
The Ambient Metric and Tractors

Katja Sagerschnig

Center for Theoretical Physics, Warsaw

April 9, 2021



Introduction

This talk will be mainly an introduction to two mathematical concepts in
conformal geometry. Both of them have been forgotten and rediscovered.

• The Ambient Metric
• Haantjes-Schouten 1936
• Fefferman-Graham ‘Conformal Invariants’ (1985) and ‘The ambient

metric’ (2011)

• Tractor Bundle and Connection
• Tracy Thomas 1926
• Bailey-Eastwood-Gover ‘Thomas’s Structure Bundle for Conformal

and Related Structures’ (1994) generalizing Penrose’s twistors



Introduction

We will consider conformal manifolds (M, [g ]), where

• M is a smooth n-dimensional manifold (n > 2),

• [g ] a conformal equivalence class of metrics of signature (p, q) on
M, i.e.,

g ∼ ĝ iff ĝ = Ω2g for some pos. function Ω ∈ C∞(M).

A motivation for the conformally invariant constructions was in particular
the aim to construct and understand conformal invariants and
conformally invariant operators (e.g. GJMS operators, that have leading
part the power of a Laplacian).
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The flat conformal model

Consider Rn+2 with the Minkowski metric g̃ =
∑n+1

i=1 (dx i )2 − (dx0)2

and the null-cone

N = {x ∈ Rn+2 \ {0} :
n+1∑
i=1

(x i )2 − (x0)2 = 0}.

The space of lines in N can be identified with the sphere Sn,

π : N → P(N ) ∼= Sn. (1)

The Minkowski metric g̃ induces

• a degenerate metric on N , and

• a well-defined conformal structure [g ] on Sn: any section of (1)
determines a metric and different sections lead to conformally related
metrics (the usual round metric arises from the section x0 = 1).

In particular, N/±1 can be identified with the space of all conformally
related metrics on Sn
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The flat conformal model

Remarks
• An analogous construction works if one starts with the flat metric g̃

of signature (p + 1, q + 1) on Rn+2; then P(N ) ∼= Sp × Sq/Z2.

• The group O(p + 1, q + 1) acts linearly on Rn+2 and by isometries,
and hence descends to an action on P(N ) by conformal
transformations. This leads to an identification

O(p + 1, q + 1)/P ∼= P(N )

where P ⊂ O(p + 1, q + 1) is the parabolic subgroup stabilizing a
null-line in Rn+2.

The idea of Fefferman-Graham is to invert the construction in a more
general setting and construct an analogue of g̃ for any conformal
manifold (M, [g ]).
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Fefferman-Graham ambient metrics

Given a conformal manifold (M, [g ]), one has at each point x ∈ M a ray
of quadratic forms. Together these form the metric bundle

Q = {(x , gx) : x ∈ M, g ∈ [g ]} π−→ M

It comes equippes with

• R+-action (dilations) φs : Q → Q, φs(gx , x) := (s2gx , x)

• tautological degenerate metric: for X ,Y ∈ T(p,gp)Q

h(X ,Y ) = gp(π∗(X ), π∗(Y )).

It is homogeneous of degree two, i.e. φ∗s h = s2h.



Fefferman-Graham ambient metrics

Given a conformal manifold (M, [g ]), one has at each point x ∈ M a ray
of quadratic forms. Together these form the metric bundle

Q = {(x , gx) : x ∈ M, g ∈ [g ]} π−→ M

It comes equippes with

• R+-action (dilations) φs : Q → Q, φs(gx , x) := (s2gx , x)

• tautological degenerate metric: for X ,Y ∈ T(p,gp)Q

h(X ,Y ) = gp(π∗(X ), π∗(Y )).

It is homogeneous of degree two, i.e. φ∗s h = s2h.



Fefferman-Graham ambient metrics

Definitions
Ambient space M̃: dilation-invariant neighborhood of Q in Q× R

Ambient metric g̃ : smooth metric on M̃ of signature (p + 1, q + 1) s.t.

