale of homogeneity?
e What is the role of inhomogeneities? [Bojowald '20; ..]

e Take renormalisation into account [Bodendorfer, Han, Haneder 21;
Bodendorfer, Wuhrer 20; Bodendorfer, Haneder 19;]

Thank you for your attention!
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