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Problem of time in a nutshell

ĈH | physi = 0

“timeless”? )

)

background timeless, but not internally timeless

relational quantum dynamics

reparametrization (temporal diffeo) invariance implies Hamiltonian constraint:



Relational dynamics in a nutshell
 [DeWitt ‘60s; Rovelli ‘90s+; Dittrich ‘00s; Page, Wootters ‘80s; Isham; Kuchar; …] 

All measurements in real world relational: 

Premise: no external reference, all reference systems/frames are internal and physical

How do we describe physics relative to dynamical clock reference?

)

what is a temporal reference system?  
As non-invariant/asymmetric under  induced gauge symmetry as possible  
(invariants worst possible reference systems) 

 want to parametrize orbits with clock DoFs

CH

⇒

 reference DoFs are gauge DoFs⇒



Many faces of the problem of time

1992 reviews

many independent approaches 
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Relational observables 
Deparametrizations 
Page-Wootters (PW) conditional probability interpretation 
…

Kuchar’s 3 arguments against 
viability of PW formalism

multiple choice problem

global time problem

“realistic clocks may run backward”

….. and many more

problem of tim
e

see also Anderson ‘17
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I. Relational observables

C

gauge orbits

T = ⌧

T

Observable that encodes how some observable f 
evolves relative to some dynamcial time variable T

gauge-inv. evol. rel. to T 
= 

“scanning with T=const surfaces through 
constraint surface”

What is value of f when clock T reads ⌧?
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n=0
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n!

⇢
f,

CH

{T,CH}

�

n

Dittrich ’04; ‘05

{CH , Ff,T (⌧)} ⇡ 0reparametrization invariant

Quantum dynamics? ) Promote Ff,T (⌧) to operator on Hphys

Rovelli, Dittrich, QG community

space of states satisfying 
ĈH |ψphys⟩ = 0

 is evolution parameterτ
Observable that encodes how some observable f 

evolves relative to some dynamcial time variable T



Example: parametrized particle

Parametrize t(s), q(s)
S =

m
2 ∫ dt ·q2

invariant under reparametrizations s → s̃(s)

Sext =
m
2 ∫ ds t′ ( q′ 

t′ )
2

CH = pt +
p2

2m
= 0

Legendre tr. pi =
∂L
∂q′ i



Example: parametrized particle

Parametrize t(s), q(s)
S =

m
2 ∫ dt ·q2

invariant under reparametrizations s → s̃(s)

Sext =
m
2 ∫ ds t′ ( q′ 

t′ )
2

CH = pt +
p2

2m
= 0

Legendre tr. pi =
∂L
∂q′ i

Fq,t(τ) = ∑
n=0

(τ − t)n

n!
{q, CH}n =

p
m

(τ − t) + q

relational observable: “what is position  of particle when clock  reads ?”q t τ

can be quantized and commutes with CH



II. Deparametrization
Usually, reduced phase space quantization

Multiple ways, e.g. deparametrize through symmetry reduction relative to chosen clock

TT : (t, pt; qi, pi) 7!
✓
T (t, pt), PT =

CH

{T,CH}

◆
; (Fqi,T (⌧), Fpi,T (⌧))

1. canon. transf. splitting into gauge + gauge-inv. DoFs
C

C

TT

PT = 0

constraint surface CH = 0

Ashtekar, Bodendorfer, Bojowald, Dittrich, Giesel, PH, Husain, 

Kaminski, Lewandowski, Pawlowski, Rovelli, Singh, Thiemann, … 
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III. Page-Wootters formalism Page, Wootters ‘83

ĈH | physi = (ĤC + ĤS) | physi = 0

Extract dynamics from physical states through conditional probabilities

P (fS when ⌧) =
h phys|(|⌧ih⌧ |⌦ |fSihfS |)| physikin

h phys|(|⌧ih⌧ |⌦ IS)| physikin
.

What is probability that f̂S has outcome fS given that clock reads ⌧?

e�itĤC |⌧i = |⌧ + tidefine clock states s.t.

split total system into  
“clock” C and “system” S

Dolby, Gambini, Giovanetti, Lloyd, Maccone, Marletto, Moreva, Pullin, Rossignoli, Smith, Vedral, …
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h phys|(|⌧ih⌧ |⌦ IS)| physikin
.

What is probability that f̂S has outcome fS given that clock reads ⌧?

e�itĤC |⌧i = |⌧ + tidefine clock states s.t.

• conditional state of system when clock reads ⌧

solves relational Schrödinger eq.

split total system into  
“clock” C and “system” S

| S(⌧)i := h⌧ | physi

i@⌧ | S(⌧)i = ĤS | S(⌧)i
evolution of S relative to C

III. Page-Wootters formalism Page, Wootters ‘83

Dolby, Gambini, Giovanetti, Lloyd, Maccone, Marletto, Moreva, Pullin, Rossignoli, Smith, Vedral, …
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d3~q | (~q, t)|2effectively ended research on PW formalism for a while
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Multiple choice problem
• many possible choices for relational clocks ) inequivalent quantum dynamics

Kuchar (1992):
 “The multiple choice problem is one of an embarrassment of riches: out of many
inequivalent options, one does not know which one to select.”

Isham (1993): 
“Can these different quantum theories be seen to be part of an overall scheme that is covariant?… 

It seems most unlikely that a single Hilbert space can be used for all possible 
choices of an internal time function.”

e.g., 2 clocks variables 

vs

What if operators?

T1, T2

T1, T2

T1(T2) T2(T1)

T1 = a, T2 = 'e.g.
in quantum cosmology
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Global problem of time
What to do when clocks non-monotonic?)

multivaluedness of relations between evolving DoFs and clock

closed FRW with massive scalar field PH, Kubalova, Tsobanjan ‘12
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Update on status of various faces of PoT

Kuchar’s 3 arguments against 
viability of PW formalism

multiple choice problem

global time problem

“realistic clocks may run backward”
problem of tim

e

relational observables

Page-Wootters formalism quantum deparametrization

relational Schrödinger picture relational Heisenberg picture

clock-neutral picture

Trinity of relational quantum 
dynamics

Equivalence:

resolved

covariance via clock changes

covariant clock POVMs

“S-matrix” interpretation?

quantum analogs of gauge-fixing  
and gauge-inv. extensions clarified
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“Realistic clocks may run backward”

Unruh & Wald, ‘89

Pauli, ‘58

No perfect clock for bounded Hamiltonians

[T,H] = i

H TFor      bounded, NO self-adjoint      exists s.t.

1)

|T0i, |T1i, |T2i, . . . T0 < T1 < T2 < . . .

n > m
fmn(t) = hTn| exp(�itH)|Tmi

fmn(t) 6= 0

fmn(t) = 0n < m

2) eigenstates with

t > 0

t > 0

i) for some

ii) for all

) “… any realistic clock […] which can run forward in time must have a  
nonvanishing probability to run backward in time.”

