

Singularity Theorems

A critical appraisal

José M M Senovilla

UPV/EHU, Bilbao, Spain

Institute of Theoretical Physics, Warsaw, 11th December 2020

Outline

1 Introduction

2 The Penrose singularity theorem

- Curvature condition
- Incompleteness
- Trapped spheres

3 Singularity theorems

- Ideas behind the theorems
- Contemporary singularity theorems

4 The devil is in the detail

- Uncovering the mysteries of black holes
- Curvature divergence?
- Singularity-free spacetimes
- Remarks on extensions
- BKL or null singularity?

5 Conclusions and final comments

Introduction

Penrose's singularity theorem won the 2020 Nobel prize in Physics!

- It is a well deserved award. The theorem
 - ➊ is sheer beauty
 - ➋ contained novel ingredients along with fruitful ideas
 - ➌ prompted multiple developments in theoretical relativity
 - ➍ involved stunning physical consequences (incompleteness, failure of the theory?)
- In particular, the notion of **trapped spheres** is fundamental, a key idea in black hole physics, numerical relativity, mathematical relativity, cosmology, gravity analogs, etc.
- Its influence is endless, and its prolific range of applications keeps growing

- As I proposed some time ago (and has been echoed by the Nobel Committee) singularity theorems constitute the first post-Einsteinian content of relativity.
- What had happened before the theorem (deflection of light, universal expansion, Cauchy's problem, ADM formulation, Kerr's solution, Wheeler-de Witt equation, ...)
- as well as most of what came next (background radiation, gravitational lenses, radiation in binary systems, direct observation of waves, etc)
- **All of this** had been explicitly predicted, known, anticipated, or foreseen in one way or another by Einstein.
- In contrast, the singularity theorems and their consequences were (surely) not even suspected by the founder of GR.

In 1965 GR left adolescence behind, emancipated from its creator, and became a mature physical theory full of vitality and surprises.

Penrose's theorem (1965)

The Penrose singularity theorem

Theorem (Penrose singularity theorem)

If

- the *null convergence condition* holds
- there is a *non-compact Cauchy hypersurface* Σ
- and a *closed future-trapped surface*,

then there are future-incomplete null geodesics.

Two important novelties here:

- ① Characterization of singularities by geodesic incompleteness
- ② Concept of closed trapped surface

The convergence condition

Focusing of geodesics

- The Raychaudhuri equation

$$v^\nu \nabla_\nu (\nabla_\mu v^\mu) + \nabla_\mu v^\nu \nabla_\nu v^\mu - \nabla_\mu (v^\nu \nabla_\nu v^\mu) + R_{\rho\nu} v^\rho v^\nu = 0.$$

- If v^μ is tangent to a pencil of geodesics emanating either
 - 1 from a point
 - 2 orthogonal to a (hyper)surface

then $v^\nu \nabla_\nu v^\mu = 0$ and $\nabla_\mu v_\nu = \nabla_{(\mu} v_{\nu)}$ and

$$v^\nu \nabla_\nu (\nabla_\mu v^\mu) = -\nabla_\mu v^\nu \nabla_\mu v^\nu - R_{\rho\nu} v^\rho v^\nu \leq 0.$$

- $\nabla_\mu v^\mu|_p < 0$ and $R_{\rho\nu} v^\rho v^\nu \geq 0 \implies \nabla_\mu v^\mu \rightarrow -\infty$ in **finite** affine parameter. These are *caustics*, or *focal points*. *Geodesics stop maximizing the interval if they encounter a focal point.*

Convergence, or energy, condition?

- This is the **Focusing effect**. One needs the **geometric** condition

$$R_{\rho\nu}v^\rho v^\nu \geq 0$$

usually called the (null, timelike) **convergence condition**.

- In General Relativity, one can relate the Ricci tensor to the energy-momentum tensor T via Einstein's field equations

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

- Thereby, the convergence condition can be rewritten in terms of physical quantities. This is why $R_{\rho\nu}v^\rho v^\nu \geq 0$, when valid for all time-like v^μ , is called the **strong energy condition**.
- One should bear in mind, however, that this is a **condition on the Ricci tensor (a geometrical object)**

Incompleteness

A simple example: plane waves

- The line-element of an electromagnetic plane wave propagating in the z direction reads

$$ds^2 = -c^2 dt^2 + dz^2 + dx^2 + dy^2 - \frac{4\pi G}{c^4} (x^2 + y^2) E^2 (ct - z)(cdt - dz)^2$$

where E is the electric (or magnetic) field amplitude.