1 g̃ is homogeneous of degree two, i.e., φ∗s g̃ = s2g̃ ,

2 for each p ∈ M̃ the curve p 7→ δs(p) is a geodesic,

3 g̃ restricts to tautological tensor h on Q,

4 Ric(g̃) vanishes to infinite order along Q, i.e.,

∂kρRic(g̃)|ρ=0 = 0 for all k=0,1,...,

where ρ denotes a coordinate transversal to the metric bundle.



Fefferman-Graham ambient metrics

• Choice of representative g = g(x i ) ∈ [g ] determines identification

Q ∼= R+ ×M, (t2gx , x) 7→ (t, x) and h = t2g(x i )

• Any ambient metric can be put into normal form with respect to the
chosen representative g = g(x i ) ∈ [g ]:

g̃ = 2dt d(tρ) + t2g(x i , ρ), with g(x i , ρ)|ρ=0 = g(x i ),

where (t, x i , ρ) are local coordinates on M̃ = R+ ×M × (−ε, ε).

• Next one makes a power series ansatz for g(x i , ρ) in ρ and tries to
determine the terms iteratively from Ricci flatness of g̃ .

• One finds e.g. that g(x i , ρ) = g + 2Pρ+ ..., where P is the
Schouten tensor of g .

The general result depends on the parity of the dimension n = dim(M).
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Fefferman-Graham ambient metrics

Theorem (Fefferman-Graham)

• n odd:
There exists a formal power series solution and it is uniquely
determined to infinite order at ρ = 0.

If (M, [g ]) is real analytic, the power series converges and defines an
ambient metric satisfying Ric(g̃) = 0 in neighborhood of Q.

• n even:
There is a conformally invariant tensor (obstruction tensor) that
obstructs the existence of smooth solutions to (1)-(4). (When
n = 4, this is the Bach tensor). However, if (4) is replaced by the
condition that Ric(g̃) vanish to order n

2 − 1 at ρ = 0, then there
exists a formal power series solution, which is unique to order n

2 .

Even if the obstruction tensor vanishes, and an infinite order
ambient metric exists, there is an abiguity at order n

2 .
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Explicit Ambient Metrics

• If [g ] contains flat metric g , then

g̃ = 2dtd(ρt) + t2g

• If [g ] contains an Einstein metric g , Ric(g) = Λg , then

g̃ = 2dtd(ρt) + t2(1 +
Λρ

2(n − 1)
)2g

• In general constructing explicit ambient metrics is difficult, see
Explicit Ambient Metrics and Holonomy, (Anderson, Leistner,
Nurowski)

• A geometric construction of explicit ambient metrics for a class of
conforal structures determined by projective structures was given in
“Fefferman-Graham Ambient Metrics of Patterson-Walker Metrics”
(Hammerl, Sagerschnig, Šilhan, Taghavi-Chabert, Žadnik)
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Poincaré-Einstein metrics

Consider a manifold M+ = M ∪Mo with boundary M and interior Mo .

Let [g ] be a conformal class of metrics of signature (p, q) on M.

Definition:
A Poincaré-Einstein metric for (M, [g ]) is a metric g+ of signature
(p + 1, q) on the interior Mo satisfying

• g+ has conformal infinity [g ]:
there exists a (local) defining function r ∈ C∞(M+) for M (zero
locus of r is M and dr 6= 0 there) such that r2g+ extends smoothly
to M+ and r2g+|M ∈ [g ],

• g+ is Einstein, Ric(g+) = −ng+ to infinite order along M.

Alternatively, one can consider metrics g− of signature (p, q + 1) and
Ric(g−) = ng−.
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Poincaré-Einstein metrics

Consider a manifold M+ = M ∪Mo with boundary M and interior Mo .

Let [g ] be a conformal class of metrics of signature (p, q) on M.

