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Standing waves are a quite common phenomenon in physics . ..
What is a standing gravitational wave?

Hans Stephani, 2003



standing wave in 1D
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standing wave in 2D

A=Cos[t](Cos[x]+Cos[y])=1/2(Cos[t-x]+Cos[t+x]+Cos[t-y]+Cos[t+y])




a wave function of an electron in a box

a violin string

seismic waves

Faraday waves 1831 (Navier-Stokes equations)



Faraday waves—nonlinearity
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credits: Merlin Sheldrake and Rupert Sheldrake
Determinants of Faraday Wave-Patterns in Water Samples Oscillated Vertically at a Range of
Frequencies from 50-200 Hz, WATER 9, 1-27, OCTOBER 25, 2017



Faraday waves—nonlinearity

credits: Stéphan Fauve and Gérard loos, Quasipatterns versus superlattices resulting from the
superposition of two hexagonal patterns, Comptes Rendus Mécanique Volume 347, Issue 4, April 2019,
Pages 294-304



Gowdy standing waves
standing wave boundary conditions

primordial gravitational waves from inflation (Tensor
perturbations)

Hans Stephani, Some remarks on standing gravitational waves,
General Relativity and Gravitation 35, 467 (2003)



a superposition of waves moving in opposite directions
problem: Einstein equations are nonlinear—no direct
superpositions, e.g. Khan—Penrose impulsive waves and
singularities

a definition in terms of gravitational energy density

problem: energy density of gravitational waves does not exist
because of the equivalence principle

a definition in terms of "no spatial energy flux"

problem: no obvious gravitational analogue of the Poynting
vector



Trautman 1958, Radiation and Boundary Conditions in the
Theory of Gravitation, Bull. Acad. Polon. Sci., 6, 407-412
(1958)

Isaacson 1968 — Burnett 1989 — Green and Wald 2011

standing waves in a high frequency limit correspond to a
superposition of null dusts (SJS, A. Cieslik, Phys. Rev. D 100,
064025, 2019)

1
£ = Ep(xo‘)(kb+ QKL +K_QK_),
problem: in the limit information is lost, so one cannot exclude

possibility that some non-standing waves solutions also have
limit of this form



let (M, g) be a 1+ 3 dimensional spacetime which admits the
time function t and belongs to the G, group — there exist two
linearly independent Killing fields &, n

we are interested in the Abelian G, group denoted as G,/

the orthogonally transitive Gp/ metric on non-null orbits can
be written as

g = e (edt? + dz?) + W [—ceP(dx + wdy)? + e Pdy?]

where W > 0 and f, W, p are functions of t , z only (& = 0Ok,
n = 0y)



for spacelike orbits ¢ = —1 and under an additional assumption
W=t

g=ef(—dt? + dz?) +t [eP(dx + wdy)? + efpdyz]

a remark: a complex substitution leads to ‘an equivalence’

non-stationary cylindrical spacetimes

\ stationary axially symmetric spacetimes



let @: Ry x R+ R be a space of functions such that for any

s € Q we have: s(t,z) is a bounded function which is
asymptotically almost periodic in t as t — oo (with a non-vanishing
amplitude) and strictly periodic in z



g=ef(—dt® + dz?) + t [eP(dx + wdy)? + ef”dyﬂ

si, i, gk € Q and «, (3 are real constants
1

f=—Bq/Vt+pB3(si+trn), p=—Int+Bq/Vt, w=0
Phys. Rev. D 103, 024011 (2021), SJS, S. Naqvi
1

f = In [cosh a cosh(Bq1/v/t) — sinh(Bq1/v/t)] + B%(s1 + tr),
p = —Int—In[cosh acosh(8q1/v/t) — sinh(Bq1/Vt)],
w = fv/tgosinh o
arxiv.org/abs/2106.05829, K. Gtéd, S. Sikora, SJS
1

f= —% Int+2In(1+ teﬁql/ﬁ) — Baqi /'t + B?(s1 + tr),
p=—2In(1+ tefn/Vt) 4 Bq1 /\/t, w =0,

A’ = Ltanh[In(v/t) + 18q1/V/1] dx

work in progress, SJS, S. Naqvi

Lassuming that t-constant hypersurfaces are compact without boundary and
orientable



arxiv.org/abs/2106.05829

qu(t, z) = 2V AJo(t/\) sin(z/\)
si(t,z) = qu(t, 2)VAth(t/N)sin(z/N)

n(t,z) = t(Jo(t/N)? + Ji(t/))?)

