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Standing waves are a quite common phenomenon in physics . . .
What is a standing gravitational wave?

Hans Stephani, 2003



standing wave in 1D
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standing wave in 2D

t=0

t=π



examples of standing waves

I a wave function of an electron in a box
I a violin string
I seismic waves
I Faraday waves 1831 (Navier-Stokes equations)
I . . .



Faraday waves—nonlinearity

credits: Merlin Sheldrake and Rupert Sheldrake
Determinants of Faraday Wave-Patterns in Water Samples Oscillated Vertically at a Range of
Frequencies from 50-200 Hz, WATER 9, 1-27, OCTOBER 25, 2017



Faraday waves—nonlinearity

credits: Stéphan Fauve and Gérard Ioos, Quasipatterns versus superlattices resulting from the
superposition of two hexagonal patterns, Comptes Rendus Mécanique Volume 347, Issue 4, April 2019,
Pages 294-304



standing waves and gravity

I Gowdy standing waves
I standing wave boundary conditions
I primordial gravitational waves from inflation (Tensor

perturbations)
I Hans Stephani, Some remarks on standing gravitational waves,

General Relativity and Gravitation 35, 467 (2003)



definitions

I a superposition of waves moving in opposite directions
problem: Einstein equations are nonlinear—no direct
superpositions, e.g. Khan–Penrose impulsive waves and
singularities

I a definition in terms of gravitational energy density
problem: energy density of gravitational waves does not exist
because of the equivalence principle

I a definition in terms of "no spatial energy flux"
problem: no obvious gravitational analogue of the Poynting
vector



high frequency limit and null dust

I Trautman 1958, Radiation and Boundary Conditions in the
Theory of Gravitation, Bull. Acad. Polon. Sci., 6, 407-412
(1958)

I Isaacson 1968 → Burnett 1989 → Green and Wald 2011
I standing waves in a high frequency limit correspond to a

superposition of null dusts (SJS, A. Cieślik, Phys. Rev. D 100,
064025, 2019)

t(0) =
1
2
ρ(xα)(k[+ ⊗ k[+ + k[− ⊗ k[−) ,

problem: in the limit information is lost, so one cannot exclude
possibility that some non-standing waves solutions also have
limit of this form



searching for exact standing gravitational waves

I let (M, g) be a 1 + 3 dimensional spacetime which admits the
time function t and belongs to the G2 group — there exist two
linearly independent Killing fields ξ, η

I we are interested in the Abelian G2 group denoted as G2I
I the orthogonally transitive G2I metric on non-null orbits can

be written as

g = ef (εdt2 + dz2) + W
[
−εep(dx + ωdy)2 + e−pdy2]

where W > 0 and f , W , p are functions of t , z only (ξ = ∂x ,
η = ∂y )



toy-models

I for spacelike orbits ε = −1 and under an additional assumption
W = t

g = ef (−dt2 + dz2) + t
[
ep(dx + ωdy)2 + e−pdy2]

a remark: a complex substitution leads to ‘an equivalence’

cosmological spacetimes

non-stationary cylindrical spacetimes

stationary axially symmetric spacetimes



definition

let Q : R+ × R 7→ R be a space of functions such that for any
s ∈ Q we have: s(t, z) is a bounded function which is
asymptotically almost periodic in t as t →∞ (with a non-vanishing
amplitude) and strictly periodic in z



exact solutions: standing waves
g = ef (−dt2 + dz2) + t

[
ep(dx + ωdy)2 + e−pdy2]

si , rj , qk ∈ Q and α, β are real constants

I vacuum (T 3 Gowdy)1

f = −βq1/
√
t + β2(s1 + tr1), p = − ln t + βq1/

√
t, ω = 0

Phys. Rev. D 103, 024011 (2021), SJS, S. Naqvi
I vacuum (T 3 “unpolarized” Gowdy)1

f = ln
[
coshα cosh(βq1/

√
t)− sinh(βq1/

√
t)
]

+ β2(s1 + tr1),
p = − ln t − ln

[
coshα cosh(βq1/

√
t)− sinh(βq1/

√
t)
]
,

ω = β
√
tq2 sinhα

arxiv.org/abs/2106.05829, K. Głód, S. Sikora, SJS
I electro-vac (T 3 electromagnetic Gowdy)1

f = −1
2 ln t + 2 ln (1 + teβq1/

√
t)− βq1/

√
t + β2(s1 + tr1),

p = −2 ln (1 + teβq1/
√

t) + βq1/
√
t, ω = 0,

A[ = 1
2 tanh[ln(

√
t) + 1

2βq1/
√
t] dx

work in progress, SJS, S. Naqvi
1assuming that t-constant hypersurfaces are compact without boundary and

orientable

arxiv.org/abs/2106.05829


exact solutions

q1(t, z) = 2
√
λJ0(t/λ) sin(z/λ)

s1(t, z) = q1(t, z)
√
λtJ1(t/λ) sin(z/λ)

r1(t, z) = t(J0(t/λ)2 + J1(t/λ)2)

q2(t, z) = 2
√
λtJ1(t/λ) cos(z/λ)

Ji are Bessel functions of the first kind and λ is a constant



tools
I a geodesic deviation equation in an orthonormal frame eα̂

which is a freely falling frame of stationary observers at
antinodes (only for the Gowdy type solutions)

