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Questions

Throughout this work:

1
Wl — §R9W +Agu, =0.
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Throughout this work:
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@ extend vacuum spacetimes?
© glue together vacuum spacetimes?
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embedding in a vacuum spacetime?
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Questions

Throughout this work:

1
Wl — §R9W +Agu, =0.

Can you
@ extend vacuum spacetimes?
© glue together vacuum spacetimes?

© realise data on lower dimensional submanifolds by
embedding in a vacuum spacetime?

© ??? data on lower dimensional submanifolds ???
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Data on lower dimensional manifolds?

The Aretakis-Czimek-Rodnianski question

QUESTION (Aretakis, Czimek and Rodnianski (2021))

Can you find vacuum characteristic initial data interpolating
between two ?

Figure: Gluing construction of Aretakis-Czimek-Rodnianski
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Data on lower dimensional manifolds?

The Aretakis-Czimek-Rodnianski question

QUESTION (Aretakis, Czimek and Rodnianski (2021))

Can you find vacuum characteristic initial data interpolating
between two ?

Figure: Gluing construction of Aretakis-Czimek-Rodnianski

Answer: “kind of”, for sphere data near spheres wniversitat
. . o . wien
lying on a Minkowskian light cone
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Data on lower dimensional manifolds?
Vacuum jets

Let P be a submanifold of M.
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Data on lower dimensional manifolds?
Vacuum jets

Let P be a submanifold of M.
Let k € NU {o0}.

Definition

Let g be any smoothly differentiable metric defined in a
neighborhood of P. The collection

19 = {Bay -+ ayGuulp, 0 < L < K}

will be called jet of order k of g at P.

A
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Data on lower dimensional manifolds?
Vacuum jets

Let P be a submanifold of M.
Let k € NU {o0}.

Definition

Let g be any smoothly differentiable metric defined in a
neighborhood of P. The collection

19 = {Bay -+ ayGuulp, 0 < L < K}

will be called jet of order k of g at P.

Einstein equations and their derivatives up to order k — 2
provide equations, differential and/or algebraic, relating the jets
of order k at P.
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Data on lower dimensional manifolds?
Vacuum jets

Let P be a submanifold of M.
Let k € NU {o0}.

Definition

Let g be any smoothly differentiable metric defined in a
neighborhood of P. The collection

19 = {Bay -+ ayGuulp, 0 < L < K}

will be called jet of order k of g at P.

Einstein equations and their derivatives up to order k — 2
provide equations, differential and/or algebraic, relating the jets
of order k at P.

A jet will be called vacuum if all such equations are Sat'Sf'edwigﬁrsitét
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Data on lower dimensional manifolds?

Spacelike/timelike/null vacuum submanifold data

Definition
The collection of all vacuum jets will be called vacuum
submanifold data of order k and will be denoted by V[P, k].
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Data on lower dimensional manifolds?

Spacelike/timelike/null vacuum submanifold data

Definition
The collection of all vacuum jets will be called vacuum
submanifold data of order k and will be denoted by V[P, k].

spacelike,

A jet of order k of a metric g will be called { timelike, if
null,

the metric induced by g on P is.
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Data on lower dimensional manifolds?

Spacelike/timelike/null vacuum submanifold data

Definition
The collection of all vacuum jets will be called vacuum
submanifold data of order k and will be denoted by V[P, k].

spacelike,
A jet of order k of a metric g will be called { timelike, if
null,
the metric induced by g on P is.
We similarly define spacelike/timelike/null/characteristic
vacuum submanifold data of order k at P.
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Data on lower dimensional manifolds?

Spacelike/timelike/null vacuum submanifold data

Definition
The collection of all vacuum jets will be called vacuum
submanifold data of order k and will be denoted by V[P, k].

spacelike,
A jet of order k of a metric g will be called { timelike, if
null,
the metric induced by g on P is.
We similarly define spacelike/timelike/null/characteristic
vacuum submanifold data of order k at P.

Given a submanifold P ¢ M and a vacuum jet jKg in V[P, K], is
there a vacuum metric on M which realises j*g?
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Data on lower dimensional manifolds

Example: Vacuum jets at a point

Let P be a point, P = {p}
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Example: Vacuum jets at a point

Let P be a point, P = {p}
jkg = the coefficients of the Taylor series of a metric g at p.
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Let P be a point, P = {p}
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Data on lower dimensional manifolds

Example: Vacuum jets at a point

Let P be a point, P = {p}

jkg = the coefficients of the Taylor series of a metric g at p
vacuum = algebraic conditions on the Taylor coefficients
Now: in normal coordinates the Taylor coefficients can be

expressed in terms of the Riemann tensor and its covariant
derivatives.
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Data on lower dimensional manifolds

Example: Vacuum jets at a point

Let P be a point, P = {p}

jkg = the coefficients of the Taylor series of a metric g at p.
vacuum = algebraic conditions on the Taylor coefficients
Now: in normal coordinates the Taylor coefficients can be

expressed in terms of the Riemann tensor and its covariant
derivatives.