Other variables multivalued at given clock reading?

give up idea that observables must be self-adjoint, 
use generalized measurements  

(positive operator-valued measures)



Covariant clock POVMs
ET (�t) =

Z

�t⇢R
ET (dt) � 0, ET (R) = 1

ET (�t+ t) = UC(t)ET (�t)U †
C(t)

Probability measure for clock readings:

covariance w.r.t. clock Hamiltonian ĤC

how?

ET (�t)ET (�t0) 6= 0 �t \�t0 = ;but possible if 

Effect operators run  
monotonically forward

Holevo, Busch, Milburn, Caves, Braunstein, Brunetti,  
Fredenhagen, Loveridge, Smith, PH, Lock,…
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Covariant clock POVMs
ET (�t) =

Z

�t⇢R
ET (dt) � 0, ET (R) = 1

ET (�t+ t) = UC(t)ET (�t)U †
C(t)

Holevo, Busch, Milburn, Caves, Braunstein, Brunetti,  
Fredenhagen, Loveridge, Smith, PH, Lock,…

Probability measure for clock readings:

covariance w.r.t. clock Hamiltonian ĤC

|t,�i =
Z

d" e�i"t |",�i

T̂ (n) =

Z

R
tn ET (dt) [T̂ (n)

, ĤC ] = i n T̂
(n�1)

how?

n-th moment operators satisfy generalization of canon. conjugacy

� : degeneracy label for ĤC

ET (�t)ET (�t0) 6= 0 �t \�t0 = ;but possible if 

Effect operators run  
monotonically forward

ET (dt) =
X

�

|t,�iht,�| dt

UC(t
0) |t,�i = |t+ t0,�i

clock states are 
coherent states of group 

generated by ĤC)

Consistent probabilistic interpretation, prize to pay:
typically T̂ (n) not self-adjoint, |ti not orthogonal (perfectly distinguishable) and not eigenstates of T̂ (1)



Covariant clock POVM example
ĤC = �p̂

2
tas in relativistic constraints, clock Hamiltonian

clock states split into positive and negative frequency modes

T̂ (1) :=
1

2⇡

X

�=±

Z

R
dt t |t,�iht,�|

= �1

4

�
t̂ p̂�1

t + p̂�1
t t̂

�

|t,�i :=
Z

R
dpt

p
|pt| ✓(�� pt) e

+i t p2
t |pti

ht,�|t0,�i 6= �(t� t0)Non-orthogonal

1st moment of POVM

coincides with symmetric quantization of T = � t

2 pt
(which satisfies classically {T,HC} = 1)

UC(t
0) |t,�i = |t+ t0,�ibut covariant

(not self-adjoint)

PH, Smith, Lock 2007.00580 
(see also Braunstein, Caves, Milburn ’96)
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The trinity of relational quantum dynamics

Dirac quantization: 
relational observables

Page and Wootters’ 
conditional state formulation

Quantum symmetry reduction 
-> quantum deparametrization

relational Schrödinger picture relational Heisenberg picture

clock-neutral picture

PH, Smith, Lock 1912.00033 
+ 2007.00580; 

Chataignier, PH, Lock to appear



Analogy with relativity
Tensors, are reference-frame-neutral objects: they encode physics as “experienced” in any local frame at once

e.g., stress-energy tensor at :x Tx : Txℳ × Txℳ → ℝ

 contract with frame vectors, , to produce energy-momentum numbers as “experienced” in frame ⇒ eA

in abstract index notation:

Tμν

TAB := eμ
A Tμν eν

B = T(eA, eB)

frame-neutral description

internal perspective of frame  on stress-energy tensoreA

 constitutes coordinate map into frame’s perspective 
(inverse )

eμ
A

eA
μ
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e.g., stress-energy tensor at :x Tx : Txℳ × Txℳ → ℝ

 contract with frame vectors, , to produce energy-momentum numbers as “experienced” in frame ⇒ eA

in abstract index notation:

Tμν

TAB := eμ
A Tμν eν

B = T(eA, eB)

frame-neutral description

internal perspective of frame  on stress-energy tensoreA

 constitutes coordinate map into frame’s perspective 
(inverse )

eμ
A

eA
μanalog of Dirac observables on  

physical Hilbert space

analog of reduced quantum theories



CH = HC +HS

clock system

Restriction for now

As in Page-Wootters formalism, no interaction between clock and evolving DoFs

HC generator of group  (clock monotonic) or  (periodic clock)               G ≃ ℝ G ≃ U(1)

• Vacuum Bianchi models 
• FRW + m=0 scalar field 
• Relativistic particle 
• Many non-relativistic models 
• periodic clock models

HS arbitrary



The trinity of relational quantum dynamics

Dirac quantization: 
relational observables

Page and Wootters’ 
conditional state formulation

Quantum symmetry reduction 
-> quantum deparametrization

relational Schrödinger picture relational Heisenberg picture

clock-neutral picture

PH, Smith, Lock 1912.00033 
+ 2007.00580; 

Chataignier, PH, Lock to appear



I. Quantize relational Dirac observables

C

gauge orbits

T = ⌧

T
Dittrich ’04, ‘05

Classically, choose time function  s.t. T {T, HC} = 1

locally always possible

What is value of fS when clock T reads ⌧?

FfS ,T (⌧) ⇡
1X

n=0

(⌧ � T )n

n!

⇢
fS ,

CH

{T,CH}

�

n

=
1X

n=0

(⌧ � T )n

n!
{fS , HS}n

Now quantize    need quantization of     covariant POVMFfS,T(τ) ⇒ Tn ⇒



ĈH | physi = (ĤC + ĤS) | physi = 0

‘clock-neutral’ states

[F̂fS ,T , ĈH ] = 0gauge-inv., strong Dirac observables

PH, Smith, Lock 1912.00033 +2007.00580; 
Chataignier, PH, Lock to appear; 

[+ related work Chataignier 2006.05526]

incoherent group averaging  
or G-twirl

F̂fS ,T (⌧) :=

Z
ET (dt)⌦

X

n=0

i
n

n!
(t� ⌧)n

⇥
f̂S , ĤS

⇤
n

=
X

�

Z
dt e

�iĈH t
⇣
|⌧,�ih⌧,�|⌦ f̂S

⌘
e
iĈH t

‘projector’ onto clock time ⌧

What is value of f̂S when clock reads ⌧?

