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Plan of the talk

We consider Hamiltonian charges (boundary terms included) the
following theories on de Sitter background:
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Plan of the talk

We consider Hamiltonian charges (boundary terms included) the
following theories on de Sitter background:

m Maxwell theory
m Weak gravitational field

e Problems with convergence of charges and renormalisation
procedure. Discussed by the example of Energy and its flux.
B Scalar Field

In each case, the asymptotics of the field is modeled on the behavior
of solutions of the spacelike Cauchy problem with smooth initial data.
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de Sitter spacetime

m We consider four-dimensional de Sitter spacetime M = R x S? in
Bondi coordinates (u,r, z4). In these the metric takes the form

9 = gapdz®dz® = —(1 — o*r?)du® — 2dudr + 1°4 ygdz*da® | (1)

where a = /A /3 with A > 0.
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de Sitter spacetime

m We consider four-dimensional de Sitter spacetime M = R x S? in
Bondi coordinates (u,r,z*). In these the metric takes the form

9 = gapdz®dz® = —(1 — o*r?)du® — 2dudr + 1°4 ygdz*da® | (1)

where a = /A /3 with A > 0.

m Cosmological horizon (1 — a?r%) = 0. The vector field 9, timelike
— spacelike.
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Killing vectors in de Sitter spacetime

Definition of Killing vector field:

Lxg=0 (2)
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Killing vectors in de Sitter spacetime

Definition of Killing vector field:
EXg =0 (2)

We use the following basis of the space of Killing vectors in de Sitter
spacetime

R = EBAbA (Rmi)ag , (4)
Pis = e [pmiau — (ar + l)pmi&» — ar: 110)A(pmi)3A} ) (5)

ar

Ligs = e [lmiau + (ar — 1)lini8T +— 1bA(lini)aA] ,  (6)

r

where R;,p; and [; are constants. n’ = n’(z*) — dipole functions.
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Maxwell field

Maxwell equations:

v, FH A
Vs« F'W = 0

x — denotes Hodge duality

James Clerk Maxwell

(1831-1879)
Lagrangian density is given by

1
L(Ap, 0Ay) = == /| = det 919" 9*° FuaFp - (7)
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Hamiltonian current

The canonical momentum density reads

g 0L

1
= 4, = —E\/] — det g|F*# . (8)

The standard Hamiltonian current

HUX] = nPLx Ay — XPL (9)
is gauge dependend. This can be fixed by replacing £x A by

LxA, := X'F,, (10)

HMX] = 7PLxAs — XML

1 1
= 0 |—detg!(F“ﬁXaFaﬂ—Z(FVBFuﬂ)X“)' (11)
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Current of Hamiltonian flux

Let Y be an arbitrary vector field. Lie derivative of Hamiltonian current
reads

1

il Zyle xul Faﬁpaﬁ]

VI detyg]

LyHMX] = 2V, [Y["F“]O‘X”Fm—
+ATY PO X Fry — iYﬂFwavHX*@,
FYHFFIA (X, A) . (12)

where AB(;(V', A) = [Vg,ﬁv]Ag. If 714=0 and ﬁxg = 0 then ﬁyH/’L[X]
leads to boundary term.
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Asymptotics

The fields F4,- which are associated with a conformally smooth
Maxwell field have expansions of the form

(0) 9 (2)

Fy, —F ppr™ +...:FA7,T_2—|—..

. (13)
(@) (@)
where F a,=F a (u,z4).
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Asymptotics

The fields F4,- which are associated with a conformally smooth
Maxwell field have expansions of the form

() _9 @ _9
Far = —Fagr 24 . =Far2+..., (13)

@ @) ,
where [ 4,=F ar (u,z?). Sourceless, vacuum Maxwell equations
restrict asymptotics of the other components:

2 (2 (3) (3)
© . OaF gy — OBF ar . OaF g, — OBF ar

Fap = Fap 5 +..., (14)
r 2r
) 2 Dl — DBF
FuA = FuA—i-a Ar 7 A2Tur BA+..., (15)
Ja DAP DAR
ur A Ar
Fur — T2 - r3 27’4 9 (16)
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Asymptotic results for Maxwell theory

m All Hamiltonian charges fcu HH[X, F]dS,, and their fluxes are well

defined.
m Examples
dEC,) 1 [ 1
wl o prla KR — — [o ”]F""BFQ ds.,
du 2m /aST [T T 4T T A K
1
= — lim — / [2F2 +’°yABFuAFTB+eN2%ABFTAFTB] dps,
R—oo 4T Sk =
1 @ © ©
=~ [ [P FarFpu+ FauFpa)|dus. (17)
TJs
where:
Cy light cone u = const emanating from r = 0,

