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solutions to Einstein’s equations (Karl Schwarzschild, Johannes
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Introduction

@ The Schwarzschild spacetime is one of the simplest vacuum
solutions to Einstein’s equations (Karl Schwarzschild, Johannes
Droste, 1916)

@ Quantization of gravitational system based only on explicit form
of spacetime metric
@ Novelty: quantization of spatial and temporal coordinates
@ Rationale: distinction between space and time violates 4d
diffeomorphism invariance of GR
@ Aim:
» testing simple but powerful quantization method
» presenting the idea of time quantization

» showing that our quantization scheme may resolve the singularity
problem of Schwarzschild’s spacetime

Wiodzimierz Piechocki Quantum Schwarzschild spacetime January 14, 2022 4/20



The Schwarzschild metric

The Schwarzschild metric in the so-called Schwarzschild coordinates

(t,r,0,¢) € R x (0,00) x S? reads

1
g (1 2"/’> e+ ( - 2"”’) ar? 4 12 (d92 + sin2 9d¢2) ,
r r
(1)
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The Schwarzschild metric

The Schwarzschild metric in the so-called Schwarzschild coordinates

(t,r,0,¢) € R x (0,00) x S? reads

1
ds? — _ (1 2:"’) d + ( _ 2;‘”) dr? + r2 (d92 + sin? 9d¢2) ,

(1)
where
t, time coordinate;

r, radial coordinate measured as the circumference (divided by 2r) of
sphere centered around isolated object;

Wiodzimierz Piechocki Quantum Schwarzschild spacetime January 14, 2022 5/20



The Schwarzschild metric

The Schwarzschild metric in the so-called Schwarzschild coordinates

(t,r,0,¢) € R x (0,00) x S? reads

—1
ds? = — <1 - 2;‘”) a2 + (1 - 2;”) ar? 4 r2 (d92 +sin2 9d¢2) ,
(1)
where
t, time coordinate;
r, radial coordinate measured as the circumference (divided by 2r) of
sphere centered around isolated object;
M, mass parameter of the isolated object;
6 and ¢ are angle coordinates of the sphere S2;
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The Schwarzschild metric

The Schwarzschild metric in the so-called Schwarzschild coordinates

(t,r,0,¢) € R x (0,00) x S? reads

—
ds? = — (1 - 2;‘”) dt? + (1 - 2;‘”) ar? + 12 (d6? + sin? 06?)
(1)
where
t, time coordinate;
r, radial coordinate measured as the circumference (divided by 2r) of
sphere centered around isolated object;
M, mass parameter of the isolated object;
6 and ¢ are angle coordinates of the sphere S2;
M — 0 leads to the Minkowski metric (in spherical coordinates);
r — oo leads to the Minkowski metric (Schwarzschild spacetime is
asymptotically flat)
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Singularities
@ at r = 2M there isn’t gravitational, but coordinate singularity
called the event horizon
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Singularities
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called the event horizon
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» K= R\, R # 0, Kretschmann

so that as r — 0 the Kretschmann scalar blows up!
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Singularities

@ at r = 2M there isn’t gravitational, but coordinate singularity
called the event horizon
@ curvature invariants for Schwarzschild’s metric
» R=0=R,,R", Ricci
» K= R\, R # 0, Kretschmann

so that as r — 0 the Kretschmann scalar blows up!
@ for M > 0 we have the horizon so that the model with covered
singularity, i.e. BH
@ for M < 0 there is no event horizon so we have the model
of spacetime with naked singularity
Remark: If isolated objects with naked singularities do occur in real
world, observational data may bring highly valuable information to be
used in the construction of quantum gravity (horizon may screen some
essential quantum gravity details).
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Configuration space

The extended configuration space T of the system

T={(t,r)|(t,r)eRxRy}, Ry =(0,+00), (3)

where t and r are time and radial coordinates, respectively, which
occur in the line element (1).

The other space variables 6 and ¢ of (1), do not enter the definition of
T as the main observable to be quantized, the Kretschmann scalar,
does not depend on these variables.
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Configuration space

The extended configuration space T of the system
T={(tr)[(tr)eRxRy}, Ry =(0,+00), (3)

where t and r are time and radial coordinates, respectively, which
occur in the line element (1).

The other space variables 6 and ¢ of (1), do not enter the definition of
T as the main observable to be quantized, the Kretschmann scalar,
does not depend on these variables.

