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INTRODUCTION

There is by now extensive literature addressing the problem of time in classical
and quantum gravity (e.g., Kuchar ‘s review, IJMPD 20, 3 (2011)).

The heart of the problem lies in the fact that Einstein’s theory is a totally
constrained system whose Hamiltonian vanishes, it is a constraint. Since observable
quantities are those that commute with the constraints (Dirac Observables) they

therefore, do not evolve.

We will propose a solution to this in this talk but before that we will discuss two
previous proposals to solve this problem.

Both have in common their relational character. In fact, one of the basic ingredients in

the different proposals to describe evolution is the use of relations between
different degrees of freedom in the theory .

- Evolving Dirac observables. (Bergmann, DeWitt, Rovelli, Marolf...) also known as
evolving constants of the motion.

- Conditional probabilities approach proposed by Page and Wootters.



We will see that both approaches present problems and do not provide a
completely satisfactory solution to the issue of the evolution.

Problems are particularly acute when we try to compute propagators or assign
probabilities to histories.

We will show that a combination of both approaches addresses the
problems they present.



1) Evolving Dirac Observables in totally constrained systems:
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In the case of GR, the constraints are first class
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The Hamiltonian vanishes: the

— ¢ generator of the evolution also
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generates gauge transformations

Dirac observables are gauge invariant quantities

10(q,p),9;(q,p)} =0 {O(q,p),H (q,p)} =0

Therefore, they are constants of the motion.



The issue of time: If the physically relevant quantities in
totally constrained systems as general relativity are constants
of the motion, how can we describe the evolution?

Evolving Dirac observables (evolving constants of the motion): Bergmann,
DeWitt, Rovelli, Marolf ...
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Problem: The issue of the parameter t

Evolving observables depend on a real parameter t. That is, we are assuming that
there is an external quantity t, that is not represent by any quantum operator

nor belongs to any physical Hilbert space.

One may wonder about the meaning of the condition g°=t. On the one hand,
t is supposed to be a parameter whereas q° is one of the canonical variables.

Generically, the latter will not be a well-defined quantity at a quantum level
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2) Conditional probabilities.

The second alternative we want to consider is a description of the evolution in
terms of conditional probabilities.

The idea is that one promotes all variables to quantum operators and computes
conditional probabilities among them. This idea appears simple, natural and
attractive in a closed system.

Unfortunately, one runs into problems due to the totally constrained nature of
gravity. Which variables to promote? Dirac observables? Page and Wootters
proposed using kinematical variables, not Dirac observables. That way they
had some form of evolution. Phys.Rev.D27:2885,(1983)

Kuchar in his review on the problem of time, noted that this procedure faces important
difficulties, in particular it does not lead to the correct propagators in model systems.
The root of the problem is the distributional nature of physical states and the attempt

to compute expectation values of kinematical quantities with them.



3) Conditional probabilities in terms of evolving Dirac observables.

As we have seen, both approaches require the use of variables which are not
defined in the physical space.

Here we will elaborate upon a different approach where all reference

to external parameters is abolished, and evolving constants are used to define
correlations between Dirac observables in the theory.

R. Gambini, R. Porto, JP, S. Torterolo PRD 79, 041501 (2009).



We propose to revisit the Page-Wootters construction by computing

relational probabilities among evolving Dirac observables. The latter are well
defined on the physical space of states of the theory and are quantities that one
can expect to observe and to be represented by well defined self-adjoint
quantum operators.

First you choose an evolving observable as your clock, let us call it T(1) .
Then one identifies the set of observables O4(t)...On(t) that commute with T
and describes the physical system whose evolution one wants to study and computes

| , - | . J7, dt Tr (Po,(t) P, (t)p Pr, (t))
P (0 €[00y — AO, Oy + AOQ||T € [Ty — AT, Ty + AT)) = 1 T it ol ol
(0 €0 ), 0 |IT € [To To+ AT)) = lim J7_dt Tr (P, (t)p)

In other words, t is the parameter associated to the variable used to define the
evolving observables. This variable is treated as an ideal quantity that we do not
need to observe.

We have shown that for the example considered by Kuchaf (parameterized two
particles), this indeed yields the correct propagators.



How does one make contact with ordinary quantum mechanics?

