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Introduction

The Schwarzschild spacetime is one of the simplest vacuum
solutions to Einstein’s equations (Karl Schwarzschild, Johannes
Droste, 1916)
Quantization of gravitational system based only on explicit form
of spacetime metric
Novelty: quantization of spatial and temporal coordinates
Rationale: distinction between space and time violates 4d
diffeomorphism invariance of GR
Aim:

I testing simple but powerful quantization method
I presenting the idea of time quantization
I showing that our quantization scheme may resolve the singularity

problem of Schwarzschild’s spacetime
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The Schwarzschild metric

The Schwarzschild metric in the so-called Schwarzschild coordinates

(t , r , θ, φ) ∈ R× (0,∞)× S2 reads

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
)
,

(1)
where
t , time coordinate;
r , radial coordinate measured as the circumference (divided by 2π) of
sphere centered around isolated object;
M, mass parameter of the isolated object;
θ and φ are angle coordinates of the sphere S2;
M → 0 leads to the Minkowski metric (in spherical coordinates);
r →∞ leads to the Minkowski metric (Schwarzschild spacetime is
asymptotically flat)
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Singularities
at r = 2M there isn’t gravitational, but coordinate singularity
called the event horizon
curvature invariants for Schwarzschild’s metric

I R = 0 = RµνRµν , Ricci
I K = RµνλσRµνλσ 6= 0, Kretschmann

K =
48M2

r6 , (2)

so that as r → 0 the Kretschmann scalar blows up!
for M > 0 we have the horizon so that the model with covered
singularity, i.e. BH
for M < 0 there is no event horizon so we have the model
of spacetime with naked singularity

Remark: If isolated objects with naked singularities do occur in real
world, observational data may bring highly valuable information to be
used in the construction of quantum gravity (horizon may screen some
essential quantum gravity details).
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Configuration space

The extended configuration space T of the system

T = {(t , r) | (t , r) ∈ R× R+}, R+ = (0,+∞) , (3)

where t and r are time and radial coordinates, respectively, which
occur in the line element (1).
The other space variables θ and φ of (1), do not enter the definition of
T as the main observable to be quantized, the Kretschmann scalar,
does not depend on these variables.

In the rest of my talk I will address the issue of possible resolution
of gravitational singularity problem of the Schwarzschild spacetime
with naked singularity at quantum level.
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Quantization

Roughly speaking, by quantization of system, represented
by observables defined on our configuration space, I mean:

ascribing to observables self-adjoint operators acting
in Hilbert space
calculating expectation values of quantum observables
calculating variances of quantum observables

Considered observables:
elementary observables: time and radial coordinates
for M < 0, the coordinate r is spacelike and the coordinate t
is timelike
we quantize both temporal and spatial coordinates
on the same footing
composite observable: Kretschmann scalar
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Ascribing group structure
The configuration space T (see Eq. (3)) is a half-plane.
It can be identified with the affine group Aff(R) =: G

T 3 (t , r) −→ h(t , r) ∈ G , (4)

by defining the group structure on T .
This identification is not unique:

depends on the group parametrization, i.e. depends
on the way we define group multiplication. For instance

h(t1, r1) · h(t2, r2) := h(t1 + t2r1, r1r2) (5)

h(t1, r1) · h(t2, r2) := h(t1 + t2/r1, r1r2) (6)

define two different parametrizations
different parameterizations lead to unitarily inequivalent
quantum theories
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Defining Hilbert space
The affine group Aff(R) has UIR realized in the Hilbert space
L2(R+,dν(x)), where dν(x) = dx/x , defined by

U(t , r)ψ(x) = eitxψ(rx) ,

in the parametrization (5).
This enables defining the continuous family of affine coherent states
|t , r〉 ∈ L2(R+,dν(x)) as follows

|t , r〉 = U(t , r)|φ〉 ,

where |φ〉 ∈ L2(R+,dν(x)), is the so-called fiducial vector,
which is a free “parameter” of this quantization scheme.
The space of coherent states is highly entangled as we have

〈t , r |t ′, r ′〉 6= 0 if t 6= t ′ or r 6= r ′ , (7)

〈t , r |t , r〉 = 1 if 〈φ|φ〉 = 1 (8)
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Quantum operators

The irreducibility of the representation leads (due to Schur’ lemma)
to the resolution of the unity in L2(R+,dν(x)) =: Hx as follows∫

T
dµ(t , r)|t , r〉〈t , r | = Aφ I , (9)

where dµ(t , r) := dt dr/r2 is the left invariant measure on T ,
and where Aφ :=

∫∞
0 |φ(x)|2 dx

x2 <∞ is a constant.