In the rest of my talk | will address the issue of possible resolution
of gravitational singularity problem of the Schwarzschild spacetime
with naked singularity at quantum level.
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Quantization

Roughly speaking, by quantization of system, represented
by observables defined on our configuration space, | mean:
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Quantization

Roughly speaking, by quantization of system, represented
by observables defined on our configuration space, | mean:

@ ascribing to observables self-adjoint operators acting
in Hilbert space

@ calculating expectation values of quantum observables

@ calculating variances of quantum observables
Considered observables:

@ elementary observables: time and radial coordinates

@ for M < 0, the coordinate r is spacelike and the coordinate t
is timelike
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Quantization

Roughly speaking, by quantization of system, represented
by observables defined on our configuration space, | mean:

@ ascribing to observables self-adjoint operators acting
in Hilbert space

@ calculating expectation values of quantum observables
@ calculating variances of quantum observables
Considered observables:

@ elementary observables: time and radial coordinates

@ for M < 0, the coordinate r is spacelike and the coordinate t
is timelike

@ we quantize both temporal and spatial coordinates
on the same footing
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Quantization

Roughly speaking, by quantization of system, represented
by observables defined on our configuration space, | mean:

@ ascribing to observables self-adjoint operators acting
in Hilbert space

@ calculating expectation values of quantum observables
@ calculating variances of quantum observables
Considered observables:

@ elementary observables: time and radial coordinates

@ for M < 0, the coordinate r is spacelike and the coordinate t
is timelike

@ we quantize both temporal and spatial coordinates
on the same footing

@ composite observable: Kretschmann scalar
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Ascribing group structure

The configuration space T (see Eq. (3)) is a half-plane.
It can be identified with the affine group Aff(R) =: G

T>(tr)— h(t,r)e G,

by defining the group structure on T.
This identification is not unique:
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Ascribing group structure

The configuration space T (see Eq. (3)) is a half-plane.

It can be identified with the affine group Aff(R) =: G
T>(tr)— h(t,r)e G,

by defining the group structure on T.
This identification is not unique:

@ depends on the group parametrization, i.e. depends
on the way we define group multiplication. For instance

h(ti, ry) - h(tz, r2) == h(ty + tory, ri12)

h(ti,r) - h(tz, r2) == h(ty + /11, r112)
define two different parametrizations
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Ascribing group structure

The configuration space T (see Eq. (3)) is a half-plane.
It can be identified with the affine group Aff(R) =: G

T>(tr)— h(t,r)e G,
by defining the group structure on T.
This identification is not unique:

@ depends on the group parametrization, i.e. depends
on the way we define group multiplication. For instance

h(ti, ) - h(te, r2) := h(ty + tory, r11r2)
h(ti,r) - h(tz, r2) == h(ty + /11, r112)
define two different parametrizations

@ different parameterizations lead to unitarily inequivalent
quantum theories
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Defining Hilbert space

The affine group Aff(R) has UIR realized in the Hilbert space
L2(R, dv(x)), where dv(x) = dx/x, defined by

U(t, rjw(x) = (),
in the parametrization (5).
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Defining Hilbert space

The affine group Aff(R) has UIR realized in the Hilbert space
L2(R, dv(x)), where dv(x) = dx/x, defined by

U(t, rjw(x) = (),
in the parametrization (5).

This enables defining the continuous family of affine coherent states
t,r) € L2(Ry,dv(x)) as follows

‘t> r> = U(tv I’)‘d)) )

where |¢) € L2(R, dv(x)), is the so-called fiducial vector,
which is a free “parameter” of this quantization scheme.
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Defining Hilbert space
The affine group Aff(R) has UIR realized in the Hilbert space
L2(R, dv(x)), where dv(x) = dx/x, defined by

U(t, ryw(x) = e™y(rx),

in the parametrization (5).
This enables defining the continuous family of affine coherent states
t,r) € L2(Ry,dv(x)) as follows

‘t? ry = U(tv I’)|d)> )

where |¢) € L2(R, dv(x)), is the so-called fiducial vector,
which is a free “parameter” of this quantization scheme.
The space of coherent states is highly entangled as we have

(t,r|t',;r'y #0 if t#t or r#r, (7)

(torftr) =1 it (8lo) =1 (®)
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Quantum operators

The irreducibility of the representation leads (due to Schur’ lemma)
to the resolution of the unity in L2(R ., dv(x)) =: Hy as follows

[ dutt.nitrit.rl = AT ©)

where du(t, r) := dt dr/r? is the left invariant measure on T,
and where A, := [ [¢(x)[? & < oo is a constant.
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Quantum operators

The irreducibility of the representation leads (due to Schur’ lemma)
to the resolution of the unity in L2(R ., dv(x)) =: Hy as follows

/T dut, |t ) {t.r| = AT, ©)

where du(t, r) := dt dr/r? is the left invariant measure on T,
and where A, := [ [¢(x)[? & < oo is a constant.

Using (9), enables quantization of any observable f : T — R
as follows

A~ 1
f— f= %/Tdu(t, Nt rf(tr)tr|. (10)

The operator ity — Hyls symmetric by construction.
No ordering ambiguity occurs (disaster of canonical quantization).
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Variance of quantum observable
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Variance of quantum observable

Variance is a stochastic deviation from expectation value of quantum
observable; it determines the value of smearing of quantum
observable’.

