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Plan of the talk

We consider Hamiltonian charges (boundary terms included) the
following theories on de Sitter background:

g Maxwell theory
g Weak gravitational field

Problems with convergence of charges and renormalisation
procedure. Discussed by the example of Energy and its flux.

g Scalar Field

In each case, the asymptotics of the field is modeled on the behavior
of solutions of the spacelike Cauchy problem with smooth initial data.
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de Sitter spacetime

g We consider four-dimensional de Sitter spacetimeM = R× S3 in
Bondi coordinates (u, r, xA). In these the metric takes the form

g ≡ gαβdxαdxβ = −(1− α2r2)du2 − 2du dr + r2γ̊ABdx
AdxB , (1)

where α =
√

Λ/3 with Λ > 0.

g Cosmological horizon (1− α2r2
H) = 0. The vector field ∂u timelike

→ spacelike.
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Killing vectors in de Sitter spacetime

Definition of Killing vector field:

LXg = 0 (2)

We use the following basis of the space of Killing vectors in de Sitter
spacetime

T = ∂u , (3)
R = εBAD̊A

(
Rin

i
)
∂B , (4)

PdS = eαu
[
pin

i∂u −
(
αr + 1

)
pin

i∂r −
αr + 1

r
D̊A(pin

i)∂A

]
, (5)

LdS = e−αu
[
lin

i∂u +
(
αr − 1

)
lin

i∂r +
αr − 1

r
D̊A(lin

i)∂A

]
, (6)

where Ri, pi and li are constants. ni = ni(xA) – dipole functions.
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Maxwell field

Maxwell equations:

∇νFµν = 4πjµ

∇µ ∗ Fµν = 0

∗ – denotes Hodge duality
James Clerk Maxwell

(1831-1879)
Lagrangian density is given by

L(Aµ, ∂Aµ) = − 1

16π

√
| − det g|gµνgαβFµαFνβ . (7)
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Hamiltonian current

The canonical momentum density reads

παβ =
∂L
∂Aβ,α

= − 1

4π

√
| − det g|Fαβ . (8)

The standard Hamiltonian current

Hµc [X] = πµβLXAβ −XµL (9)

is gauge dependend. This can be fixed by replacing LXA by

LXAµ := XνFνµ (10)

Hµ[X] := πµβLXAβ −XµL

= − 1

4π

√
| − det g|

(
FµβXαFαβ −

1

4

(
F νβFνβ

)
Xµ
)
. (11)
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Current of Hamiltonian flux

Let Y be an arbitrary vector field. Lie derivative of Hamiltonian current
reads

− 4π√
| − det g|

LYHµ[X] = 2∇σ
[
Y [σFµ]αXκFκα −

1

4
Y [σXµ]FαβFαβ

]
+4πY µjαXσFασ −

1

4
Y µFασFασ∇κXκ ,

+Y µF σα∆ασ(X,A) . (12)

where ∆βδ(V,A) := [∇δ,LV ]Aβ. If jα = 0 and LXg = 0 then LYHµ[X]
leads to boundary term.
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Asymptotics

The fields FAr which are associated with a conformally smooth
Maxwell field have expansions of the form

FAr = −
(0)

FAxr
−2 + . . . =

(2)

FArr
−2 + . . . , (13)

where
(i)

F Ar=
(i)

F Ar (u, xA).

Sourceless, vacuum Maxwell equations
restrict asymptotics of the other components:

FAB =
(0)

FAB +
∂A

(2)

FBr − ∂B
(2)

FAr
r

+
∂A

(3)

FBr − ∂B
(3)

FAr
2r2

+ . . . , (14)

FuA =
(0)

F uA +
α2

(3)

FAr − D̊A

(2)

F ur − D̊B
(0)

FBA
2r

+ . . . , (15)

Fur =

(2)

F ur
r2
− D̊A

(2)

FAr
r3

− D̊A
(3)

FAr
2r4

+ . . . , (16)
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Asymptotic results for Maxwell theory

g All Hamiltonian charges
∫
Cu H

µ[X,F ]dSµ and their fluxes are well
defined.