q(t, z) = 2V At (t/)) cos(z/N)

J; are Bessel functions of the first kind and ) is a constant



a geodesic deviation equation in an orthonormal frame e
which is a freely falling frame of stationary observers at
antinodes (only for the Gowdy type solutions)

Weyl scalars (using a Newman-Penrose tetrad)

optical scalars for rays aligned along the propagation direction
of gravitational waves

‘a laser ranging’
the Bel-Robinson tensor (u® is a four-velocity of an observer)

Taﬁ’yé — Cau';/ Céuﬁu + *Cau’yu * C(SVBM

super-energy density
W = Topysu®uPulu’ >0
super-Poynting vector

S¥ =TV 565 +u “u P u



a complex null tetrad wy = {k,/, m, m}
real vectors k, | and complex conjugate vectors m, m are null
their inner products vanish except

k-l==1, m-m=1

the orthonormal tetrad {e}

T T
m = \2(% — I'eg) m = \2(% + ieﬁ)

g&B — —2k(&/“) —+ 2m(&ﬁv5)

the Weyl tensor has ten independent components which are
determined by the five complex coefficients Wy, Wy, Wy, W3, Wy



2464 .
d°gt _RE_¢P
dr2 030
& — a deviation vector, 7 — a proper time of the observer

by an appropriate choice of a null tetrad we have V1 = W3 =0

e — % [Rog — Ryg] + 2R [
e = % [Rog — Ryz] + 13% [—2W5 + Wo + Wy
R34 = % [Res — Riz] + &e[ 2W, — Vo — W]
o = —%Rﬁg + %% [Wo — Wy

W — complex Weyl scalars



at antinodes

Ryg =8m Tg = p = E? + B2

Ryp = 8m Ty = 8mow = 2E2+2B2 —p

Rs3 = 8moyy, = 2ExE, + 2B, B, — pdyy

we have B = 0 and E = E,es which implies
Rﬁ@ = Rii and RQ::; =0

for the solution studied: 19 = 14 (¢4 are real)

Rloio = 2V2

Rl = —W2 + Vo
R = —¥2 — Vo
R% =0



A remark: The Szekeres theorem implies that there do not exist
vacuum solutions to Einstein equations with Wy # 0, W4 # 0 and
V; = W, = W3 = 0. Since for our electro-vac spacetime

Vo =W, #0and ¥; = V3 =0 (by ‘a gauge transformation’),
then necessary the Coulomb component W, is non-zero. Two
transverse gravitational waves cannot be trivially superposed.



invented by Nicolas Auguste Tissot in 1859 and 1871 to
characterize local distorsions to map projection in cartography

applied to gravitational waves by Garry Gibbons

Tissot diagrams for linear waves: N. Bishop, L.
Rezzolla, Extraction of gravitational waves in numerical
relativity, Living reviews in relativity, 2016

Tissot diagrams for plane waves: P.-M. Zhang, C. Duval, G.
W. Gibbons, P. A. Horvathy, Soft Gravitons & the Memory
Effect for Plane Gravitational Waves, Phys. Rev. D 96,
064013 (2017)

Tissot diagrams for standing waves: SJS, S. Naqvi, Freely
falling particles in standing wave spacetime, Phys. Rev. D
103, 024011 (2021)



linearized gravitational waves (N. Bishop, L. Rezzolla)

+ polarization



"spring constants' in polarized T3 Gowdy
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"Spring constants" at an antinode: longitudinal (solid), transverse
(dashed).



"spring constants' in polarized T3 Gowdy
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"Spring constants" at an antinode: longitudinal (solid), transverse
(dashed).
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polarized T3 Gowdy




exact toy models of standing gravitational waves

the precise definition of standing gravitational waves is still
needed

anitodes attract freely falling particles (in particular models)
Weyl scalars are useful in the analysis

a convenient setting to study nonlinear waves



super-energy density
(electro-vac model, A = 1/10)

B=1,1=0.8

B=1/2,1=0.8
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1 component of super-Poynting vector

(electro-vac model, A = 1/10)
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1 component of super-Poynting vector
(electro-vac model, A = 1/10)
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