S(R) sphere of radius R.
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Linearized gravity

m New description of canonical charges of gravitational waves
emitted by an isolated system.
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m Asymptotic conditions on linearised fields have been modeled on
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Linearized gravity

m New description of canonical charges of gravitational waves
emitted by an isolated system.

m Asymptotic conditions on linearised fields have been modeled on
the asymptotic behavior of the full solutions of the Einstein
equations with A > 0.

m All boundary terms are taken into consideration.
m The gauge conditions for linearised fields

h’l"l‘ =0= hTA7 %’ABhAB =0. (18)
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Lagrangian and canonical energy

m From L = 7”1@9' (R — %), we obtain the Lagrangian for weak

(o
fields
1
L[] = 327‘/ | det g| (PPN yhg, Visher + Q(R)) (19)

where @ is a quadratic polynomial in k, and

}( aEQJBg'yU + gaega'ﬁg'y(; - ga(?gﬁega'y _ gaﬁg'y6gea

Paﬂ'y&:o
2

o gﬁwgaegaé + gﬁ’ygaégea) ) (20)
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Lagrangian and canonical energy

m From L = 7”1@9' (R — %), we obtain the Lagrangian for weak

1
L) = /[ det g| (P V ol Vishes + Q(R)) . (19)
where @ is a quadratic polynomial in k, and
Paﬂ'y&:o — }( aEQJBg'yU + gaega'ﬁg'y(; - ga(sgﬁega'y _ gaﬁg'y6gea
2
o gﬁwgaegaé + gﬁ’ygaégea) ) (20)

m For a given a Lagrangian field theory of fields ¢4, the canonical
energy is defined as

oL
H[S, X, ¢] = /S(ad)AM,fngA—X“E)dSM, (21)

=HH
where ¢4, := 9,¢".
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Example: Canonical energy in Bondi gauge

The canonical energy E.[h,C, g] is given by

Ec[h, Cu,R] = H[CU,R7 Ou, h]

1
= — 9P g C (0,hpedhpr — hped,duhpr) 1 sin 6 dr df dp
6471' Cu,R
- PG sh ey hp 7 sin 0 d dp (22)
327T S(R)
where:

h,,  solution of the linearised vacuum Einstein equations,
Cu light cone u = const emanating from r = 0,

Cu,r light cone truncated at radius r = R,

S(R) sphere of radius R.

T. Smotka (KMMF) Charges for A > 0 KTWiG Seminar 2022



Asymptotic behavior for large r

m There exists a dynamically consistent class of fields'
hap = r2h s which have an asymptotic expansion of the form

Q) @
. h h
= 2AB  2AB (23)

"H. Friedrich, On the existence of n—geodesically complete or future complete
solutions of Einstein’s field equations with smooth asymptotic structure, Commun.
Math. Phys. 107 (1986), 587-609.
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Boundary term in canonical energy

The remaining h,,’s are determined by the linearised version of
constraint equations in Bondi coordinates:

hew = 0, (24)

5 © @

huA = huA"‘huA/T + s (25)
@ @

hap — “AB . 4B (26)
r T
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Boundary term in canonical energy

The remaining h,,’s are determined by the linearised version of
constraint equations in Bondi coordinates:

hew = 0, (24)

5 © @

huA = huA"‘huA/T + 5 (25)
@ @

hap — “AB . 4B (26)
r T

One finds the following form of the boundary term in E.[h,C, r]:
AR )

T 1927 Jg FABACL | 4o hpp sin(0) df dp
1 0 (1) 0 ®
———— [ 48 (4PhacOuhpp — 6huahyp ) sin(0) do do
647T SQ
+o(1),

(27)
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Boundary term in canonical energy

Q)
Boundary term diverges in the limit R — oo if hac # 0 and begs the
questions whether

One finds the following form of the boundary term in E.[h,C, r]:
AR ) R

~Toar Jo VA P hachpp sin(6) do dg
1 AB(:cDp oY © ©
641 J 2 g (’3/ hacOuhpp — 6huAhuB) sin(f) df dy
s
+o(1),

(24)
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Boundary term in canonical energy

Q)
Boundary term diverges in the limit R — oo if h oo # 0 and begs the
questions whether

1. the divergence of the boundary integral is compensated by that of
the volume integral and, if not,

One finds the following form of the boundary term in E.[h,C, r]:
AR R

T 1927 Jg FABACL | 4o hpp sin(0) df dp
1 0 (1) 0 ®
———— [ 4B (4PhacOuhpp — 6huahyp ) sin(0) do do
647T SQ
+o(1),

(24)
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Boundary term in canonical energy

Q)
Boundary term diverges in the limit R — oo if h oo # 0 and begs the
questions whether

1. the divergence of the boundary integral is compensated by that of
the volume integral and, if not,