g Examples

dE[Cu]

du
=

1

2π

∫
∂Sτ

[
T [σFµ]αT κFκα −

1

4
T [σT µ]FαβFαβ

]
dSσµ

= − lim
R→∞

1

4π

∫
SR

[
r2F 2

ur + γ̊ABFuAFrB + εN2γ̊ABFrAFrB

]
r=R

dµγ̊

= − 1

4π

∫
S∞

[̊
γAB

(
α2

(2)
FAr

(0)
FBu +

(0)
FAu

(0)
FBu

)]
dµγ̊ . (17)

where:

Cu light cone u = const emanating from r = 0,
S(R) sphere of radius R.
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Linearized gravity

g New description of canonical charges of gravitational waves
emitted by an isolated system.

g Asymptotic conditions on linearised fields have been modeled on
the asymptotic behavior of the full solutions of the Einstein
equations with Λ > 0.

g All boundary terms are taken into consideration.
g The gauge conditions for linearised fields

hrr = 0 = hrA , γ̊ABhAB = 0 . (18)

T. Smołka (KMMF) Charges for Λ > 0 KTWiG Seminar 2022 10 / 24



Linearized gravity

g New description of canonical charges of gravitational waves
emitted by an isolated system.

g Asymptotic conditions on linearised fields have been modeled on
the asymptotic behavior of the full solutions of the Einstein
equations with Λ > 0.

g All boundary terms are taken into consideration.
g The gauge conditions for linearised fields

hrr = 0 = hrA , γ̊ABhAB = 0 . (18)

T. Smołka (KMMF) Charges for Λ > 0 KTWiG Seminar 2022 10 / 24



Linearized gravity

g New description of canonical charges of gravitational waves
emitted by an isolated system.

g Asymptotic conditions on linearised fields have been modeled on
the asymptotic behavior of the full solutions of the Einstein
equations with Λ > 0.

g All boundary terms are taken into consideration.

g The gauge conditions for linearised fields

hrr = 0 = hrA , γ̊ABhAB = 0 . (18)

T. Smołka (KMMF) Charges for Λ > 0 KTWiG Seminar 2022 10 / 24



Linearized gravity

g New description of canonical charges of gravitational waves
emitted by an isolated system.

g Asymptotic conditions on linearised fields have been modeled on
the asymptotic behavior of the full solutions of the Einstein
equations with Λ > 0.

g All boundary terms are taken into consideration.
g The gauge conditions for linearised fields

hrr = 0 = hrA , γ̊ABhAB = 0 . (18)

T. Smołka (KMMF) Charges for Λ > 0 KTWiG Seminar 2022 10 / 24



Lagrangian and canonical energy

g From L =

√
| det g|
16π

(
R− Λ

2

)
, we obtain the Lagrangian for weak

fields

L[h] =
1

32π

√
| det g|

(
Pαβγδεσ∇αhβγ∇δhεσ +Q(h)

)
, (19)

where Q is a quadratic polynomial in h, and

Pαβγδεσ =
1

2

(
gαεgδβgγσ + gαεgσβgγδ − gαδgβεgσγ − gαβgγδgεσ

− gβγgαεgσδ + gβγgαδgεσ
)
. (20)

g For a given a Lagrangian field theory of fields φA, the canonical
energy is defined as

H[S, X, φ] :=

∫
S

( ∂L
∂φAµ

£Xφ
A −XµL︸ ︷︷ ︸

=:Hµ

)
dSµ , (21)

where φAµ := ∂µφ
A.
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Example: Canonical energy in Bondi gauge

The canonical energy Ec[h, Cu,R] is given by

Ec[h, Cu,R] := H[Cu,R, ∂u, h]

=
1

64π

∫
Cu,R

gBEgFC
(
∂uhBC∂rhEF − hBC∂r∂uhEF

)
r2 sin θ dr dθ dϕ

− 1

32π

∫
S(R)

P r(βγ)δ(εσ)∇δhεσ hβγ r2 sin θ dθ dϕ , (22)

where:

hµν solution of the linearised vacuum Einstein equations,
Cu light cone u = const emanating from r = 0,
Cu,R light cone truncated at radius r = R,
S(R) sphere of radius R.
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Asymptotic behavior for large r

g There exists a dynamically consistent class of fields1

hAB = r2ȟAB which have an asymptotic expansion of the form

ȟAB =

(1)