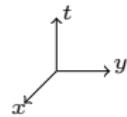
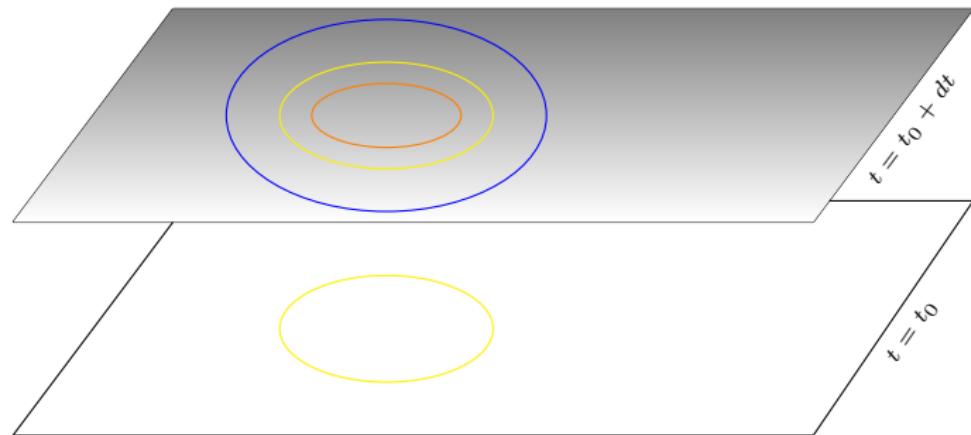
- All curvature scalar invariants vanish.
- Yet, spacetime may be singular if the electric field misbehaves.
- Incompleteness of geodesics is a good way to signal the singularity.
- By the way, these spacetimes (also the geodesically complete ones) do not possess any Cauchy hypersurface (Penrose 1965).

(Now) standard definition of singularity

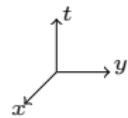
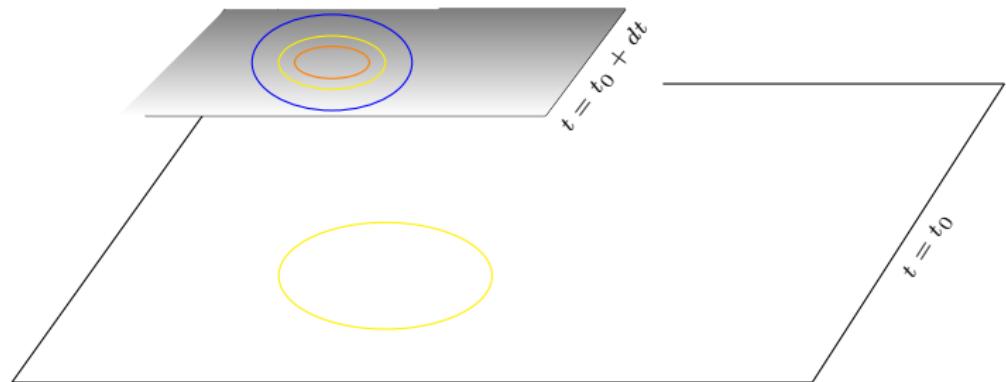
- Spacetime fails at singularities (ergo they are not in spacetime!)
- Penrose's idea was to use physical curves that do belong to the spacetime: note that curves are good **pointers**.
- Thus, if these curves cannot be continued they are pointing towards a problem: the singularity.
- The curves do not need to be geodesic, and as a matter of fact there are known examples (Geroch) of geodesically complete space-times with incomplete time-like curves of everywhere bounded acceleration.
- It must be remarked, however, that all singularity theorems prove merely the existence of **geodesic** incompleteness, which of course is a **sufficient** condition for incompleteness (existence of singularities)

Closed trapped surfaces

Untrapped surfaces, “Normal situation”



Possible trapping in contracting worlds



A little geometry

- Let ζ be any spacelike submanifold (of any co-dimension) in spacetime, and denote by A_ζ its “area, volume, ...”.
- Choose an arbitrary vector field $\vec{\xi}$ and deform ζ along its flow. The initial variation of A_ζ due to this deformation is

$$\delta_\xi A_\zeta = \int_\zeta (\operatorname{div} \xi^T + H^\mu \xi_\mu)$$

where H^μ is the mean curvature vector of ζ , that is, the trace of its second fundamental form (or shape tensor). Notice that H^μ is orthogonal to ζ .