Standard deviation is calculated as the square root of variance.
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Variance of quantum observable

Variance is a stochastic deviation from expectation value of quantum
observable; it determines the value of smearing of quantum

observable’.
The variance is the average of the squared differences from the mean.
In the quantum state labelled by v, the variance is defined to be

~ A ~

var(A; ) = (A— (A)% ) = (A% ) — (A)?, (11)
where (B; ) := ()| BJy)).

Standard deviation is calculated as the square root of variance.
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Variance of quantum observable

Variance is a stochastic deviation from expectation value of quantum
observable; it determines the value of smearing of quantum
observable’.

The variance is the average of the squared differences from the mean.
In the quantum state labelled by v, the variance is defined to be

~ A ~

var(A; ) = (A— (A)% ) = (A% ) — (A)?, (11)
where (B; ) := ()| BJy)).

If Ais a self-adjoint operator, we have the important statement:
(var(ﬁ\; ) = 0) — (/Z\w =\N), M€ }R) , (12)

i.e., the variance of the operator A equals zero, if and only if,
the quantum system is in an eigenstate of the operator A.

Standard deviation is calculated as the square root of variance.
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Eigenproblem for the Kretschmann operator
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Eigenproblem for the Kretschmann operator
Using our quantization rules (10), we get the quantum Kretschmann
observable in the form

. 1 1
_ 2_ -
K = 48M A¢O/Tdu(t,r)<t,r| St (13)
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Eigenproblem for the Kretschmann operator

Using our quantization rules (10), we get the quantum Kretschmann
observable in the form

K —agnR / 1
K = 48M Ao, Tdu(t, r)(t,r| p: t,r). (13)
The eigenproblem reads
[ dy) Kl y) 40 0) = kv 00, (14)
.
where R
Kic(x,y) == (XIKly) = ... = Ad(x — y)x7, (15)

and where A = 42:22 [fR+ o !‘bo(Q)\Z]-
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Eigenproblem for the Kretschmann operator
Using our quantization rules (10), we get the quantum Kretschmann
observable in the form

o 1 / 1
K = 48M A% Tdu(t,r)<t, r| % [t r). (13)
The eigenproblem reads
[ duly) Kl y) w0 = kuD 00, (14)
N
where R
Kic(x,y) == (XIKly) = ... = Ad(x — y)x7, (15)

and where A = 484° [ [ %9 |4(q)| }
Direct calculations lead to the following generalized eigenfunctions
K k
W= (-], (16)

and the positive spectrum 0 < k < oo of the Kretschmann operator.
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Expectation value and variance for K operator
In what follows we present calculations of expectation value of the
operator K and the corresponding variance.
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Expectation value and variance for K operator

In what follows we present calculations of expectation value of the
operator K and the corresponding variance.

Choosing our group parametrization (5) gives
tgtn) =t (hgtn) =r. (17)

Using the second parametrization (6) would not lead to such a nice
result.
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Expectation value and variance for K operator
In what follows we present calculations of expectation value of the
operator K and the corresponding variance.
Choosing our group parametrization (5) gives

gty =t (hglt.r)=r. (17)
Using the second parametrization (6) would not lead to such a nice

result.
For the Kretschmann operator we obtain

(K;g(t,r)) = 48M22 , (18)

where A is a constant. Therefore, the mean value (K; g(t, r)) has the
singularity at r = 0, as in the classical case.
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Expectation value and variance for K operator

In what follows we present calculations of expectation value of the
operator K and the corresponding variance.

Choosing our group parametrization (5) gives

gty =t (gt =r. (17)
Using the second parametrization (6) would not lead to such a nice

result.
For the Kretschmann operator we obtain

(K;g(t,r)) = 48M22 , (18)

where A is a constant. Therefore, the mean value (K; g(t, r)) has the
singularity at r = 0, as in the classical case.

For the corresponding variance one gets

B

var(K; g(t,r)) = (48M?)? et

(19)

where B is a constant.
The variance (19) goes to infinity as r approaches zero.
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Results of quantization
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Results of quantization
The operator K represents a well behaving smeared observable which

is completely undetermined at the classical singularity r = 0

48 M2 108

(Rign)

20 25

5 10 15
1

Figure: The 1/r dependence of expectation value of Kretschmann operator
(K; g(t, r)) defined by (18). The blue area defines the points for which
distance from the expectation value is smaller than \/var(K; g(t, r)).
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Generalization

The above results have been obtained within the family of coherent
states |g(t,r)) € L2(R., dv(x)) satisfying reasonable conditions (17).
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Generalization

The above results have been obtained within the family of coherent
states |g(t,r)) € L2(R., dv(x)) satisfying reasonable conditions (17).