ȟAB
r

+

(2)

ȟAB
r2

+ . . . (23)

1H. Friedrich, On the existence of n–geodesically complete or future complete
solutions of Einstein’s field equations with smooth asymptotic structure, Commun.
Math. Phys. 107 (1986), 587-609.
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Boundary term in canonical energy
The remaining hµν ’s are determined by the linearised version of
constraint equations in Bondi coordinates:

hru ≡ 0 , (24)

ȟuA =
(0)

ȟuA +
(2)

ȟuA/r
2 + . . . , (25)

ȟAB =

(1)

ȟAB
r

+

(2)

ȟAB
r2

+ . . . . (26)

One finds the following form of the boundary term in Ec[h, Cu,R]:

− ΛR

192π

∫
S2

γ̊AB γ̊CD
(1)

ȟAC

(1)

ȟBD sin(θ) dθ dϕ

− 1

64π

∫
S2

γ̊AB
(
γ̊CD

(1)

ȟAC∂u

(1)

ȟBD − 6
(0)

ȟuA

(3)

ȟuB

)
sin(θ) dθ dϕ

+o(1) , (27)

T. Smołka (KMMF) Charges for Λ > 0 KTWiG Seminar 2022 14 / 24



Boundary term in canonical energy
The remaining hµν ’s are determined by the linearised version of
constraint equations in Bondi coordinates:

hru ≡ 0 , (24)
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ȟuB

)
sin(θ) dθ dϕ

+o(1) , (27)
T. Smołka (KMMF) Charges for Λ > 0 KTWiG Seminar 2022 14 / 24



Boundary term in canonical energy

Boundary term diverges in the limit R→∞ if
(1)

ȟAC 6= 0 and begs the
questions whether

1. the divergence of the boundary integral is compensated by that of
the volume integral and, if not,

2. whether the boundary integral is needed at all in the definition of
energy and, if so,

3. can one obtain consistent solutions by restricting oneself to a set

of fields with
(1)

ȟAC ≡ 0.

One finds the following form of the boundary term in Ec[h, Cu,R]:
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ȟAC∂u

(1)

ȟBD − 6
(0)
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ȟuA

(3)
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Linearised evolution equation for gAB
Denoting by TS[·] the traceless symmetric part of a tensor, we have in
vacuum

r∂r[r(∂uȟAB)]− 1

2
∂r[N

2(∂rȟAB)] + TS
[
D̊A

(
∂r(r

2ȟB)
)]

= 0 , (25)

where N2 = ±(1− Λr2/3).

Integrating, we find

∂uȟAB(r, ·) =
1

r

∫ r

0

1

s

(1

2
∂r[N

2(∂rȟAB)]− TS
[
D̊A

(
∂r(r

2ȟB)
)])

(s, ·)ds

=
∂u

(1)

ȟAB(·)
r

+
∂u

(3)

ȟAB(·)
r3

+ o(r−3) , (26)

where

∂u

(1)

ȟAB(·) =

∫ ∞
0

1

s

(1

2
∂r[N

2(∂rȟAB)]− γ̊CAD̊B[∂r(r
2ȟC)]

)
(s, ·)ds ,

(27)
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Volume integral from Ec[h, Cu,R]

Using the obtained field behavior

∂u

(1)

ȟAB(·) =
∂u

(1)

ȟAB(·)
r

+
∂u

(3)

ȟAB(·)
r3

+ o(r−3) , (28)

ȟAB =

(1)

ȟAB
r

+

(2)

ȟAB
r2

+ . . . , (29)

one finds a finite volume contribution to the canonical energy∫
Cu,R

gBEgFC
(
∂uhBC∂rhEF − hBC∂r∂uhEF

)
r2 sin θ dr dθ dϕ (30)
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Energy flux formula

The flux formula is also divergent

dEc[h, Cu,R]

du
=

−ΛR

96π

∫
S2

γ̊AB γ̊CD
(1)

ȟAC∂u

(1)