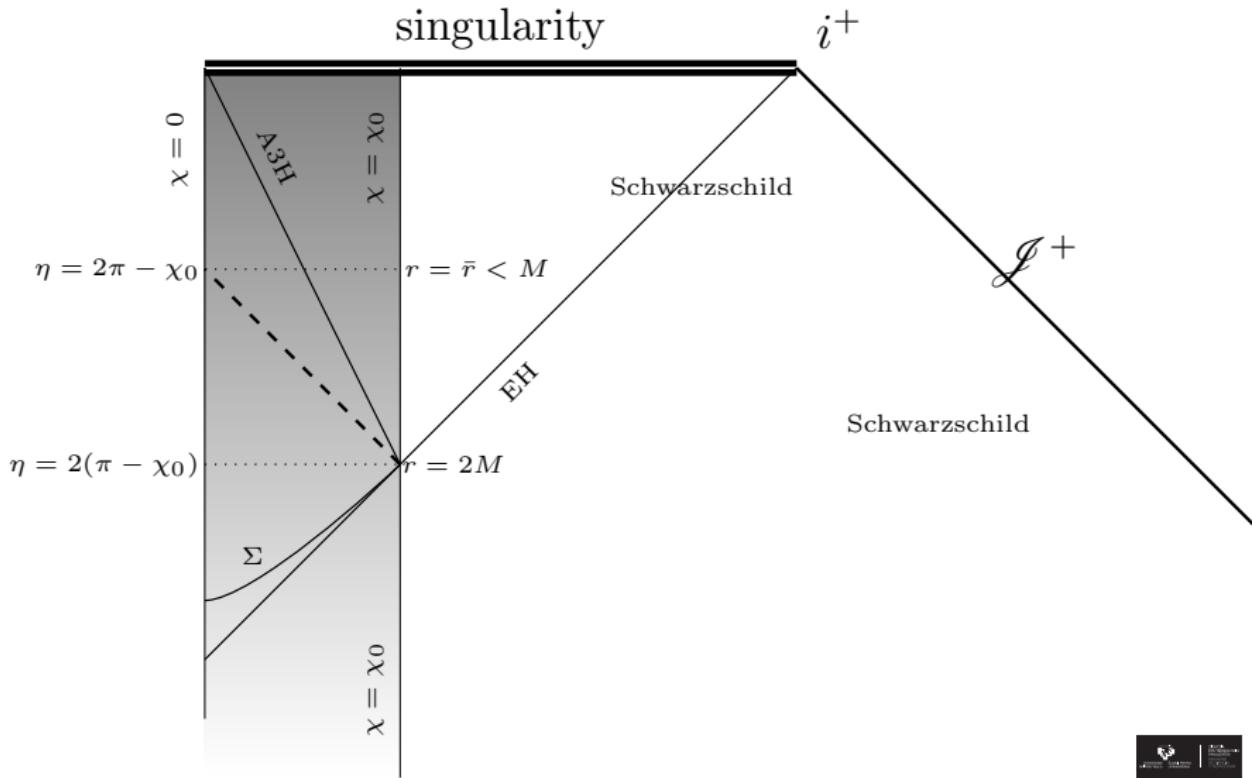
- If ζ is compact the first term disappears and one simply has

$$\delta_\xi A_\zeta = \int_\zeta H^\mu \xi_\mu$$

A little geometry

- This is a classical result in Riemannian geometry from where minimal submanifolds are characterized by $H^\mu = 0$. This is the only distinguished case for positive-definite metrics.
- However, in Lorentzian geometry if, say, H^μ is future timelike on ζ then **the variation of A_ζ along any future $\vec{\xi}$ is strictly negative!**
- These are precisely the **trapped submanifolds**: those having H^μ future timelike. (Idem past-trapped)
- If on the other hand H^μ is future lightlike then ζ is *marginally future trapped*.
- Observation: stationary spacetimes cannot have *compact* trapped submanifolds (Mars-Senovilla 2003)
- For each \vec{n} normal to ζ , $\theta_n := H^\mu n_\mu$ is called **expansion along \vec{n}** . Hence, for a future-trapped ζ all possible future expansions θ_n are **negative**.

Recall the Oppenheimer-Snyder model



Trapped submanifolds are stable

- The notion of trapped submanifold is independent of coordinates, bases, existence of symmetries or preferred surfaces, etc.
- A decisive point is that its definition is given by *inequalities* and therefore trapped submanifolds are **stable**.
- The Einstein-Euler field equations describing a perfect fluid in GR are hyperbolic, and thus possess the property of continuous dependence of the solution on the initial conditions.
- The initial conditions of the Oppenheimer-Snyder collapse leads to a trapped sphere within a finite time, hence initial conditions which are sufficiently close to O-S will also lead to the formation of closed trapped surfaces within the same time interval, *regardless of symmetries*.

Classical singularity theorems

A Pattern Singularity Theorem

- Since 1965, many singularity theorems have been proven
- some of them are applicable to cosmological situations, some to star or galaxy collapse, and others to the collision of gravitational waves, to cite prominent situations
- All singularity theorems share a well-defined skeleton, the very same pattern. This is, succinctly, as follows

Theorem (Pattern Singularity Theorem)

If a space-time of sufficient differentiability satisfies

- 1 *a condition on the curvature*
- 2 *a causality condition*
- 3 *and an appropriate initial and/or boundary condition*

then there are null or time-like inextensible incomplete geodesics.

The simplest singularity theorem

Theorem (Hawking)

If

- 1 *there is a Cauchy hypersurface Σ such that*
- 2 *the trace K of its second fundamental form satisfies $K \geq b > 0$*
- 3 *and the convergence condition $R_{\rho\nu}v^\rho v^\nu \geq 0$ holds along the timelike geodesic congruence v^μ orthogonal to Σ*

then all timelike geodesics are past incomplete.

The classical Hawking-Penrose singularity theorem

The paradigmatic case was the celebrated Hawking-Penrose theorem (1970), which since then has been considered the singularity theorem *par excellence*.

Comparing it with the Pattern theorem, it reads:

Theorem (Hawking and Penrose)

If the *convergence*, *causality* and *generic* conditions hold and if there is one of the following:

- a closed achronal set without edge,
- a closed trapped surface,
- a point with re-converging light cone

then the space-time is causal geodesically incomplete.