I. Quantum relational Dirac observables

+ other nice algebraic properties (homomorphism, …)



The trinity of relational quantum dynamics

Dirac quantization: 
relational observables

Page and Wootters’ 
conditional state formulation

Quantum symmetry reduction 
-> quantum deparametrization

relational Schrödinger picture relational Heisenberg picture

clock-neutral picture

PH, Smith, Lock 1912.00033 
+ 2007.00580; 

Chataignier, PH, Lock to appear



III. Page-Wootters formalism

conditional state of system when clock reads ⌧

solves relational Schrödinger eq.

define reduction map by conditioning on clock reading

from covariant POVM

| �
S(⌧)i := R�

S(⌧) | physi

i@⌧ | �
S(⌧)i = ĤS | �

S(⌧)i

R�
S(⌧) := h⌧,�|⌦ IS

R
�
S(⌧) : Hphys ! HS,�

states satisfying CH |ψphys⟩ = 0 reduced Hilbert space for  only (“clock perspective”)S

PH, Smith, Lock 1912.00033 
+ 2007.00580; 

Chataignier, PH, Lock to appear

analog of  in relativityeμ
A
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R
�
S(⌧) : Hphys ! HS,�

states satisfying CH |ψphys⟩ = 0 reduced Hilbert space for  only (“clock perspective”)S

key: reduction is invertible 
(redundancy in kinematical  

description of physical states) 

R�
S(⌧) reduction⇒ is quantum analog of gauge fixing (removing redundancy)

analog of  in relativityeμ
A



III. Page-Wootters formalism PH, Smith, Lock 1912.00033 
+ 2007.00580; 

Chataignier, PH, Lock to appear

define reduction map by conditioning on clock reading

• Rel. obs. reduce to Schröd. operators

from covariant POVM

R�
S(⌧) := h⌧,�|⌦ IS

R
�
S(⌧) : Hphys ! HS,�

states satisfying CH |ψphys⟩ = 0 reduced Hilbert space for  only (“clock perspective”)S

key: reduction is invertible 
(redundancy in kinematical  

description of physical states) 

R�
S(⌧)FfS ,T (⌧)R�

S(⌧)
�1 = fS

Equivalence with relational observables

• expect. values (+ inner prod.) preserved

R�
S(⌧) reduction⇒ is quantum analog of gauge fixing (removing redundancy)

h phys|FfS ,T (⌧) | physiphys = h �
S(⌧)| fS | �

S(⌧)i

analog of  in relativityeμ
A
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R
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states satisfying CH |ψphys⟩ = 0 reduced Hilbert space for  only (“clock perspective”)S
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analog of  in relativityTμν analog of  in relativityTAB = eμ
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Chataignier, PH, Lock to appear

define reduction map by conditioning on clock reading

• Rel. obs. reduce to Schröd. operators

from covariant POVM

R�
S(⌧) := h⌧,�|⌦ IS

R
�
S(⌧) : Hphys ! HS,�

states satisfying CH |ψphys⟩ = 0 reduced Hilbert space for  only (“clock perspective”)S

key: reduction is invertible 
(redundancy in kinematical  

description of physical states) 

R�
S(⌧)FfS ,T (⌧)R�

S(⌧)
�1 = fS

Equivalence with relational observables

• expect. values (+ inner prod.) preserved

R�
S(⌧) reduction⇒ is quantum analog of gauge fixing (removing redundancy)

h phys|FfS ,T (⌧) | physiphys = h �
S(⌧)| fS | �

S(⌧)i

analog of  in relativityeμ
A

analog of  in relativityTμν analog of  in relativityTAB = eμ
ATμνeν

B

physical inner product



III. Page-Wootters formalism PH, Smith, Lock 1912.00033 
+ 2007.00580; 

Chataignier, PH, Lock to appear

define reduction map by conditioning on clock reading

• Rel. obs. reduce to Schröd. operators

from covariant POVM

R�
S(⌧) := h⌧,�|⌦ IS

R
�
S(⌧) : Hphys ! HS,�

states satisfying CH |ψphys⟩ = 0 reduced Hilbert space for  only (“clock perspective”)S

key: reduction is invertible 
(redundancy in kinematical  

description of physical states) 

R�
S(⌧)FfS ,T (⌧)R�

S(⌧)
�1 = fS

Equivalence with relational observables

• expect. values (+ inner prod.) preserved

R�
S(⌧) reduction⇒ is quantum analog of gauge fixing (removing redundancy)

h phys|FfS ,T (⌧) | physiphys = h �
S(⌧)| fS | �

S(⌧)i
manifestly gauge-inv. ‘gauge-fixed’



The trinity of relational quantum dynamics

Dirac quantization: 
relational observables

Page and Wootters’ 
conditional state formulation

Quantum symmetry reduction 
-> quantum deparametrization

relational Schrödinger picture relational Heisenberg picture

clock-neutral picture

PH, Smith, Lock 1912.00033 
+ 2007.00580; 

Chataignier, PH, Lock to appear



II. Recall classical parametrization

T = 0 and solve constraint

dFf

d⌧
= {Ff , Htrue}D +

@Htrue

@⌧

TT : (t, pt; qi, pi) 7!
✓
T (t, pt), PT =

CH

{T,CH}

◆
; (Fqi,T (⌧), Fpi,T (⌧))

)

1. canon. transf. splitting into gauge + gauge-inv. DoFs

2. gauge fix to e.g.   PT = 0

Ff(qi,pi)(⌧) := Ff(qi,pi),T (⌧)
��
T=PT=0reduced relational observables

satisfy EoMs on reduced phase space Prest|T

Prest|T

C

Dynamics from “perspective” of chosen clock 

C

TT

PT = 0

constraint surface CH = 0

⇡T=0



II. Quantum deparametrization

| physi 2 Hphys

TT =

Z
ET (dt)⌦ eit(ĤS+")

X

�

|",�iC ⌦ | �
Si

PH, Vanrietvelde 1810.04153 
PH 1811.00611 

PH, Smith, Lock 1912.00033; 
+ 2007.00580

TT

Quantum analog of symmetry reduction relative to clock C

1. Transformation splitting DoFs into gauge + Dirac obs. across (kin.) tensor factorization

TT T̂
(n) ⌦ IS T �1

T
= T̂

(n) ⌦ IS , TT ĈH T �1
T

⇡ (ĤC � ")⌦ IS

TT F̂fS ,T (⌧) T �1
T ⇡ IC ⌦ f̂S(⌧)

conjugate

“disentangler”

Gauge:

Dirac observables: Heisenberg operator



II. Quantum deparametrization

| physi 2 Hphys

TT =

Z
ET (dt)⌦ eit(ĤS+")

X

�

|",�iC ⌦ | �
Si

h⌧,�|

PH, Vanrietvelde 1810.04153 
PH 1811.00611 

PH, Smith, Lock 1912.00033; 
+ 2007.00580

TT

Quantum analog of symmetry reduction relative to clock C

1. Transformation splitting DoFs into gauge + Dirac obs. across (kin.) tensor factorization

TT T̂
(n) ⌦ IS T �1

T
= T̂

(n) ⌦ IS , TT ĈH T �1
T

⇡ (ĤC � ")⌦ IS

TT F̂fS ,T (⌧) T �1
T ⇡ IC ⌦ f̂S(⌧)

conjugate

2. Condition on classical gauge (as in PW), get reduced Hilbert space            for only S

“disentangler”