I Weyl scalars (using a Newman-Penrose tetrad)
I optical scalars for rays aligned along the propagation direction

of gravitational waves
I ‘a laser ranging’
I the Bel-Robinson tensor (uα is a four-velocity of an observer)

Tαβγδ = C ν
αµγ C

µ
δνβ + ?C ν

αµγ ? C
µ

δνβ

I super-energy density

W = Tαβγδuαuβuγuδ ≥ 0

I super-Poynting vector

Sα = −Tµ
βγδ(δαµ + uαuµ)uβuγuδ



Newman–Penrose tetrad

a complex null tetrad wµ̆ = {k , l ,m, m̄}
real vectors k , l and complex conjugate vectors m, m̄ are null
their inner products vanish except

k · l = −1 , m · m̄ = 1

the orthonormal tetrad {eα̂}

k =
1√
2

(e0̂ + e1̂) l =
1√
2

(e0̂ − e1̂)

m =
1√
2

(e2̂ − ie3̂) m̄ =
1√
2

(e2̂ + ie3̂)

(1)

gᾰβ̆ = −2k(ᾰlβ̆) + 2m(ᾰm̄β̆)

the Weyl tensor has ten independent components which are
determined by the five complex coefficients Ψ0, Ψ1, Ψ2, Ψ3, Ψ4



geodesic deviation in a freely falling frame

d2ξα̂

dτ2 = −R α̂0̂β̂0̂ξ
β̂

ξ — a deviation vector, τ — a proper time of the observer
by an appropriate choice of a null tetrad we have Ψ1 = Ψ3 = 0

R 1̂
0̂1̂0̂ =

1
2
[
R0̂0̂ − R1̂1̂

]
+ 2< [Ψ2]

R 2̂
0̂2̂0̂ =

1
2
[
R0̂0̂ − R1̂1̂

]
+

1
2
< [−2Ψ2 + Ψ0 + Ψ4]

R 3̂
0̂3̂0̂ =

1
2
[
R0̂0̂ − R1̂1̂

]
+

1
2
< [−2Ψ2 −Ψ0 −Ψ4]

R 2̂
0̂3̂0̂ = −1

2
R2̂3̂ +

1
2
= [Ψ0 −Ψ4]

ΨA — complex Weyl scalars



geodesic deviation in a freely falling frame

at antinodes
R0̂0̂ = 8πT0̂0̂ = ρ = E 2 + B2

R1̂1̂ = 8πT1̂1̂ = 8πσxx = 2E 2
x + 2B2

x − ρ
R2̂3̂ = 8πσxy = 2ExEy + 2BxBy − ρδxy
we have B = 0 and E = Exe2̂ which implies
R0̂0̂ = R1̂1̂ and R2̂3̂ = 0
for the solution studied: ψ0 = ψ4 (ψA are real)

R 1̂
0̂1̂0̂ = 2Ψ2

R 2̂
0̂2̂0̂ = −Ψ2 + Ψ0

R 3̂
0̂3̂0̂ = −Ψ2 −Ψ0

R 2̂
0̂3̂0̂ = 0



geodesic deviation in a freely falling frame

A remark: The Szekeres theorem implies that there do not exist
vacuum solutions to Einstein equations with Ψ0 6= 0, Ψ4 6= 0 and
Ψ1 = Ψ2 = Ψ3 = 0. Since for our electro-vac spacetime
Ψ0 = Ψ4 6= 0 and Ψ1 = Ψ3 = 0 (by ‘a gauge transformation’),
then necessary the Coulomb component Ψ2 is non-zero. Two
transverse gravitational waves cannot be trivially superposed.



Tissot diagrams

I invented by Nicolas Auguste Tissot in 1859 and 1871 to
characterize local distorsions to map projection in cartography

I applied to gravitational waves by Garry Gibbons
I Tissot diagrams for linear waves: N. Bishop, L.

Rezzolla,Extraction of gravitational waves in numerical
relativity, Living reviews in relativity, 2016

I Tissot diagrams for plane waves: P.-M. Zhang, C. Duval, G.
W. Gibbons, P. A. Horvathy, Soft Gravitons & the Memory
Effect for Plane Gravitational Waves, Phys. Rev. D 96,
064013 (2017)

I Tissot diagrams for standing waves: SJS, S. Naqvi, Freely
falling particles in standing wave spacetime, Phys. Rev. D
103, 024011 (2021)



linearized gravitational waves (N. Bishop, L. Rezzolla)



"spring constants" in polarized T 3 Gowdy
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"Spring constants" at an antinode: longitudinal (solid), transverse
(dashed).



"spring constants" in polarized T 3 Gowdy
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"Spring constants" at an antinode: longitudinal (solid), transverse
(dashed).



polarized T 3 Gowdy



summary

I exact toy models of standing gravitational waves
I the precise definition of standing gravitational waves is still

needed
I anitodes attract freely falling particles (in particular models)
I Weyl scalars are useful in the analysis
I a convenient setting to study nonlinear waves



super-energy density
(electro-vac model, λ = 1/10)
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1̂ component of super-Poynting vector
(electro-vac model, λ = 1/10)
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1̂ component of super-Poynting vector
(electro-vac model, λ = 1/10)
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