The “causality” and “generic” conditions are standard.

Ideas behind the proofs

- The “curvature condition”

- ① usually referred to as “energy” and “generic” conditions, but as explained above this assumption is of a geometric nature
- ② it is absolutely indispensable: no singularity theorem can be proven without some sort of curvature condition
- ③ it enforces the **geodesic focusing** via the Raychaudhuri equation.

- The causality condition

- ① basically, it ensures the existence of maximal geodesics between any two (causally related) events in appropriate domains of dependence
- ② these maximal geodesics **cannot have focal points** (caustics).

Ideas behind the proofs

- Recapitulating, one has
 - focusing of all causal geodesics —ergo the existence of caustics and focal points—
 - together with the existence of geodesics of maximal proper time —hence necessarily without focal points— joining causally related events of the space-time
- A contradiction starts to glimmer if all geodesics are complete.
- However, there is no such contradiction yet!
- this is because we have not enforced a finite upper bound for the proper time of selected families of time-like geodesics (and analogously for null geodesics).
- To get the contradiction with geodesic completeness one needs to add the initial/boundary condition, which happens to be absolutely essential in the theorems.
- Later, I will discuss several examples of physically reasonable singularity-free space-times for illustration.

(Almost) contemporary versions

- Recently the theorems have been proven with the minimum allowable differentiability (Kunzinger, Steinbauer, Vickers, Graf, et al)
- Cosmological cases where local black holes have formed (Vilenkin, Wall). They imply the existence of causally disconnected regions.
- Using mathematical results of volume comparison (Treude, Grant)
- Replacing trapped surfaces with marginally trapped, or *outer* trapped surfaces (Andersson et al, Eichmair et al)
- Suppressing some of the hypotheses to see what happens, and what is the “robust” part of the theorems (Costa e Silva, Flores, Galloway, Vega)
- Relating incomplete geodesics to causal edge points and curvature divergences (Ashley, Whale, Scott).

(Almost) contemporary versions 2

- In higher dimensions, where the topology can be richer (Galloway, Andersson, Cai, ...)
- Using trapped submanifolds of any dimension (Galloway, Senovilla)
- For warped-product spacetimes (Cipriani, Senovilla)
- Weakening the curvature conditions in order to incorporate inflation (Edge-Guth-Vilenkin)
- Ditto to support $\Lambda > 0$ (Galloway)
- Ditto to incorporate quantum corrections (Tipler, Roman, Fewster, Kouton, Galloway, Kuipers, Calmet)
- Taking into account other quantum effects (Ford, Bojowald, Wall)
- Applicable to black holes evaporating by quantum effects –Hawking radiation– (Minguzzi)
- Based on averages (Raychaudhuri, Senovilla)

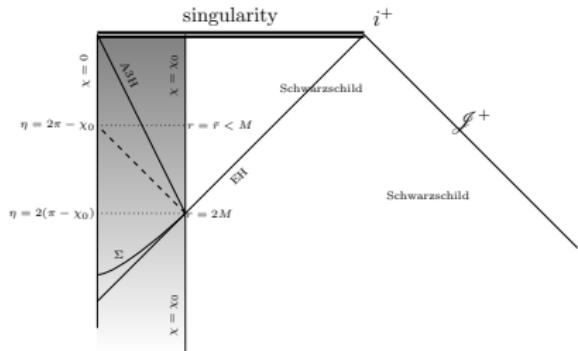
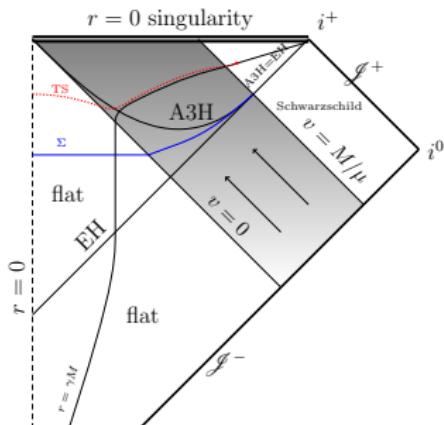
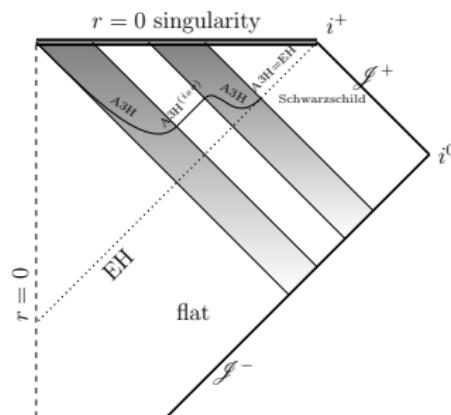
Critical appraisal

The devil is in the detail

What Penrose's theorem says

- Sometimes the Penrose theorem is interpreted as definite proof that black holes form in gravitational collapse
- The actual fact is more subtle ...
- The assumption of the existence of a trapped sphere does not state anything on the formation of black holes
- rather uncovers (some of) what happens inside the BHs once they are formed!