For example, using normal coordinates,

JQQ\D ~ {Guvlpy Wsrslp}

where W 3. s has the symmetries of the Weyl tensor.
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Data on lower dimensional manifolds

Example: Vacuum jets at a point

Let P be a point, P = {p}

.k _ ' . .

f*g = the coefficients of the Taylor series of a metric g at p.
vacuum = algebraic conditions on the Taylor coefficients
Now: in normal coordinates the Taylor coefficients can be
expressed in terms of the Riemann tensor and its covariant
derivatives.

For example, using normal coordinates,

JQQ\D ~ {Guvlpy Wsrslp}

where W 3. s has the symmetries of the Weyl tensor.
V[{p}, 2] = all such pairs
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Data on lower dimensional manifolds

Example: Vacuum jets at a point

Let P be a point, P = {p}

jkg = the coefficients of the Taylor series of a metric g at p.
vacuum = algebraic conditions on the Taylor coefficients
Now: in normal coordinates the Taylor coefficients can be
expressed in terms of the Riemann tensor and its covariant
derivatives.

For example, using normal coordinates,

JQQ\D ~ {Guvlpy Wsrslp}

where W 3. s has the symmetries of the Weyl tensor.
V[{p}, 2] = all such pairs

Is there a vacuum metric which realises V[{p},1]? bitiit
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Data on lower dimensional manifolds

Example: Vacuum jets at a point

Let P be a point, P = {p}

jkg = the coefficients of the Taylor series of a metric g at p.
vacuum = algebraic conditions on the Taylor coefficients
Now: in normal coordinates the Taylor coefficients can be
expressed in terms of the Riemann tensor and its covariant
derivatives.

For example, using normal coordinates,
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where W 3. s has the symmetries of the Weyl tensor.
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Data on lower dimensional manifolds

Example: Vacuum jets at a point

Let P be a point, P = {p}

jkg = the coefficients of the Taylor series of a metric g at p.
vacuum = algebraic conditions on the Taylor coefficients
Now: in normal coordinates the Taylor coefficients can be
expressed in terms of the Riemann tensor and its covariant
derivatives.

For example, using normal coordinates,

IQQ\D ~ {Guvlpy Wsrslp}

where W 3. s has the symmetries of the Weyl tensor.
V[{p}, 2] = all such pairs

Is there a vacuum metric which realises V[{p}, oo ? bitiit
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Vacuum spacelike hypersurface data
Vacuum spacelike constraint equations
Initial data surface ¥, Riemannian metric gj, i,j = 1,...n,

symmetric tensor Kj (“initial time derivative of the metric”)
the scalar constraint equation (A is the cosmological constant):

R(gj) = 2\ + |K|? — (rK)?,
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Vacuum spacelike constraint equations
Initial data surface ¥, Riemannian metric gj, i,j = 1,...n,

symmetric tensor Kj (“initial time derivative of the metric”)
the scalar constraint equation (A is the cosmological constant):

R(gj) = 2\ + |K|? — (rK)?,

and the vector constraint equation:

DKl — DkKi; =0 .
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Vacuum spacelike hypersurface data
Vacuum spacelike constraint equations
Initial data surface ¥, Riemannian metric gj, i,j = 1,...n,

symmetric tensor Kj (“initial time derivative of the metric”)
the scalar constraint equation (A is the cosmological constant):

R(gj) = 2\ + |K|? — (rK)?,

and the vector constraint equation:

DKl — DkKi; =0 .

Spacelike vacuum hypersurface data

V[, o0] & V[L, k] =~ V[L, 2] = {all vacuum (g, K)}.

Proof: The Cauchy problem is well posed in, e.g., harmonic \niversitdt
coordinates.
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Extension theorem

Can one spacelike initial data on a manifold with
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Extension theorem

Can one extend vacuum spacelike initial data on a manifold with boundary beyond the
boundary?

Let (X, g, K) be spacelike vacuum initial data on a manifold with
boundary 0%.
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Extension theorem

Can one extend vacuum spacelike initial data on a manifold with boundary beyond the
boundary?

Let (X, g, K) be spacelike vacuum initial data on a manifold with
boundary 0%.

There exists a manifold without boundary Y- and vacuum initial
data (g, K) on ¥ such that¥. C ¥, with

(é: k)|2 = (gv K) :
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Extension theorem

Can one extend vacuum spacelike initial data on a manifold with boundary beyond the
boundary?

Let (X, g, K) be spacelike vacuum initial data on a manifold with
boundary 0%.