Given a system, first of all you choose some physical

variable as your “clock”, let us call it T. Such variable will be
represented by a quantum operator. Then you choose the variables
that will describe the physical system under study. Generically we
call them X. One then computes:

P(< X >=x, |<T>=t)) = Jdt Tr(P.(t)F. (1) pL (1))
| dt Tr(F.(1) p)

That 1s, the conditional probability that X takes a value x, when

T takes a value t,. The quantity t in the right-hand side will become the
“1deal” t of Schrodinger’s theory. In the Schrodinger picture the
density matrices (quantum states) evolve with the traditional
Schrodinger equation we only ask different questions about them

than usual. Let us see how that emerges.




How does quantum evolution look like when one casts it in terms of
T rather than t? Here one needs to make some assumptions. We
assume that the density matrix can be written as a direct product

of that of the clock and that of the system under study and that one
has a unitary independent evolution for the clock and the system,

P = pcl®psys e = Ucl 02 Usys

We also define the probability density that the clock variable takes
the value T when the “i1deal time” takes the value t,

. (PT(O)Ucl(t)pclUcl(t)T>
PUT) = % ey (Prtp)

And define an evolution in terms of the variable T,

pT) = [ dtUegs(t)possUess (8) PH(T)



With these 1dentifications we can rewrite the conditional probability

as an ordinary probability in quantum mechanics for the density
matrix p(T)

Tr(Pop(T))

PO = 1)

To get something closer to the usual Schrodinger equation, we
assume that the probability for the clock 1s quite peaked,

PT) = 8(T — t) + a(T)8"(T — t) + b(T)"(T —t) + ...

Which gives for the evolution,

A(T) = pays(T) + a(T) [ H, peys(T)| — 0(T) H, | H, psys! )]},



And the differential equation that gives the time evolution of the
density matrix is given by,

N

—ihg—‘T’ =[H, pl+o(T)[H,[H, p]]+...

Where o(T) 1s the rate of spread of the wavefunction of the clock.
We have assumed one started with a clock in a quantum state such
that the variable T has a distribution that 1s very peaked around t.

In fact, the above expression 1s approximate, as the spreads increase
one gets higher order terms with more commutators.

Class.Quant.Grav.21:L.51-L.57,2004
New J.Phys.6:45,2004



What are the consequences of the extra term? If we assume o 1s
constant, the equation can be solved exactly, and one gets that the
density matrix in an energy eigen-basis evolves as,
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Where the omegas are the Bohr frequencies associated with the
eigenvalues of H.  Wpn = By, — By,

Therefore, the off-diagonal elements of the density matrix decay
to zero exponentially, and pure states generically evolve into
mixed states.

Quantum mechanics with real clocks therefore does not have a
unitary evolution.



The effect can be made arbitrarily large simply choosing “lousy
clocks” to do physics. This 1s not usually done, but an interpretation
of experiments with Rabi1 oscillations indicates the effect 1s there,

R . Bonifacio, S . Olivares, P. Tombesi et. al., J. Mod. Optics, 47 2199 ( 2000)

PRAG61, 053802 (2000).
D. Meekhof, C. Monroe, B. King, W. Itano, D. Wineland PRL76, 1796 (1996).
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Can the effect be eliminated just by choosing better and better
clocks? And 1f not, how much does reality depart from traditional
quantum theory? To estimate this, we have to ask ourselves the
question “what 1s the best clock we can build”?



There are many phenomenological arguments based on quantum and gravitational
considerations that lead to estimates of such a limitation, L
(Salecker-Wigner and Ng, Karolyhazy, Lloyd, Hogan, Amelino Camelia) o =T

13 4273
!

We will not enter into the analysis of these phenomenological estimations, (which have
been questioned in the literature). But it is important to remark that the evolution with
real clocks will not be unitary if the spread in the error of the clock grows with time
with some power of T.

Thatis, if 8T=T,n the evolution is unitary, but if ST=TTp, "2 with a>0 there will
exist a fundamental loss of unitarity.

R. Gambini, R. Porto, J. Pullin, GRG 39, 1143 (2007)
We have recently reformulated our approach using POVM'’s with the framework
introduced by Hohn, Smith and Lock, arXiv:2007.00580, 1912.00033

R. Gambini, JP, Universe 6, 236 (2020).



Conclusions:

* Using evolving constants of the motion in the
conditional probability interpretation of Page
and Wootters allows to correctly compute the
propagator and assign probabilities to
histories.

* The resulting description is entirely in terms of
Dirac observables.

 There are corrections to the propagator due to
the use of “real clocks and rods” to measure
space and time that include a fundamental
loss of coherence.