Black holes cannot be seen, nor felt (outside)



Closed trapped surfaces do not stick out

- There is a theorem (Claudel, Hawking) stating that, in asymptotically flat spacetimes, no closed trapped surface can be seen from \mathcal{J}^+
- In other words, they are enclosed beyond the event horizon EH.
- **Therefore, Penrose's theorem informs us of what happens *beyond the horizon*. It is a result about the interior of black holes.**
- It is telling us that, if BHs form, inside them there will probably be closed trapped surfaces and, therefore, incompleteness of the spacetime follows (classically and under certain conditions).
- From the viewpoint of black hole formation the question is quite another: to know if closed trapped surfaces form from innocuous initial data (Christodoulou 2009, Reiterer-Trubowitz, Klainerman-Rodnianski)

Incompleteness = curvature problems?

- What is the relation between geodesic incompleteness and curvature problems, if any?
- Surprisingly, limits on curvature growth can be placed on (maximal) geodesics (Tipler, Newman, Kánnár-Rácz, Szabados).
- If v^μ is the vector tangent to the geodesic, $R_{\alpha\beta\mu\nu}v^\beta v^\mu$ cannot grow more than $(\tau - \hat{\tau})^{-2}$ when approaching a singularity at $\tau = \hat{\tau}$, where τ is the affine parameter.
- There are some (few) partial results that point, in some cases, to the existence of curvature divergences (Clark).
- Recent results seem to indicate that divergence of the curvature scalars is compatible with the spacetime being geodesically complete (Olmo et al).

When spacetimes can be geodesically complete?

- Sometimes the idea is turned around and geodesic completeness is assumed to discern what kind of models support it.
- In the stationary case, for globally hyperbolic spacetimes, it can be shown that if the convergence condition holds then

$$R_{\mu\nu}\xi^\mu\xi^\nu/(\xi^\mu\xi_\mu) \sim k/\rho^2$$

($\vec{\xi}$ =Killing, ρ = appropriate spatial distance between any two events). (Garfinkle-Harris)

- In the dynamical globally hyperbolic case, it can be proven that if the convergence condition holds and the expansion K of a Cauchy hypersurface Σ is positive then at least one of the following three quantities must be non-positive
 - Λ
 - the averaged energy density on Σ
 - minus the averaged scalar curvature of Σ

(Senovilla)

Singularity-free spacetimes

Devil in the detail: Einstein static universe

The Einstein universe metric is ($\Lambda > 0$)

$$ds^2 = -c^2 dt^2 + \frac{1}{\Lambda} (d\chi^2 + \sin^2 \chi d\Omega^2)$$

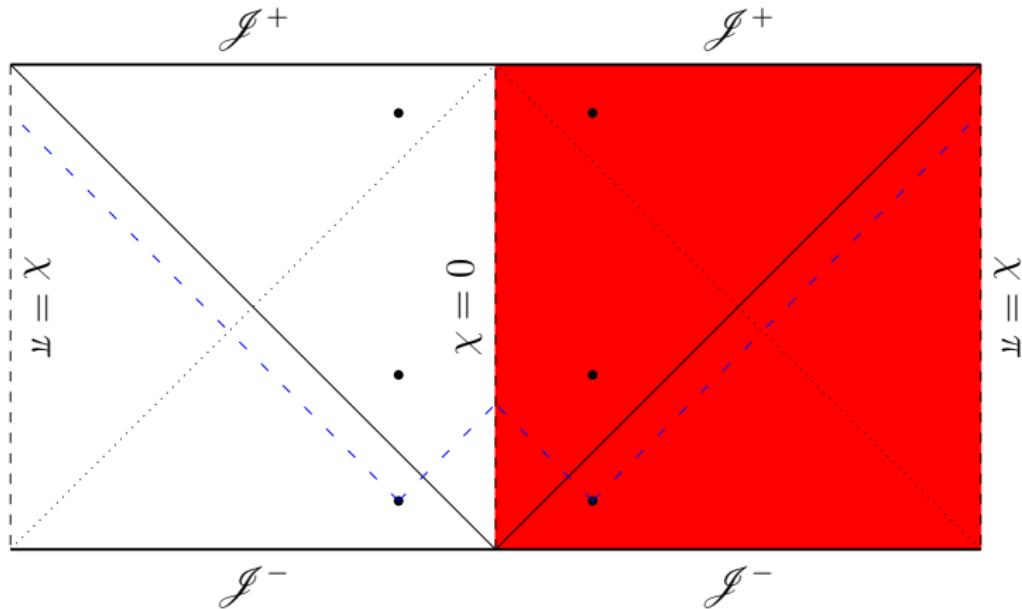
with $8\pi G \rho = 2c^4 \Lambda$. This spacetime

- ① Satisfies the convergence condition (SEC)
- ② is globally hyperbolic, any $t = \text{const.}$ hypersurface is a compact Cauchy slice
- ③ has points with reconverging light cones
- ④ yet, it is geodesically complete.