We have verified these results by making use of the basis
in the Hilbert space L2(R, , dv(x)) defined as follows

2,2
Wn(x) = Nx" exp [imx _ 72"} , (20)

where n=1,2,..., and where N> = 2+"/(n —1)!
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Generalization

The above results have been obtained within the family of coherent
states |g(t,r)) € L2(R., dv(x)) satisfying reasonable conditions (17).

We have verified these results by making use of the basis
in the Hilbert space L2(R, , dv(x)) defined as follows

2,2
Wn(x) = Nx" exp [imx _ 72"} , (20)

where n=1,2,..., and where N> = 2+"/(n —1)!

The expectation values of tand  in the states ¥, read

1
N . 1 T (n-3)
t,Wn = T r,‘Un :772 21
< > [oB) < > Ad>0 (n — 1)| Y ( )



Generalization (cont)
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Generalization (cont)

The expectation value of K is the following

(n+2)! 1
(n=1) 7"

and the corresponding variance is found to be

(K;w,)=A

(n+5)  (n+2)1?

var(K; V,,) = A? ( —

(n—1)! (n-1)2

1
5

12

(23)

We have obtained qualitative agreement with the results which used

the coherent states!
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Conclusions

@ Both temporal and spatial variables have been treated
on the same footing at quantum level.

@ We have no problem with the choice of time at quantum level
quite common to all other quantization schemes!
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Conclusions

@ Both temporal and spatial variables have been treated
on the same footing at quantum level.

@ We have no problem with the choice of time at quantum level
quite common to all other quantization schemes!

@ Quantization of time variable has enabled avoiding
gravitational singularity.

@ The state corresponding to gravitational singularity cannot be the
eigenstate of the the Kretschmann operator. The probability of
finding considered black hole in the singular state equals zero.
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Conclusions

@ Both temporal and spatial variables have been treated
on the same footing at quantum level.

@ We have no problem with the choice of time at quantum level
quite common to all other quantization schemes!

@ Quantization of time variable has enabled avoiding
gravitational singularity.

@ The state corresponding to gravitational singularity cannot be the
eigenstate of the the Kretschmann operator. The probability of
finding considered black hole in the singular state equals zero.

@ Our approach relies on using only metric tensor so that it can be
applied to other isolated systems with known metrics.
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Prospects: quantization of isolated objects
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Prospects: quantization of isolated objects

@ spherically symmetric isolated objects with covered
or naked singularities

Schwarzschild’s BH, in progress

shell model: Minkowski+shell+Sch, in progress

FRW+Sch (Oppenheimer-Snyder model), done

Lemaitre-Tolman-Bondi (naked, covered), in progress

v

v vyy
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» shell model: Minkowski+shell+Sch, in progress
» FRW+Sch (Oppenheimer-Snyder model), done
» Lemaitre-Tolman-Bondi (naked, covered), in progress

@ anisotropic BHs: Bianchi type, planning
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Prospects: quantization of isolated objects

@ spherically symmetric isolated objects with covered
or naked singularities

Schwarzschild’s BH, in progress

shell model: Minkowski+shell+Sch, in progress

FRW+Sch (Oppenheimer-Snyder model), done

Lemaitre-Tolman-Bondi (naked, covered), in progress

@ anisotropic BHs: Bianchi type, planning

v

v vyy

@ rotating BHs: Kerr type, dreaming!
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Prospects: quantization of isolated objects

@ spherically symmetric isolated objects with covered
or naked singularities

» Schwarzschild’s BH, in progress

» shell model: Minkowski+shell+Sch, in progress

» FRW+Sch (Oppenheimer-Snyder model), done

» Lemaitre-Tolman-Bondi (naked, covered), in progress

@ anisotropic BHs: Bianchi type, planning

@ rotating BHs: Kerr type, dreaming!
Remark: QG may be used to get insight into the dynamics of observed
compact objects. And vice versa, observational data coming from

strong gravitational fields may help to fix parameters of constructed
QG models.
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Prospects: quantization of isolated objects

@ spherically symmetric isolated objects with covered
or naked singularities

» Schwarzschild’s BH, in progress

» shell model: Minkowski+shell+Sch, in progress

» FRW+Sch (Oppenheimer-Snyder model), done

» Lemaitre-Tolman-Bondi (naked, covered), in progress

@ anisotropic BHs: Bianchi type, planning

@ rotating BHs: Kerr type, dreaming!
Remark: QG may be used to get insight into the dynamics of observed
compact objects. And vice versa, observational data coming from

strong gravitational fields may help to fix parameters of constructed
QG models.

Message: The CSQ method is powerful and easy to apply to
quantization of gravitational systems (recommended to be used by
young researchers).
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Thank you!
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