2. whether the boundary integral is needed at all in the definition of
energy and, if so,

One finds the following form of the boundary term in E.[h,C, r]:

AR A ()
~toos |7 BLOD] achppsin(f) do de
™ )52

1 gl cp? Q) © @
— [ A7 hacOuhep — 6hyahyp ) sin(f) do dy
647T S2
+o(1), (24)
T. Smotka (KMMF) Charges for A > 0

KTWIG Seminar 2022 14/24



Boundary term in canonical energy

Q)
Boundary term diverges in the limit R — oo if h oo # 0 and begs the
questions whether

1. the divergence of the boundary integral is compensated by that of
the volume integral and, if not,

2. whether the boundary integral is needed at all in the definition of
energy and, if so,

3. can one obtain consistent solutions by restricting oneself to a set
Q)
of fields with h4c = 0.

One finds the following form of the boundary term in E.[h,C, r]:

AR N o m
_17 ﬁ/ B'?CDhAchBD s1n(9) d@d(p
921 S2
1 Q) M @ ©
— ;:}/AB(:VCDhAcauhBD—6huAhuB) sin(0) do dy
™ Js2
+o(1), (24)
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Linearised evolution equation for g.p

Denoting by T'S[] the traceless symmetric part of a tensor, we have in
vacuum

r0,[r(Ouhoan)] %ar IN2(0,huap)] + TS[Da(8,(%hs))] =0,  (25)

where N? = +(1 — Ar?/3).
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Linearised evolution equation for g.p

Denoting by T'S[] the traceless symmetric part of a tensor, we have in
vacuum

r0,[r(Ouhoan)] %ar IN2(0,huap)] + TS[Da(8,(%hs))] =0,  (25)

where N2 = 4(1 — Ar?/3). Integrating, we find

Ouhan(r) = 1 [ S (GAUINY@rhag)] = TS[DA(0*he)] ) (s, s
() @)
_ 8uh,;B(‘) +8uh£B(') _1_0(7;3)7 (26)
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Linearised evolution equation for g.p

Denoting by T'S[] the traceless symmetric part of a tensor, we have in
vacuum

r0,[r(Ouhoan)] %ar IN2(0,huap)] + TS[Da(8,(%hs))] =0,  (25)

where N2 = 4(1 — Ar?/3). Integrating, we find

Ouhan(r) = 1 [ S (GAUINY@rhag)] = TS[DA(0*he)] ) (s, s
() @)
_ 8uh,;B(‘) +8uh£B(') _1_0(7;3)7 (26)

(1) o]
ouan() = [ (VO an)] ~ GeaDal0 02 ) (5, s,
@7)
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Volume integral from E.[h, C, r]

Using the obtained field behavior

auhAB(') = r + r3 + O(T_g) ) (28)
) @
. h h

hap = ;‘B+ ;B+..., (29)

one finds a finite volume contribution to the canonical energy

/ 95% g7 (OuhpcOrher — hpc0rOuhpr) r’sin@drdfdy  (30)
Cu,R
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Energy flux formula

The flux formula is also divergent

dE.[h,Cy.R]
du N
AR Q) Q)
——— [ 34B3CP) 08, hpp sin() db dp
967 Jq2
1 1) ] ® ©)
B ( CD Y hacOuhpD — 6hunde e ) sin(6) dé de
321
+o(1). (31)
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Renormalised energy and flux

We propose to introduce a renormalised canonical energy, obtained by
removing the divergent terms in the canonical energy

E.[h,C,) =
1
oir . gPEGFC (Ouhpcdrhpr — hpcd0uhpr) r? drsin(0) df dp
1 anlecp? ™) © @ '
— | AP (3P hacOuhsp — Bhuahus) sin(0)dods . (32)
647'[' S2
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Renormalised energy and flux

We propose to introduce a renormalised canonical energy, obtained by
removing the divergent terms in the canonical energy

Ec[h7 Cu] =

1
oir . gPEGFC (Ouhpcdrhpr — hpcd0uhpr) r? drsin(0) df dp

1 AB CD() M o ®
_MW/SQ’V < hacOuhpp — 6hu,4hu3> sin(0) df dy . (32)
which has its own finite flux formula
dE[h,Curl _
dul .CD 0 () (€) © .
397 g2 '7 ( O hACa hpp — 6hya0uh ) sin(6) df dp .

(33)
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Renormalised energy and flux

We propose to introduce a renormalised canonical energy, obtained by
removing the divergent terms in the canonical energy

Eh,C] =
1
oir . gPEGFC (Ouhpcdrhpr — hpcd0uhpr) r? drsin(0) df dp
1 AB C’D() 0 @ ©
—— [ — . 2
e /S 4 ( hacOuh 5D 6hu,4hu3> sin(f)dode.  (32)
which has its own finite flux formula
dEelh, Cup] _
du a
1 .CD U] ] (©] ©) )
~52 s A B (5P duhacOuhpp — 6hyaduhus ) sin(9) d dp.