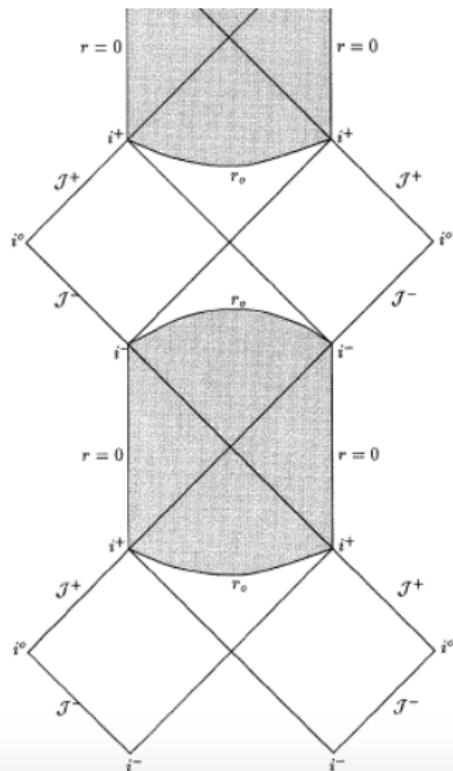
The only assumption in the Hawking-Penrose theorem that is not met is the *generic condition*, which can certainly be seen to fail for some specific timelike geodesics.

Devil in the detail: de Sitter

$$ds^2 = -c^2 dt^2 + \lambda^2 \cosh^2(ct/\lambda)(d\chi^2 + \sin^2 \chi d\Omega^2), \quad \lambda^2 = 3/\Lambda$$



Devil in the detail: regular black holes



Topology change.

Incompleteness at the Cauchy horizon. Extensions!

A singularity-free perfect-fluid with $p = \varrho/3$

Take (\mathbb{R}^4, g) in cylindrical coordinates $\{t, \rho, \varphi, z\}$ with

$$\begin{aligned} ds^2 = & \cosh^4(at) \cosh^2(3a\rho) (-dt^2 + d\rho^2) + \\ & + \frac{1}{9a^2} \cosh^4(at) \cosh^{-2/3}(3a\rho) \sinh^2(3a\rho) d\varphi^2 \\ & + \cosh^{-2}(at) \cosh^{-2/3}(3a\rho) dz^2, \end{aligned}$$

- Solution for a perfect fluid ($\Lambda = 0$) with:

$$\frac{8\pi G}{c^4} \varrho = 15a^2 \cosh^{-4}(at) \cosh^{-4}(3a\rho) \quad p = \frac{1}{3} \varrho.$$

- This solution is geodesically complete and **globally hyperbolic**. Each $t = \text{const.}$ hypersurface is a non-compact **global Cauchy hypersurface**.
- The trace of their 2nd fundamental forms (expansion) is

$$K = \nabla_\mu u^\mu = 3a \frac{\sinh(at)}{\cosh^3(at) \cosh(3a\rho)} \quad (> 0 \text{ for } t > 0).$$

Devil in the detail...

- This space-time satisfies the stricter convergence and curvature conditions (dominant, strict strong) hence the focussing effect takes place fully,
- At the same time there are maximal timelike geodesics, **without focal points**, between any two (causally related) points of the manifold
- This may happen because the expansion is **not bounded from below by a positive constant**: $\lim_{\rho \rightarrow \infty} K = 0$.
- This subtle difference allows for the model to be geodesically complete avoiding Hawking's theorem
- The Raychudhuri-Komar theorem does not apply because there is acceleration, that is, pressure gradients.
- In summary, none of the possibilities for the initial/boundary condition holds in this model.

The problem of extensions

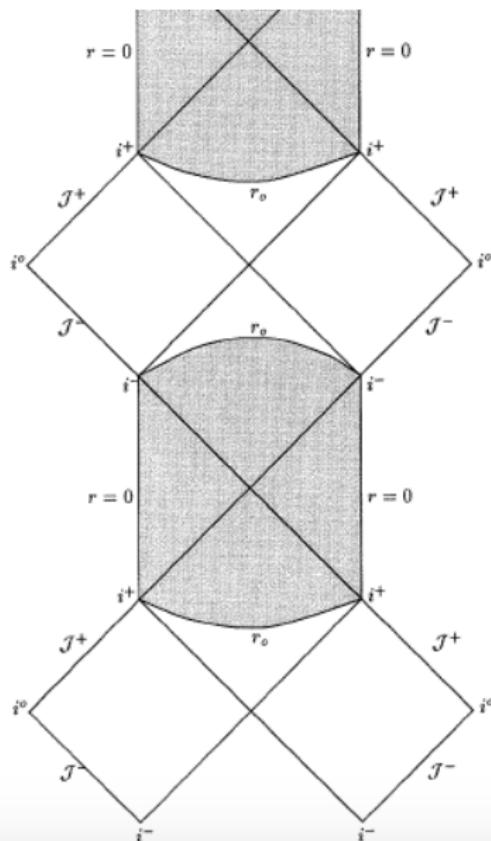
- Singularities may indicate *not* a problem with the incomplete curve when approaching the edge, but rather **incompleteness of the manifold** itself (e.g. excising regular points).
- This is why usually the study of singularities is restricted to inextensible manifolds.
- The physical problem, however, is hidden under the carpet with this “solution” because: what are we supposed to do with given extensible space-times?
- The answer may seem simple and easy: just extend them until you cannot extend it anymore...
- However, this is not so simple ...