Definition:
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Poincaré-Einstein metrics

Flat model
Restrict the Minkowski metric g̃ =

∑n+1
i=1 (dx i )2 − (dx0)2 to the

hyperboloid

H = {x ∈ Rn+2 :
n+1∑
i=1

(x i )2 − (x0)2 = −1}.

This gives the hyperbolic metric g+. Under an appropriate identification
of one sheet of H with the unit ball, it can be realized as the Poincaré
metric

g+ = 4(1− |y |2)−2
n+1∑
i=1

(dy i )2,

which has the conformal structure on Sn as conformal infinity.



Poincaré-Einstein from ambient metrics

Consider an ambient metric in normal form on R×M × R w.r.t. g ,

g̃ = 2ρ dt2 + 2t dt dρ+ t2gρ, gρ|ρ=0 = g .

A change of variables

ρ = − r2

2 , t = s
r on {ρ ≤ 0}

takes it to the form g̃ = s2g+ − ds2 and we restrict it to the
hypersurface {s = 1}. The metric

g+ = r−2
(
dr2 + g

− r2

2

)
(2)

obtained that way has conformal infinity [g ].

If Ric(g̃) = 0 then Ric(g+) = −ng+, and so g̃+ is a Poincare-Einstein
metric for (M, [g ]).
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Poincaré-Einstein from ambient metrics

• In this way one obtains even Poincaré metrics g+ = r−2(dr2 + gr ),
where

gr = g − Pr2 + ...

• Fefferman-Graham also have a more general result describing all
formal expansions of Poincaré metrics.

• For n ≥ 3 odd: Let γ be a symmetric 2-tensor on M such that
γ i i = 0 and ∇iγij = 0, then there exists a Poincaré metric in normal
form such that tf(∂nr gr |r=0) = γ. These conditions uniquely
determine gr to infinite order at r = 0.



Remark on tractors

Fefferman-Graham ambient construction: conformal manifold (M, [g ]) of
signature (p, q), p + q = n  manifold M̃ of dimension n + 2 with
hypersurface Q ⊂ M̃, dilations δs , and metric g̃ of sig. (p + 1, q + 1).

For a conformal manifold (M, [g ]) there is a natural vector bundle over
M of rank n + 2 with a linear connection determined only by the
conformal structure (tractor bundle T and tractor connection ∇T ).

These can also be obtained from the ambient picture:

• Restict TM̃, g̃ , Levi-Civita ∇g̃ to Q
• One can show that they pass down to a bundle T → M, a bundle

metric H on T and a linear connection ∇T . (In particular, sections
X of T correspond to sections of TM̃|Q s.t. (δs)∗X = s−1X .)

• Čap-Gover: These coincide with the usual tractor bundle and
connection to be introduced next.
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Tractors via Prolongation

Let E [w ] be the bundle of densities of conformal weight w . Its sections
can be identified with functions f on C homogeneous of degree w , i.e.
(δs)∗f = sw f . A metric g ∈ [g ] is a section of C, so f ◦ g is a function on
M. Changing the metric ĝ = Ω2g leads to f ◦ ĝ = Ωw f ◦ g .

Conformal-to-Einstein operator
Now consider the operator D : E [1]→ S2T ∗M ⊗ E [1],

D(σ) = trace-free part(∇a∇bσ + Pabσ),

where Pij = 1
(n−2) (Ricij − 1

2(n−1)S gij) denotes the Schouten tensor.

Then

• D is conformally invariant.

• Nowhere vanishing solutions σ ∈ E+[1] to D(σ) = 0 correspond to
Einstein metrics in the conformal class via σ 7→ σ−2g .
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The standard tractor bundle via prolongation

Fix a metric g ∈ c is fixed. Rewrite the second order PDE

D(σ) = ∇a∇bσ + Pabσ + gabρ = 0

as a first order closed system.