Using (9), enables quantization of any observable f : T → R
as follows

f −→ f̂ =
1

Aφ

∫
T

dµ(t , r)|t , r〉f (t , r)〈t , r | . (10)

The operator f̂ : Hx → Hx is symmetric by construction.
No ordering ambiguity occurs (disaster of canonical quantization).
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Variance of quantum observable

Variance is a stochastic deviation from expectation value of quantum
observable; it determines the value of smearing of quantum
observable1.
The variance is the average of the squared differences from the mean.
In the quantum state labelled by ψ, the variance is defined to be

var(Â;ψ) := 〈(Â− 〈Â;ψ〉)2;ψ〉 = 〈Â2;ψ〉 − 〈Â;ψ〉2 , (11)

where 〈B̂;ψ〉 := 〈ψ|B̂|ψ〉.
If Â is a self-adjoint operator, we have the important statement:(

var(Â;ψ) = 0
)
⇐⇒

(
Âψ = λψ, λ ∈ R

)
, (12)

i.e., the variance of the operator Â equals zero, if and only if,
the quantum system is in an eigenstate of the operator Â.

1Standard deviation is calculated as the square root of variance.
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the quantum system is in an eigenstate of the operator Â.
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1Standard deviation is calculated as the square root of variance.
Włodzimierz Piechocki Quantum Schwarzschild spacetime January 14, 2022 12 / 20



Variance of quantum observable

Variance is a stochastic deviation from expectation value of quantum
observable; it determines the value of smearing of quantum
observable1.
The variance is the average of the squared differences from the mean.
In the quantum state labelled by ψ, the variance is defined to be
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Eigenproblem for the Kretschmann operator
Using our quantization rules (10), we get the quantum Kretschmann
observable in the form

K̂ = 48M2 1
AΦ0

∫
T

dµ(t , r)〈t , r | 1
r6 |t , r〉 . (13)

The eigenproblem reads∫
R+

dν(y) KK(x , y) ψ
(K)
k (y) = k ψ(K)

k (x) , (14)

where
KK(x , y) := 〈x |K̂ |y〉 = . . . = A δ(x − y)x7 , (15)

and where A = 48M2

AΦ0

[∫
R+

dq
q8 |Φ0(q)|2

]
.

Direct calculations lead to the following generalized eigenfunctions

ψ
(K)
k (x) = δ

(
x6 − k

A

)
, (16)

and the positive spectrum 0 < k <∞ of the Kretschmann operator.
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Expectation value and variance for K̂ operator
In what follows we present calculations of expectation value of the
operator K̂ and the corresponding variance.
Choosing our group parametrization (5) gives

〈̂t ; g(t , r)〉 = t , 〈r̂ ; g(t , r)〉 = r . (17)

Using the second parametrization (6) would not lead to such a nice
result.
For the Kretschmann operator we obtain

〈K̂ ; g(t , r)〉 = 48M2 A
r6 , (18)

where A is a constant. Therefore, the mean value 〈K̂ ; g(t , r)〉 has the
singularity at r = 0, as in the classical case.
For the corresponding variance one gets

var(K̂ ; g(t , r)) = (48M2)2 B
r12 , (19)

where B is a constant.
The variance (19) goes to infinity as r approaches zero.

Włodzimierz Piechocki Quantum Schwarzschild spacetime January 14, 2022 14 / 20



Expectation value and variance for K̂ operator
In what follows we present calculations of expectation value of the
operator K̂ and the corresponding variance.
Choosing our group parametrization (5) gives

〈̂t ; g(t , r)〉 = t , 〈r̂ ; g(t , r)〉 = r . (17)

Using the second parametrization (6) would not lead to such a nice
result.
For the Kretschmann operator we obtain

〈K̂ ; g(t , r)〉 = 48M2 A
r6 , (18)

where A is a constant. Therefore, the mean value 〈K̂ ; g(t , r)〉 has the
singularity at r = 0, as in the classical case.
For the corresponding variance one gets

var(K̂ ; g(t , r)) = (48M2)2 B
r12 , (19)

where B is a constant.
The variance (19) goes to infinity as r approaches zero.

Włodzimierz Piechocki Quantum Schwarzschild spacetime January 14, 2022 14 / 20



Expectation value and variance for K̂ operator
In what follows we present calculations of expectation value of the
operator K̂ and the corresponding variance.
Choosing our group parametrization (5) gives

〈̂t ; g(t , r)〉 = t , 〈r̂ ; g(t , r)〉 = r . (17)

Using the second parametrization (6) would not lead to such a nice
result.
For the Kretschmann operator we obtain

〈K̂ ; g(t , r)〉 = 48M2 A
r6 , (18)

where A is a constant. Therefore, the mean value 〈K̂ ; g(t , r)〉 has the
singularity at r = 0, as in the classical case.
For the corresponding variance one gets

var(K̂ ; g(t , r)) = (48M2)2 B
r12 , (19)

where B is a constant.
The variance (19) goes to infinity as r approaches zero.