There exists a manifold without boundary Y- and vacuum initial
data (g, K) on ¥ such that¥. C ¥, with

(é: k)|2 = (gv K) :

Proof: | will give a sketch; for this we will need characteristic
vacuum hypersurface data V[V, o).
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Characteristic Cauchy problem

Figure: Characteristic Cauchy problem with intersecting null
hypersurfaces wuniversitat
_Jwien
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Characteristic Cauchy problem

Isenberg-Moncrief coordinates

The hypersurfaces .4 = {u =0} and .4 = {r =0} are
characteristic for the metric

g, dxtdx” =2 (—du + uodr + uﬁAdxA> dr + gagdxAdxB.

. ( @Q/i‘é%rsitét
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Characteristic Cauchy problem

Isenberg-Moncrief coordinates

The hypersurfaces .4 = {u =0} and .4 = {r =0} are
characteristic for the metric

g, dxtdx” =2 (—du + uodr + uﬁAdxA> dr + gagdxAdxB.

(0.1)
For each set of characteristic initial data

BaonS := A4 NA and (a,gag) ON A UL,
subject to the Raychaudhuri equation on .4 U ¢/,
AB 2 1 _ca 8D

1
9aB + 8T (0r9aB)0r9cp + >0 920,948
(0.2)

1
0_—§g

there exists a vacuum metric in a future neighborhood of
N UN. Wiéﬁrsitét
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Embedding a null hypersurface in a vacuum
spacetime?

Figure: Gluing construction of Aretakis-Czimek-Rodnianski
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Embedding a null hypersurface in a vacuum
spacetime?

Figure: Gluing construction of Aretakis-Czimek-Rodnianski

What about a vacuum metric in a whole neighborhood of
N UN?
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Embedding a null hypersurface in a vacuum
spacetime?

Figure: Gluing construction of Aretakis-Czimek-Rodnianski

What about a vacuum metric in a whole neighborhood of
N U ? What about a single characteristic hypersurface?
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Embedding a null hypersurface in a vacuum
spacetime?

Figure: Gluing construction of Aretakis-Czimek-Rodnianski

What about a vacuum metric in a whole neighborhood of
N U ? What about a single characteristic hypersurface?

wiversitat
Answer: one needs to understand data of order k on 4.~ Wien
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Embedding a null hypersurface in a vacuum
spacetime?

In the Isenberg-Moncrief coordinate system the vacuum
characteristic initial data W(.4", k) can be reduced to

O, k] == {(0/ 98, Ba)o<j<k ON'S and (gas, ) on A},
(0.3)
where S is a cross-section of .4 . ]

v
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Embedding a null hypersurface in a vacuum
spacetime?

In the Isenberg-Moncrief coordinate system the vacuum
characteristic initial data W(.4", k) can be reduced to

O, k] == {(0/ 98, Ba)o<j<k ON'S and (gas, ) on A},
(0.3)

where S is a cross-section of .4 . O

Proof: transverse derivatives of the metric on a characteristic
hypersurface .4 are determined uniquely by the above data
through ODEs along the null geodesics threading .4 or through
algebraic equations.
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Embedding a null hypersurface in a vacuum
spacetime?

In the Isenberg-Moncrief coordinate system the vacuum
characteristic initial data W(.4", k) can be reduced to

O, k] == {(0/ 98, Ba)o<j<k ON'S and (gas, ) on A},
(0.3)

where S is a cross-section of .4 . O

Proof: transverse derivatives of the metric on a characteristic
hypersurface .4 are determined uniquely by the above data
through ODEs along the null geodesics threading .4 or through
algebraic equations.

Note: This is true both to the future or to past along the Wiéﬁ““ét
generators.
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Embedding a null hypersurface in a vacuum spacetime

The “hand-crank construction”

Figure: The “hand-crank construction”.
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Extension theorem

Let (X, g, K) be spacelike vacuum initial data on a manifold with
boundary 0%.

There exists a manifold without boundary - and vacuum initial
data (g, K) on ¥ such that¥. C ¥, with

(é: k)|z = (gv K) :

.
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Extension theorem

Let (X, g, K) be spacelike vacuum initial data on a manifold with
boundary 0%.

There exists a manifold without boundary Y- and vacuum initial
data (g, K) on ¥ such that ¥ c ¥, with

(ga k)’: = (g7 K)

Proof: Use the crank:
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Extension theorem

Let (X, g, K) be spacelike vacuum initial data on a manifold with
boundary 0%.

There exists a manifold without boundary Y. and vacuum initial
data (§,K) on ¥ such that ¥ c ¥, with

(gv k)|2 = (g7 K) ;
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Corollary: Embedding a truncated cone

Use the spacelike data extension

Figure: Extending a vacuum metric on a truncated future cone
J*(p) N J~(¥) to a neighborhood thereof.
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Corollary: Embedding data at a point
Use the embedding of a cone

Figure: Extending data at a point
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Corollary: Extending a characteristic future
development

The Fledermaus = two cranks (and a spacelike extension if need be)

Figure: The Fledermaus. . -
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