∇aσ − µa = 0

∇aµb + Pabσ + gabρ = 0

∇aρ− Pa
bµb = 0

Proposition
Solutions to D(σ) = 0 are in bijective correspondence with parallel
sections of the linear connection

∇T
 σ
µb

ρ

 =

 ∇aσ − µa

∇aµb + Pabσ + gabρ
∇aρ− Pa

bµb

 on [T ]g =

 R
T ∗M
R


via

σ 7→ (σ,∇aσ,− 1
n (∆σ + Pσ)).
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as a first order closed system.

∇aσ − µa = 0

∇aµb + Pabσ + gabρ = 0

∇aρ− Pa
bµb = 0

Proposition
Solutions to D(σ) = 0 are in bijective correspondence with parallel
sections of the linear connection
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The standard tractor bundle via prolongation

Tractor bundle and tractor connection
Define

T :=
⊔
g∈c

[T ]g/∼ ← suitable equivalence relation

∇T determines a conformally invariant connection on T .

Remark: Relationship with the normal Cartan geometry
(M, c) of signature (p, q) determines a canonical normal conformal
Cartan geometry:

• P-principal bundle G → M, where P = Stab(`) ⊂ SO(p + 1, q + 1)
of a null line ` ⊂ Rp+1,q+1,

• Cartan connection ω ∈ Ω1(G, so(p + 1, q + 1)).

The tractor bundle is the associated bundle

T = G ×P Rp+1,q+1, and ∇T induced from ω.

.
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The standard tractor bundle via prolongation

Tractor curvature

(∇Ta ∇Tb −∇Tb ∇Ta )

 σ
µc

ρ

 =

 0 0 0
Yab

c Cab
c
d 0

0 −Yabd 0

 σ
µd

ρ

 (3)

Cab
c
d Weyl curvature, Yabc = 2∇[aPb]c Cotton tensor.

Hence the tractor curvature vanishes if and only if the manifold is locally
equivalent to the flat conformal model (conformally flat).

Tractor metric
For tractors U I = (σ, µi , ρ) and V J = (α, βj , γ),

HIJU
IV J = σγ + gijµ

iβj + ρα. (4)

If g has signature (p, q), the metric H has signature (p + 1, q + 1).
It is conformally invariant and preserved by the tractor connection,

∇T H = 0.



Covariantly constant tractors

Recall Proposition 1:{
solutions to

tracefree (∇a∇bσ + Pabσ) = 0

}
1−1←→

{
covariantly constant tractors
S ∈ Γ(T ) s.t. ∇T S = 0

}
via σ 7→ S = (σ,∇aσ,− 1

n (∆σ + Pσ)). Then

H(S ,S) = − 2
nσ(∆σ + Pσ) + g ab∇aσ∇bσ,

Suppose (M, [g ]) be a conformal manifold of sig. (p, q) equipped with a
cov. const. tractor S ∈ Γ(T ), ∇T S = 0, H(S ,S) 6= 0. Then (Gover)

• Σ = {x |σ(x) = 0} is empty or a hypersurface with an induced
conformal structure of sig. (p − 1, q) resp. (p, q − 1).

• M \ Σ carries an induced Einstein metric

gσ = σ−2g , Ric(gσ) = Λgσ

with Λ of the opposite sign as H(S ,S).
If H(S ,S) > 0, this defines Poincare-Einstein metric around Σ.
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Remarks

• There are more general results in similar situations (Gover,...)

• Since we have a connection ∇T , we have a notion of parallel
transport, and we can consider its (restricted) holonomy group

Holx(∇T ) :=

{
linear transformations Tx → Tx obtained by parallel

transport around contractible loops based at x

}
This is called the conformal holonomy group.
In particular, there are general results about holonomy reductions for
conformal structures and more general parabolic geometries
(Armstrong, Leistner, Čap-Gover-Hammerl,...)

• One can also study the geometric implications of existence of
parallel tractors and induced geometries on strata for special
conformal structures. In joint work with Travis Willse we studied the
geometry of conformal structures associated with (2, 3, 5)
distributions admitting parallel standard tractors.
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