Devil in the detail: problem of extensions

This is not so simple for several reasons:

- ① physically meaningful extensions are far from obvious
- ② extensions are not unique; usually there are infinite inequivalent choices.
- ③ analytical ones are not possible, nor advisable, many times
- ④ for a given extensible space-time, there are usually inequivalent extensions leading to
 - i new extensible space-times,
 - ii singular (incomplete) space-times,
 - iii to singularity-free (complete) and inextensible spacetimes
- ⑤ It might seem obvious that one should choose iii, but this is not the case! —if the singularity-free extension **violates a physical condition**, such as causality or energy positivity, then other extensions will be preferred.

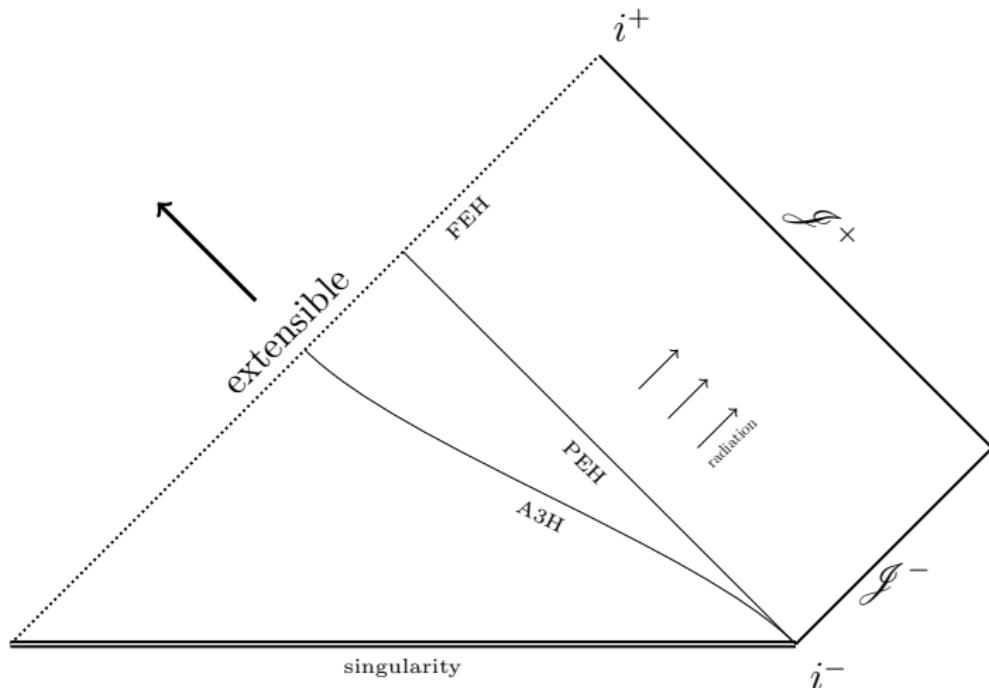
Elementary example: regular BHs



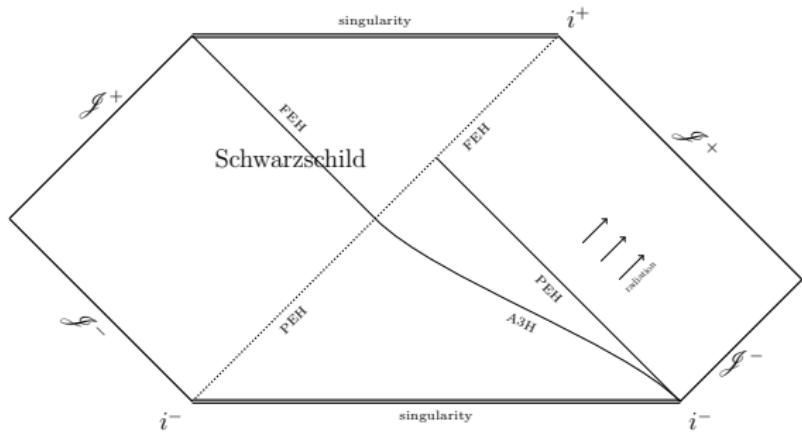
Inequivalent extension of Schwarzschild.
Notice what Penrose's theorem says