(33)

For A = 0, we recover the weak-field version of the usual

Trautman-Bondi mass loss formula.
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Scalar field

m The Lagrangian for scalar field reads

L=t =gl a0 0emP) . (34)
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Scalar field

m The Lagrangian for scalar field reads

L=t =gl a0 0emP) . (34)

m For m = 2a? field equation is conformally-invariant:

(d—2)R(g)
A(d—1)
—_—

=:m?

Dg¢_ ¢ = 07 (35)
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Scalar field

m The Lagrangian for scalar field reads

L=t =gl a0 0emP) . (34)

m For m = 2a? field equation is conformally-invariant:

(d—2)R(g)
A(d—1)
—_—

=:m?

Dg¢_ ¢ = 0) (35)

m The canonical energy-momentum current H* equals

X = /[~ detg] (Vo £X¢—%(VQ¢VQ¢+m2¢2)X“) . (36)
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Scalar field — Energy

m The scalar fields evolving out of smooth initial data on a Cauchy
surface have an asymptotic in the form

) 2 (3)
A) _ (;S(u,xA) N qS(u,:CA) I ¢(uv$A) o (37)

r r2 r3

¢(’LL, r,xT
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Scalar field — Energy

m The scalar fields evolving out of smooth initial data on a Cauchy
surface have an asymptotic in the form

(1) (2 (3)
o(u,r, ) = ¢(u, ) + ¢(u, ) + o(u =) + ... (37)

r r2 r3

m The energy on the truncated cone is defined as

E[T,Cyuy] = fc du)dS,, _fc “[9,])dS,, , and reads
1 o 2
E[T,Cur] = 2/ ("’yABDAngnganQr ¢* + (r* — a®r!) (0,9)
Cu,R
o’R )

= [ P duy+ [ 067 drd
2 Sgr Cu,r

where C,.p = C, N {r < R}.
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Scalar field — Angular momentum

The total angular-momentum is obtained from the integral
J[R,Curl := [o , H'[R]dS, = R;J'[Cyr], where the J"s are given by

JCur] = /C 2648 Dpn' D 40, ¢ dr dps = /c O(r=2)dr dus ,(39)
u,R u,R

so that the limit R — oo is finite, even though the total energy diverges.
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Scalar Field — Energy flux

m If X is a Killing vector and O ¢ — Q@igb = 0 then
=2a?2
LyHH[X]

V| = detyg|

— _2v, (Y[C’v“} ngaVaqu—%Y["X“] (va¢va¢+m2¢2))
(40)
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Scalar Field — Energy flux

m If X is a Killing vector and 0,6 — m? ¢ = 0 then

=2a?2
LyHH[X]

V| = detyg|

— _2v, (Y[C’v“} ngaVaqu—%Y["X“] (va¢va¢+m2¢2))
(40)

m The energy flux:

dE[T,CuR)

7 = - /S ) [rQ (0u6 + (a2r? — 1) 8,0) 8u¢] Kz

r=

(O]

(UBEY)
= [ [o*0.6r+ %00,
SR

+ <2a2(§§ _ aﬁ) D + 0(%)} dus.  (41)
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m The asymptotic conditions satisfied by the linearized metric have
been modeled on the asymptotic behavior of the full solutions of
the Einstein equations with positive cosmological constant.

m Near de Sitter spacetime, the canonical charges of weak fields in
Bondi gauge are divergent in general.

m Proposed renormalised energy and flux in the limit A = 0 become
classical Trautman-Bondi quantities.
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m The asymptotic conditions satisfied by the linearized metric have
been modeled on the asymptotic behavior of the full solutions of
the Einstein equations with positive cosmological constant.

m Near de Sitter spacetime, the canonical charges of weak fields in
Bondi gauge are divergent in general.

m Proposed renormalised energy and flux in the limit A = 0 become
classical Trautman-Bondi quantities.

We plan to extend our investigations by:
o Analysis of algebraic structures of renormalised charges.
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Thank for your attention!

Sources:

m Chrusciel, P. T., Hoque, J., Smotka, T. (2021). Energy of weak
gravitational waves in spacetimes with a positive cosmological
constant. PRD, 103(6), 064008.

m Chrusciel, P. T., Hoque, J., Maliborski, M., Smotka, T. (2021). On
the canonical energy of weak gravitational fields with a
cosmological constant A € R. EPJC, 81(8), 1-48.

m Chrusciel, P. T., Smotka, T. in preparation.
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