Włodzimierz Piechocki Quantum Schwarzschild spacetime January 14, 2022 14 / 20



Expectation value and variance for K̂ operator
In what follows we present calculations of expectation value of the
operator K̂ and the corresponding variance.
Choosing our group parametrization (5) gives

〈̂t ; g(t , r)〉 = t , 〈r̂ ; g(t , r)〉 = r . (17)

Using the second parametrization (6) would not lead to such a nice
result.
For the Kretschmann operator we obtain

〈K̂ ; g(t , r)〉 = 48M2 A
r6 , (18)

where A is a constant. Therefore, the mean value 〈K̂ ; g(t , r)〉 has the
singularity at r = 0, as in the classical case.
For the corresponding variance one gets

var(K̂ ; g(t , r)) = (48M2)2 B
r12 , (19)

where B is a constant.
The variance (19) goes to infinity as r approaches zero.

Włodzimierz Piechocki Quantum Schwarzschild spacetime January 14, 2022 14 / 20



Expectation value and variance for K̂ operator
In what follows we present calculations of expectation value of the
operator K̂ and the corresponding variance.
Choosing our group parametrization (5) gives

〈̂t ; g(t , r)〉 = t , 〈r̂ ; g(t , r)〉 = r . (17)

Using the second parametrization (6) would not lead to such a nice
result.
For the Kretschmann operator we obtain

〈K̂ ; g(t , r)〉 = 48M2 A
r6 , (18)

where A is a constant. Therefore, the mean value 〈K̂ ; g(t , r)〉 has the
singularity at r = 0, as in the classical case.
For the corresponding variance one gets

var(K̂ ; g(t , r)) = (48M2)2 B
r12 , (19)

where B is a constant.
The variance (19) goes to infinity as r approaches zero.

Włodzimierz Piechocki Quantum Schwarzschild spacetime January 14, 2022 14 / 20



Results of quantization
The operator K̂ represents a well behaving smeared observable which
is completely undetermined at the classical singularity r = 0
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Figure: The 1/r dependence of expectation value of Kretschmann operator
〈K̂ ; g(t , r)〉 defined by (18). The blue area defines the points for which

distance from the expectation value is smaller than
√

var〈K̂ ; g(t , r)〉.
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Generalization

The above results have been obtained within the family of coherent
states |g(t , r)〉 ∈ L2(R+,dν(x)) satisfying reasonable conditions (17).

We have verified these results by making use of the basis
in the Hilbert space L2(R+,dν(x)) defined as follows

Ψn(x) = Nxn exp

[
iτ0x − γ2x2

2

]
, (20)

where n = 1,2, . . ., and where N2 = 2γn/(n − 1)!

The expectation values of t̂ and r̂ in the states Ψn read

〈̂t ; Ψn〉 = τ0, 〈r̂ ; Ψn〉 =
1

AΦ0

Γ
(
n − 1

2

)
(n − 1)!

γ . (21)
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Generalization (cont)

The expectation value of K̂ is the following

〈K̂ ; Ψn〉 = A(n + 2)!

(n − 1)!

1
γ6 , (22)

and the corresponding variance is found to be

var(K̂ ; Ψn) = A2
(

(n + 5)!

(n − 1)!
− (n + 2)!2

(n − 1)!2

)
1
γ12 . (23)

We have obtained qualitative agreement with the results which used
the coherent states!
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Conclusions

Both temporal and spatial variables have been treated
on the same footing at quantum level.
We have no problem with the choice of time at quantum level
quite common to all other quantization schemes!
Quantization of time variable has enabled avoiding
gravitational singularity.
The state corresponding to gravitational singularity cannot be the
eigenstate of the the Kretschmann operator. The probability of
finding considered black hole in the singular state equals zero.
Our approach relies on using only metric tensor so that it can be
applied to other isolated systems with known metrics.
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Prospects: quantization of isolated objects

spherically symmetric isolated objects with covered
or naked singularities

I Schwarzschild’s BH, in progress
I shell model: Minkowski+shell+Sch, in progress
I FRW+Sch (Oppenheimer-Snyder model), done
I Lemaître-Tolman-Bondi (naked, covered), in progress

anisotropic BHs: Bianchi type, planning
rotating BHs: Kerr type, dreaming!

Remark: QG may be used to get insight into the dynamics of observed
compact objects. And vice versa, observational data coming from
strong gravitational fields may help to fix parameters of constructed
QG models.

Message: The CSQ method is powerful and easy to apply to
quantization of gravitational systems (recommended to be used by
young researchers).
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Thank you!
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