Vaidya's radiating metric

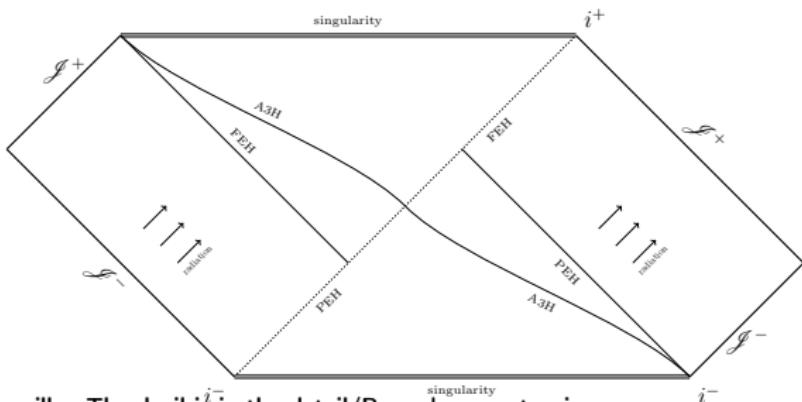
$$ds^2 = - \left(1 - \frac{2m(u)}{r}\right) du^2 - 2dudr + r^2 d\Omega^2, \quad \dot{m} \leq 0$$



Two inequivalent possibilities



(Fayos-M-Prats-Senovilla)



The (maximally extended) Kerr BH



From Griffiths-Podolsky, Exact Spacetimes in Einstein's General Relativity (C.U.P)

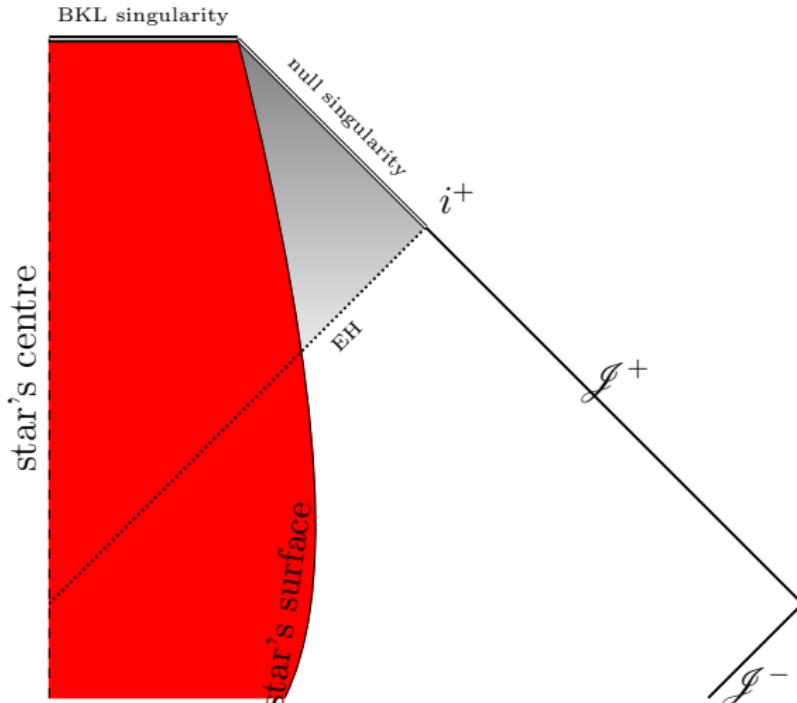
- The singularity theorems give very little information on the nature of singularities
- They merely state that for some unspecified reason some particle or light ray ends
- However, Belinskii, Khalatnikov and Lifschitz (BKL) argued, based on the field equations, that one can concentrate on dominant terms (time derivatives) to get a faithful idea of the character of the singularity
- The BKL conclusion can be summarized as *singularities are spacelike, local, oscillatory (Mixmaster), and 'matter does not matter'.*
- Even though there remain some technical problems, there exist theoretical (Ringström) as well as numerical (Berger, Moncrief, Garfinkle) results supporting the BKL picture.

BKL or Null singularity?

- Though the BKL picture is consistent with the field equations there are other competing possibilities on the market
- The main competitor is the idea of *Null singularities* (Poisson-Israel), based on the instability of Cauchy horizons
- The inner (Cauchy) horizon of a Reissner-Nordström, or a Kerr, or a regular black hole is an unstable null hypersurface in the sense that small perturbations blow up there.
- These perturbations should turn the horizon into a singularity, but this would still *retain its null character*.
- Invoking the BH uniqueness theorems, this picture should also be a good description of the singularity inside a black hole.
- The null singularity picture is supported by theoretical arguments (Ori-Flanagan), numerical simulations (Brady-Smith) and mathematical results (Dafermos).

Is this the right picture?

Thus, there is some **tension** between BKL and Null pictures! Can the singularity depend on the observer?



Summary, with some final remarks

- All gravitational systems are regular and accurately described with GR and its (post-Newtonian) limits, with the possible exception of the Universe and black holes.
- The singularities (incompleteness) in these two exceptions are a distinctive feature of GR
- The singularity theorems provide supporting evidence for the need of (quantum?) corrections to GR well inside black holes
- The problems of extensions and of the type of singularity (naked, censored..., if censored, BKL or Null) remain
- The most powerful theorems (Hawking-Penrose) have little application
- There is no theorem that can "predict" the singularity in the (maximally extended) Kerr black hole. And probably there will never be!

Thanks

dziękuję !

Thank you for your
attention!