Gauge:

Dirac observables: Heisenberg operator

HS,�
h⌧,�|⌦ IS

| �
Si 2 HS,�



II. Quantum deparametrization

| physi 2 Hphys

TT =

Z
ET (dt)⌦ eit(ĤS+")

X

�

|",�iC ⌦ | �
Si

h⌧,�|

yields relational Heisenberg picture relative to clock C

PH, Vanrietvelde 1810.04153 
PH 1811.00611 

PH, Smith, Lock 1912.00033; 
+ 2007.00580

TT

Quantum analog of symmetry reduction relative to clock C

1. Transformation splitting DoFs into gauge + Dirac obs. across (kin.) tensor factorization

TT T̂
(n) ⌦ IS T �1

T
= T̂

(n) ⌦ IS , TT ĈH T �1
T

⇡ (ĤC � ")⌦ IS

TT F̂fS ,T (⌧) T �1
T ⇡ IC ⌦ f̂S(⌧)

conjugate

2. Condition on classical gauge (as in PW), get reduced Hilbert space            for only S

“disentangler”

Gauge:

Dirac observables: Heisenberg operator

HS,�
h⌧,�|⌦ IS

R�
dep(⌧) := e�i"⌧ (h⌧,�|⌦ IS) TTdeparametrization map (isometry)

| �
Si 2 HS,�

R�
H

R�

H
F̂fS ,T (⌧)R�

H

�1 = f̂S(⌧)



Overview: classical vs. quantum symmetry reduction
Classical structures Quantum analogs

Kinematical phase space Kinematical Hilbert space

Constraint surface Physical Hilbert space

Gauge fixed reduced phase space(s) (rel. to clock C)  Reduced Hilbert space(s) (rel. to clock C)

Canon. transf. splitting gauge + gauge-inv. DoFs Trivialization (“disentangler”)

Gauge fixing clock function Conditioning on clock (POVM) states

Gauge-fixed observables Relational Heisenberg operators

Pkin Hkin

C Hphys

PS,� HS,�

TT TT
T = ⌧ 0 h⌧ 0,�|⌦ IS

FfS (⌧) = fS(⌧) f̂S(⌧)

Gauge-invariant extension of gauge-fixed quantity Quantum analog

✓� FfS ,T (⌧)

Projector onto -sector of σ HC

R�
H

�1 f̂S(⌧)R�
H

⇡ ⇧� F̂fS ,T (⌧)



Dirac vs. reduced quantization
Pkin Hkin

C Hphys

PS,� HS,�

R�
dep(⌧) := ⇡T=⌧ � TT

CH = 0 ⇧phys

Dirac quantization

reduced quantization

Does diagram  
commute?

R�
dep(⌧) := e�i"⌧ (h⌧,�|⌦ IS) TTR�

H



Dirac vs. reduced quantization
Pkin Hkin

C Hphys

PS,� HS,�

R�
dep(⌧) := e�i"⌧ (h⌧,�|⌦ IS) TTR�

dep(⌧) := ⇡T=⌧ � TT

CH = 0 ⇧phys

Dirac quantization

reduced quantization

Does diagram  
commute?

in some cases,  

but not in general

PH, Vanrietvelde 1810.04153 
PH 1811.00611 

Vanrietvelde, PH, Giacomini 1809.05093 
PH, Smith, Lock 1912.00033

“Constraining and quantizing  
don’t commute”

[Ashtekar, Horowitz, Kuchar, Kunstatter, Loll,  
Schleich, Romano, Tate, Giesel, Thiemann, Singh,  
Li, Husain, Lewandowski, Pawlowski, Dittrich, PH,  

Nelson, Koslowski,…]

R�
H



Dirac vs. reduced quantization
Pkin Hkin

C Hphys

PS,� HS,�

R�
dep(⌧) := ⇡T=⌧ � TT

CH = 0 ⇧phys

Dirac quantization

reduced quantization

Does diagram  
commute?

in some cases,  

but not in general

PH, Vanrietvelde 1810.04153 
PH 1811.00611 

Vanrietvelde, PH, Giacomini 1809.05093 
PH, Smith, Lock 1912.00033

[Ashtekar, Horowitz, Kuchar, Kunstatter, Loll,  
Schleich, Romano, Tate, Giesel, Thiemann, Singh,  
Li, Husain, Lewandowski, Pawlowski, Dittrich, PH,  

Nelson, Koslowski,…]

“Symmetry reduction and quantization  
don’t commute”

R�
dep(⌧) := e�i"⌧ (h⌧,�|⌦ IS) TTR�

H



The trinity of relational quantum dynamics

Dirac quantization: 
relational observables

Page and Wootters’ 
conditional state formulation

Quantum symmetry reduction 
-> quantum deparametrization

relational Schrödinger picture relational Heisenberg picture

clock-neutral picture

US(⌧)

Equivalence

Sometimes equivalent to  
reduced quantization

R�
S(⌧) R�

H

PH, Smith, Lock 1912.00033 
+ 2007.00580; 

Chataignier, PH, Lock to appear



The trinity of relational quantum dynamics

Dirac quantization: 
relational observables

Page and Wootters’ 
conditional state formulation

Quantum symmetry reduction 
-> quantum deparametrization

relational Schrödinger picture relational Heisenberg picture

clock-neutral picture

Equivalence

Sometimes equivalent to  
reduced quantization

quantum symmetry reduction

conditio
ning

“gauge-fixed” formulations 

manifestly gauge-inv. formulation

PH, Smith, Lock 1912.00033 
+ 2007.00580; 

Chataignier, PH, Lock to appear



Periodic clocks as incomplete temporal frames
Chataignier, PH, Lock to appear

Hamiltonian constraint

CH = HC + HS

clock Hamiltonian -generatorU(1)
system

 periodic clock forces system to be also periodic!⇒

FfS ,T (⌧) | S(⌧)i

periodic



Many faces of the problem of time

1992 reviews

many independent approaches 
… 
Relational observables 
Deparametrizations 
Page-Wootters (PW) conditional probability interpretation 
…

Kuchar’s 3 arguments against 
viability of PW formalism

multiple choice problem

global time problem

“realistic clocks may run backward”

….. and many more

problem of tim
e

see also Anderson ‘17



Resolving Kuchar’s 3 criticisms against PW formalism

inner product on Hkin

does not commute with ĈH
) | physi Hphysthrows out of

1. incompatible with constraints

P (fS when ⌧) =
h phys|(|⌧ih⌧ |⌦ |fSihfS |)| physikin

h phys|(|⌧ih⌧ |⌦ IS)| physikin
.
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Resolving Kuchar’s 3 criticisms against PW formalism

inner product on Hkin

does not commute with ĈH
) | physi Hphysthrows out of

1. incompatible with constraints

P (fS when ⌧) =
h phys|(|⌧ih⌧ |⌦ |fSihfS |)| physikin

h phys|(|⌧ih⌧ |⌦ IS)| physikin
.

Corollary from trinity (non-degenerate case): PH, Smith, Lock 1912.00033 

h phys| F̂fS ,T (⌧) | physiphys = h S(⌧)|f̂S | S(⌧)i

P (fS when ⌧) =
h phys|(|⌧ih⌧ |⌦ |fSihfS |)| physikin

h phys|(|⌧ih⌧ |⌦ IS)| physikin

=
h phys| F̂|fSihfS |,T (⌧) | physiphys

h phys| physiphys

manifestly gauge-inv. `gauge-fixed’

Conditional probabilities are manifestly gauge-invariant 
 provide relational observables with conditional  

probability interpretation
⇒

on Hphys on HS



Upshot

Page-Wootters formalism is (quantum analog of) gauge-fixed formulation of  
manifestly gauge-invariant relational dynamics on physical Hilbert space



P (q0 when ⌧ 0|q when ⌧) =
h phys|(|⌧ih⌧ |⌦ |qihq|)(|⌧ 0ih⌧ 0|⌦ |q0ihq0|)(|⌧ih⌧ |⌦ |qihq|)| physikin

h phys|(|⌧ih⌧ |⌦ |qihq|)| physikin

= |�(⌧ � ⌧ 0)�(q � q0)|2

2. wrong propagators for non-relativistic systems

Resolving Kuchar’s 3 criticisms against PW formalism



P (q0 when ⌧ 0|q when ⌧) =
h phys|(|⌧ih⌧ |⌦ |qihq|)(|⌧ 0ih⌧ 0|⌦ |q0ihq0|)(|⌧ih⌧ |⌦ |qihq|)| physikin

h phys|(|⌧ih⌧ |⌦ |qihq|)| physikin

= |�(⌧ � ⌧ 0)�(q � q0)|2

2. wrong propagators for non-relativistic systems

Resolving Kuchar’s 3 criticisms against PW formalism

Given equivalence with relational Dirac observables, correct two-time conditioning for two observables  isA, B

PH, Smith, Lock 1912.00033 

P (B = b when ⌧ 0|A = a when ⌧) :=
h phys|F̂⇧A=a,T (⌧) · F̂⇧B=b,T (⌧

0) · F̂⇧A=a,T (⌧) | physiphys
h phys|F̂⇧A=a,T (⌧)| physiphys

=
h S(⌧)|⇧A=a U

†
S(⌧

0 � ⌧)⇧B=b US(⌧ 0 � ⌧)⇧A=a | S(⌧)i
h S(⌧)|⇧A=a | S(⌧)i

.

projectors on Hphys cond. probab. on

Hphys

HS

Correct transition probability in Schrödinger picture



P (q0 when ⌧ 0|q when ⌧) =
h phys|(|⌧ih⌧ |⌦ |qihq|)(|⌧ 0ih⌧ 0|⌦ |q0ihq0|)(|⌧ih⌧ |⌦ |qihq|)| physikin

h phys|(|⌧ih⌧ |⌦ |qihq|)| physikin

= |�(⌧ � ⌧ 0)�(q � q0)|2

2. wrong propagators for non-relativistic systems

Resolving Kuchar’s 3 criticisms against PW formalism

PH, Smith, Lock 1912.00033 

P (B = b when ⌧ 0|A = a when ⌧) :=
h phys|F̂⇧A=a,T (⌧) · F̂⇧B=b,T (⌧

0) · F̂⇧A=a,T (⌧) | physiphys
h phys|F̂⇧A=a,T (⌧)| physiphys

=
h S(⌧)|⇧A=a U

†
S(⌧

0 � ⌧)⇧B=b US(⌧ 0 � ⌧)⇧A=a | S(⌧)i
h S(⌧)|⇧A=a | S(⌧)i

.

projectors on Hphys cond. probab. on

Hphys

HS

= |hq0|US(⌧
0 � ⌧) |qi|2

Given equivalence with relational Dirac observables, correct two-time conditioning for two observables  isA, B

Non-rel. particle: 
      &  

outcomes  and 
A = B = ̂q

b = q′ a = q



Previous proposals for getting transition probabilities 

 recovers correct result via time measurements 
using ancilla systems and ideal clocks

⇒

combines PW + rel. observables  
(but no equivalence) 

 additional inv. clock 
 approx. recovery  

(decoherence induced modifications)

⇒
⇒

 both proposals modify Hamiltonian with additional DoFs compared to Kuchar’s setup⇒



3. wrong localization probability for Klein-Gordon systems 

(conditioning w.r.t. Minkowski time)
sol. to KG eqn

P (~q when t) = | (~q, t)|2/
Z

d3~q | (~q, t)|2

Resolving Kuchar’s 3 criticisms against PW formalism



3. wrong localization probability for Klein-Gordon systems 

(conditioning w.r.t. Minkowski time)
sol. to KG eqn

P (~q when t) = | (~q, t)|2/
Z

d3~q | (~q, t)|2

Resolving Kuchar’s 3 criticisms against PW formalism

Newton-Wigner localization probability for Klein-Gordon systems (separate  modes)±
conditioning instead w.r.t. covariant clock POVM:

P (~q when ⌧,�) = | �
S(⌧, ~q)|2

sol. to Schrödinger eqn, Newton-Wigner 
wave function⇠ t/pt

PH, Smith, Lock 2007.00580 

approximate, but best possible localization notion  
in relativistic particle dynamics

( �
phys, 

�
phys)KG ⌘

Z
d~q | �

S(⌧, ~q)|2h �
phys| �

physiphys =�



 Page-Wootters formalism IS a viable approach to relational dynamics⇒



Many faces of the problem of time

1992 reviews

many independent approaches 
… 
Relational observables 
Deparametrizations 
Page-Wootters (PW) conditional probability interpretation 
…

Kuchar’s 3 arguments against 
viability of PW formalism

multiple choice problem

global time problem

“realistic clocks may run backward”

….. and many more

problem of tim
e

see also Anderson ‘17



Analogy with covariance in relativity
Tensors, are reference-frame-neutral objects: they encode physics as “experienced” in any local frame at once

e.g., stress-energy tensor at :x Tx : Txℳ × Txℳ → ℝ

 contract with frame vectors, , to produce energy-momentum numbers as “experienced” in frame ⇒ eA

in abstract index notation:

Tμν

TAB := eμ
A Tμν eν

B = T(eA, eB)

frame-neutral description

internal perspective of frame  on stress-energy tensoreA

 constitutes coordinate map into frame’s perspective 
(inverse )

eμ
A

eA
μanalog of Dirac observables on  

physical Hilbert space

analog of reduced quantum theories
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e.g., stress-energy tensor at :x Tx : Txℳ × Txℳ → ℝ
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Tensors, are reference-frame-neutral objects: they encode physics as “experienced” in any local frame at once

e.g., stress-energy tensor at :x Tx : Txℳ × Txℳ → ℝ

in abstract index notation:

Tμν

TAB := eμ
A Tμν eν

B = T(eA, eB)

frame-neutral description

internal perspective of frame eA

 constitutes coordinate map into frame’s perspective 
(inverse )

eμ
A

eA
μ

T̃A′ B′ = ẽμ
A′ 

Tμνẽν
B′ 

internal perspective of frame  on same objectẽA′ 

ẽμ
A′ 

∙ ẽν
B′ 

eμ
A ∙ eν

B

2nd frame 

 tensors: description of physics before choice of frame has been made⇒
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ẽA′ 
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A ∙ eν
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Quantum clock covariance
basic idea:                   is not a ‘timeless’, but clock-neutral state, i.e. description of physics prior to having chosen 

temporal reference system relative to which dynamics of remaining DoFs is described
| physi

Why possible?

 symmetry/constraint induced redundancy in description of  ⇒ Hphys

 many different ways in describing same invariant ⇒ | physi

 associate with different clock choices⇒

 reduction maps (removing redundancy) relative to different clock choices  
as “quantum coordinate maps” into “clock perspective”

⇒



Quantum clock changes

ĈH = Ĥ1 + Ĥ2 + ĤS

clock 1 clock 2

clock-neutral

“perspective” of clock  C2“perspective” of clock  C1

PH, Vanrietvelde 1810.04153 
PH 1811.00611 
PH, Smith, Lock 1912.00033 + 2007.00580

E.g. suppose

⇤C1!C2 = R�2(⌧2) �R�1(⌧1)
�1

“quantum coordinate transformations” 
(frequency-sector-wise), schematic: 

analog of  from relativityΛA
A′ = eμ

A ẽA′ 
μ



Quantum clock changes

ĈH = Ĥ1 + Ĥ2 + ĤS

clock 1 clock 2

clock-neutral

“perspective” of clock  C2“perspective” of clock  C1

PH, Vanrietvelde 1810.04153 
PH 1811.00611 
PH, Smith, Lock 1912.00033 + 2007.00580

E.g. suppose

⇤C1!C2 = R�2(⌧2) �R�1(⌧1)
�1

ÔC1S|C2
:= ⇤C1!C2 ÔC2S|C1

⇤C2!C1

| �2

C1S|C2
i = ⇤C1!C2 | 

�1

C2S|C1
i

“quantum coordinate transformations” 
(frequency-sector-wise), schematic: 

State transf.

Observable transf.

Always describe same physics, but  
relative to different perspectives

analog of  from relativityΛA
A′ = eμ

A ẽA′ 
μ



Temporal frame dependence of physics

“quantum relativity” of comparing readings of and synchronizing different quantum clocks

PH, Vanrietvelde, 1810.04153; PH, Smith, Lock 2007.00580; Bojowald, PH, Tsobanjan 1011.3040

Temporally local time evolution relative to one clock may appear as superposition of time  
evolutions relative to another

Castro-Ruiz, Giacomini, Belenchia, Brukner 1908.10165; PH, Smith, Lock 1912.00033 

Indirect clock self-reference effects

PH, Smith, Lock 1912.00033 + 2007.00580

entanglement depends on the quantum frame
PH, Lock, Ahmad, Smith, Galley 2103.01232; de la Hamette, Galley, PH, Loveridge, Müller 2110.13824; Castro-Ruiz, Oreshkov 2110.13199; 
Giacomini et al 1712.07207; Vanrietvelde, PH, Giacomini, Castro-Ruiz 1809.00556

earlier approaches to quantum clock covariance: 
•semiclassical Bojowald, PH, Tsobanjan 1011.3040; PH, Kubalova, Tsobanjan 1111.5193 
•reduced quantization Malkiewicz 1407.3457; 1601.04857



Quantum relativity of subsystems

Ĉ = ĈA + ĈB + ĈC

3 kinematical subsystems subject to constraint

either can be degenerate and  or  generatorU(1) (ℝ, + )

𝒜physobservables on ℋphys

relational observables of  relative to C A

relational observables of  
 relative to C B 𝒜C|B

𝒜C|A

PH, Lock, Ahmad, Smith, Galley  
2103.01232

 different relational (inv.) ways to refer to  
a kinematical subsystem

⇒

 different relational observable subalgebras  
inside total invariant algebra

⇒

 induce different inv. tensor factorizations⇒

 different appearance of same physics⇒



Many faces of the problem of time

1992 reviews

many independent approaches 
… 
Relational observables 
Deparametrizations 
Page-Wootters (PW) conditional probability interpretation 
…

Kuchar’s 3 arguments against 
viability of PW formalism

multiple choice problem

global time problem

“realistic clocks may run backward”

….. and many more

problem of tim
e

see also Anderson ‘17



Periodic clocks as incomplete temporal frames
Chataignier, PH, Lock to appear

Hamiltonian constraint

CH = HC + HS

clock Hamiltonian -generatorU(1)
system

 periodic clock forces system to be also periodic!⇒

FfS ,T (⌧) | S(⌧)i

periodic

what if  does not have “enough”  
periodic states and observables?

S



Periodic clocks as incomplete temporal frames
Chataignier, PH, Lock to appear

Example: incommensurate oscillators

CH = HC − HS

Oscillator 1 with frequency ω1
Oscillator 2 with frequency  ω2

what if  does not have “enough”  
periodic states and observables?

S

if  then  does not feature non-trivial states/observables periodic in  and     
   challenge for a classical limit!

ω1/ω2 ∉ ℚ S ω1 dim ℋphys = 1 or 0
⇒



Global time problem and “S-matrix interpretation” of relational dynamics

Non-trivial interplay of quantum and classical relational dynamics  
in semiclassical regime of non-global clocks consistent with earlier findings

PH, Kubalova, Tsobanjan ’12 
Dittrich, PH, Nelson, Koslowski ‘16

x1

x2

1

10

S(⌧2, O2; ⌧1, O1) := h⌧2, O2|⇧phys |⌧1, O1i

in any case: in absence of relational observables defined in full QT,  
still have transition amplitudes

 semi-integrable models prevent existence of semiclassical  
limit in standard quantization

⇒

 polymer quantization saves winding numbers in QT,  
can it come to the rescue for periodic clocks as well? 

“adapt quantization to observables”

⇒

Interpret dynamics of full QG theory rather in terms of transition amplitudes?

Dittrich, PH, Nelson, Koslowski ‘16

kinematical observables



Outlook: quantum reference frames 
for general symmetry groups



Analogy with covariance in relativity
Tensors, are reference-frame-neutral objects: they encode physics as “experienced” in any local frame at once

e.g., stress-energy tensor at :x Tx : Txℳ × Txℳ → ℝ

in abstract index notation:

Tμν

TAB := eμ
A Tμν eν

B = T(eA, eB)

frame-neutral description

internal perspective of frame eA

T̃A′ B′ = ẽμ
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Tμνẽν
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ΛA
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B

ΛA
A′ = eμ

AẽA′ 
μinternal perspective of frame ẽA′ 

ẽA′ 
μ ∙ ẽB′ 
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B
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local Lorentz transformation

Change of internal frame perspective via frame-neutral 
structure and coordinate transformation ΛA

A′ 

 tensors: description of physics before choice of frame has been made⇒



Perspective-neutral approach to quantum frame covariance for
general symmetry groups

Anne-Catherine de la Hamette∗1,2, Thomas D. Galley†3, Philipp A. Höhn‡4,5, Leon
Loveridge§6, and Markus P. Müller¶1,2,3

1Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna,
Boltzmanngasse 5, 1090 Vienna, Austria

2Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences,
Boltzmanngasse 3, 1090 Vienna, Austria

3Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo ON N2L 2Y5, Canada
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5Department of Physics and Astronomy, University College London, London, United Kingdom
6Quantum Technology Group, Department of Science and Industry Systems, University of South-Eastern Norway,

3616 Kongsberg, Norway

October 26, 2021

Abstract

In the absence of external relata, internal quantum reference frames (QRFs) appear widely in the
literature on quantum gravity, gauge theories and quantum foundations. Here, we extend the perspective-
neutral approach to QRF covariance to general unimodular Lie groups. This is a framework that links
internal QRF perspectives via a manifestly gauge-invariant Hilbert space in the form of “quantum coordi-
nate transformations”, and we clarify how it is a quantum extension of special covariance. We model the
QRF orientations as coherent states which give rise to a covariant positive operator-valued measure, fur-
nishing a consistent probability interpretation and encompassing non-ideal QRFs whose orientations are
not perfectly distinguishable. We generalize the construction of relational observables, establish a variety
of their algebraic properties and equip them with a transparent conditional probability interpretation.
We import the distinction between gauge transformations and physical symmetries from gauge theories
and identify the latter as QRF reorientations. The “quantum coordinate maps” into an internal QRF
perspective are constructed via a conditioning on the QRF’s orientation, generalizing the Page-Wootters
formalism and a symmetry reduction procedure to general groups. We also find two types of QRF trans-
formations: the gauge induced “quantum coordinate transformations” as passive changes of description,
which we show are always unitary, and symmetry induced active changes of relational observables from
one QRF to another. We then reveal novel physical effects: (i) QRFs whose orientations admit non-trivial
isotropy groups can only resolve isotropy-group-invariant properties of other subsystems; (ii) when the
QRF does not admit symmetries, its internal perspective Hilbert space is not fixed and “rotates” through
the kinematical subsystem Hilbert space as the QRF changes orientation. We also invoke the symmetries
to extend a recent observation on the quantum relativity of subsystems to general groups, which explains
the QRF dependence of entanglement and other physical properties. Finally, we compare with other
approaches to QRF covariance and illustrate our findings in various examples.
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Perspective-neutral approach for general groups

Suppose  carries unitary prod. rep. of (unimodular) ℋkin = ℋR ⊗ ℋS G

-frameG system
                                URS(g) = UR(g) ⊗ US(g) g ∈ G

de la Hamette, Galley, PH, Loveridge, Müller 2110.13824
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complete -frame ‘orientation states’:    G

coherent states: |ϕ(g)⟩ ⇒ give rise to a covariant POVM:  UR(g′ ) |ϕ(g)⟩ = |ϕ(g′ g)⟩

orientation states typically not orthogonal          ⟨ϕ(g) |ϕ(g′ )⟩ ≁ δ(g, g′ )

Suppose  carries unitary prod. rep. of (unimodular) ℋkin = ℋR ⊗ ℋS G

de la Hamette, Galley, PH, Loveridge, Müller 2110.13824



Perspective-neutral approach for general groups

-frameG system
                                URS(g) = UR(g) ⊗ US(g) g ∈ G

complete -frame ‘orientation states’:    G

coherent states: |ϕ(g)⟩ ⇒ give rise to a covariant POVM:  UR(g′ ) |ϕ(g)⟩ = |ϕ(g′ g)⟩

orientation states typically not orthogonal          ⟨ϕ(g) |ϕ(g′ )⟩ ≁ δ(g, g′ )

Suppose  carries unitary prod. rep. of (unimodular) ℋkin = ℋR ⊗ ℋS G

de la Hamette, Galley, PH, Loveridge, Müller 2110.13824

|t,�i =
Z

d" e�i"t |",�i

UC(t
0) |t,�i = |t+ t0,�i)

clock states are 
coherent states of group 

generated by ĤC

generalization of clock states:



Perspective-neutral approach for general groups

-frameG system
                                URS(g) = UR(g) ⊗ US(g) g ∈ G

complete -frame ‘orientation states’:    G

coherent states: |ϕ(g)⟩ ⇒

Relational observables for general groups through -twirl:G

FfS,R(g) = ∫G
dg̃ URS(g̃)( |ϕ(g)⟩⟨ϕ(g) | ⊗ fS) U†

RS(g̃)“what’s the value of  when  is in orientation ?”fS R g

orientation states typically not orthogonal          ⟨ϕ(g) |ϕ(g′ )⟩ ≁ δ(g, g′ )

Suppose  carries unitary prod. rep. of (unimodular) ℋkin = ℋR ⊗ ℋS G

de la Hamette, Galley, PH, Loveridge, Müller 2110.13824

give rise to a covariant POVM:  UR(g′ ) |ϕ(g)⟩ = |ϕ(g′ g)⟩



The trinity generalizes to -framesG

relational observables

Page and Wootters’ 
conditional state formulation

Quantum symmetry reduction 

“relational Schrödinger picture” “relational Heisenberg picture”

perspective-neutral 
picture

Equivalence

quantum symmetry reduction

conditio
ning

de la Hamette, Galley, PH, Loveridge, Müller 2110.13824



QRF changes
ℋkin = ℋR1

⊗ ℋR2
⊗ ℋS

frame 1 frame 2 system

(includes quantum clock changes)

Perspective-neutral 
physical Hilbert space

States relative to  
internal 

perspective of R1

states relative to 
 internal  

perspective of R2

φR1
(g1) = ⟨ϕ(g1) |R1

⊗ 1R2S
φR2

(g2) = ⟨ϕ(g2) |R2
⊗ 1R1S

φR2
∘ φ−1

R1

                    
 

ℋphys
UR1R2S(g) |ψphys⟩ = |ψphys⟩

generalizes previous efforts: 
Giacomini, Castro-Ruiz, Brukner ’17 
Vanrietvelde, PH, Giacomini, Castro-Ruiz ’18 
Vanrietvelde, PH, Giacomini ’18 
PH, Vanrietvelde ’18 
PH ’18 
Castro-Ruiz, Giacomini, Belenchia, Brukner ’19 
PH, Smith, Lock ’19 + ’20 
de la Hamette, Galley ’20 
Krumm, PH, Müller ‘20 
PH, Lock, Ahmad, Smith, Galley ’21 
Giacomini ’21

de la Hamette, Galley, PH, Loveridge, Müller 2110.13824

some new effects for  
non-Abelian groups



New perspective on “wave function of the universe”

Proposal: wave function of the universe as  

• perspective-neutral quantum state of universe 

 global description prior to choice of QRF 

• Link between all internal QRF perspectives on the universe

⇒

Ĥ(N) | physi = 0 , Ĥa( ~M) | physi = 0

plenty of redundancy here

PH 1811.00611

(see also PH 1706.06882 


+ 1412.8323)

Proposal to render “wave function of the universe” compatible with Carlo’s “Relational Quantum Mechanics”
Rovelli quant-ph/9609002



Conclusion: some updates on status of various faces of PoT

Kuchar’s 3 arguments against 
viability of PW formalism

multiple choice problem

global time problem

“realistic clocks may run backward”
problem of tim

e

relational observables

Page-Wootters formalism quantum deparametrization

relational Schrödinger picture relational Heisenberg picture

clock-neutral picture

Trinity of relational quantum 
dynamics

Equivalence:

resolved

covariance via clock changes

covariant clock POVMs

“S-matrix” interpretation?

quantum analogs of gauge-fixing  
and gauge-inv. extensions clarified



Appendix



Quantum relativity of subsystems

ΛA→B = R(H)
B ◦

(
R(H)

A

)−1

Hphys

R(S)
A (g)N (g, ε) R(S)

B (g)N (g, ε′)

Quantum frame change map

Perspective-neutral physical Hilbert space

R(H)
B

TA,ε TB,ε′

Perspective of A
HBC|A

Perspective of B
HAC|B

A

B

C

R(H)
A

Disentangler Disentangler

A

⊗
?

⊗
?

|ψBC|A〉

|ψphys〉

|ψAC|B〉

PH, Lock, Ahmad, Smith, Galley ‘21

more explicitly in QM/QC:

Ĉ = ĈA + ĈB + ĈC

3 kinematical subsystems subject to constraint

either can be degenerate and  or  generatorU(1) ℝ
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1. necessary and sufficient condition for  to factorize 𝒜phys

                                         (*)  𝒜phys ≃ 𝒜A|C ⊗ 𝒜B|C ⇔ σAB|C = M(σA|BC, σB|AC)

Minkowski sum

 σAB|C = spec(ĈA + ĈB) ∩ spec(−ĈC)  σA|BC = spec(ĈA) ∩ spec(−ĈB − ĈC)relational observables of  relative to A C

frame dependent gauge-invariant tensor factorizations:
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2. factorizability frame dependent: e.g. possible that  

                    but                           𝒜phys ≃ 𝒜A|C ⊗ 𝒜B|C 𝒜phys ≠ 𝒜A|B ⊗ 𝒜C|B

relational observables of  relative to A C

frame dependent gauge-invariant tensor factorizations:



Quantum relativity of subsystems
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)−1
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Ĉ = ĈA + ĈB + ĈC

3 kinematical subsystems subject to constraint

either can be degenerate and  or  generatorU(1) ℝ

1. necessary and sufficient condition for  to factorize 𝒜phys

                                         (*)  𝒜phys ≃ 𝒜A|C ⊗ 𝒜B|C ⇔ σAB|C = M(σA|BC, σB|AC)
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2. factorizability frame dependent: e.g. possible that  

                    but                           𝒜phys ≃ 𝒜A|C ⊗ 𝒜B|C 𝒜phys ≠ 𝒜A|B ⊗ 𝒜C|B
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Upshot: frame-dependent gauge-inv. entanglement

“frames  and  mean different inv. DoFs when they refer to subsystem ” B C A

if factorizability in two frame perspectives, i.e. 
              but                 𝒜phys ≃ 𝒜A|C ⊗ 𝒜B|C ≃ 𝒜A|B ⊗ 𝒜C|B 𝒜A|B ≠ 𝒜A|C

PH, Lock, Ahmad, Smith, Galley ’21  

then correlations/entanglement of  with its complement will in general differ in two perspectivesA

 gauge-inv. entanglement entropy in general  for same global physical state⇒ S(ρA|B) ≠ S(ρA|C)

(see also Giacomini, Castro-Ruiz, Brukner ’19)



Upshot: frame-dependent gauge-inv. entanglement

“frames  and  mean different inv. DoFs when they refer to subsystem ” B C A

if factorizability in two frame perspectives, i.e. 
              but                 𝒜phys ≃ 𝒜A|C ⊗ 𝒜B|C ≃ 𝒜A|B ⊗ 𝒜C|B 𝒜A|B ≠ 𝒜A|C

PH, Lock, Ahmad, Smith, Galley ’21  

then correlations/entanglement of  with its complement will in general differ in two perspectivesA

 gauge-inv. entanglement entropy in general  for same global physical state⇒ S(ρA|B) ≠ S(ρA|C)

(see also Giacomini, Castro-Ruiz, Brukner ’19)

emphasize: gauge-inv./relational notion of subsystem 
 extend to field theory via edge modes?⇒

ℳ1

ℳ2

a priori not a gauge-inv. notion of subsystems



Reference frames provide context for 
interpreting invariant observables
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Relational & dressed observables stratify invariant algebra



Relational & dressed observables stratify invariant algebra
de la Hamette, Galley, PH, Loveridge, Müller 2110.13824



RFs provide “context” for interpreting invariant observables

if  global ideal RF, then every element of  can be written as relational/dressed observable relative to it∃ 𝒜phys

(otherwise argument local in )𝒜phys

de la Hamette, Galley, PH, Loveridge, Müller 2110.13824



RFs provide “context” for interpreting invariant observables

if  global ideal RF, then every element of  can be written as relational/dressed observable relative to it∃ 𝒜phys

same diff-inv. observable  can be relational or dressed observable in multiple waysO ∈ 𝒜phys

(otherwise argument local in )𝒜phys

given abstract diff-inv. observable admits multiple physical interpretations in terms of RFs 
 RFs provide the context in which to interpret gauge-inv. observables ⇒

de la Hamette, Galley, PH, Loveridge, Müller 2110.13824



Quantum relativity of subsystems