ȟBD sin(θ) dθ dϕ

− 1

32π

∫
S2

γ̊AB
(
γ̊CD∂u

(1)

ȟAC∂u

(1)

ȟBD − 6
(3)

ȟuA∂u

(0)

ȟuB

)
sin(θ) dθ dϕ

+o(1) . (31)
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Renormalised energy and flux

We propose to introduce a renormalised canonical energy, obtained by
removing the divergent terms in the canonical energy

Êc[h, Cu] :=

1

64π

∫
Cu
gBEgFC

(
∂uhBC∂rhEF − hBC∂r∂uhEF

)
r2 dr sin(θ) dθ dϕ

− 1

64π

∫
S2

γ̊AB
(
γ̊CD

(1)

ȟAC∂u

(1)

ȟBD − 6
(0)

ȟuA

(3)

ȟuB

)
sin(θ) dθ dϕ . (32)

which has its own finite flux formula
dÊc[h, Cu,R]

du
=

− 1

32π

∫
S2

γ̊AB
(
γ̊CD∂u

(1)

ȟAC∂u

(1)

ȟBD − 6
(3)

ȟuA∂u

(0)

ȟuB

)
sin(θ) dθ dϕ .

(33)

For Λ = 0, we recover the weak-field version of the usual
Trautman-Bondi mass loss formula.

T. Smołka (KMMF) Charges for Λ > 0 KTWiG Seminar 2022 18 / 24



Renormalised energy and flux

We propose to introduce a renormalised canonical energy, obtained by
removing the divergent terms in the canonical energy
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Êc[h, Cu] :=

1

64π

∫
Cu
gBEgFC

(
∂uhBC∂rhEF − hBC∂r∂uhEF

)
r2 dr sin(θ) dθ dϕ

− 1

64π

∫
S2

γ̊AB
(
γ̊CD

(1)
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ȟuB

)
sin(θ) dθ dϕ .

(33)

For Λ = 0, we recover the weak-field version of the usual
Trautman-Bondi mass loss formula.

T. Smołka (KMMF) Charges for Λ > 0 KTWiG Seminar 2022 18 / 24



Scalar field

g The Lagrangian for scalar field reads

L = −1

2

√
| − det g|

(
gµν∂µφ∂νφ+m2φ2

)
, (34)

g For m = 2α2 field equation is conformally-invariant:

2gφ−
(d− 2)R(g)

4(d− 1)︸ ︷︷ ︸
=:m2

φ = 0 , (35)

g The canonical energy-momentum current Hµ equals

Hµ[X] = −
√
| − det g|

(
∇µφLXφ−

1

2

(
∇αφ∇αφ+m2φ2

)
Xµ
)
. (36)
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Scalar field – Energy

g The scalar fields evolving out of smooth initial data on a Cauchy
surface have an asymptotic in the form

φ(u, r, xA) =

(1)

φ(u, xA)

r
+

(2)

φ(u, xA)

r2
+

(3)

φ(u, xA)

r3
+ ... . (37)

g The energy on the truncated cone is defined as
E[T , Cu,r] :=

∫
Cu,R H

µ[∂u]dSµ =
∫
Cu,R H

u[∂u]dSu , and reads

E[T , Cu,R] =
1

2

∫
Cu,R

(
γ̊ABD̊AφD̊Bφ+m2r2φ2 +

(
r2 − α2r4

)(
∂rφ
)2)

dr dµγ̊

=
α2R

2

∫
SR

(
(1)

φ)2 dµγ̊ +

∫
Cu,R

O(r−2) dr dµγ̊ (38)

where Cu,R = Cu ∩ {r ≤ R}.
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Scalar field – Angular momentum

The total angular-momentum is obtained from the integral
J [R, Cu,R] :=

∫
Cu,R H

µ[R]dSµ ≡ RiJ i[Cu,R] , where the J i’s are given by

J i[Cu,R] :=

∫
Cu,R

r2εABD̊Bn
iD̊Aφ∂rφdr dµγ̊ =

∫
Cu,R

O(r−2) dr dµγ̊ , (39)

so that the limit R→∞ is finite, even though the total energy diverges.
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Scalar Field – Energy flux

g If X is a Killing vector and 2gφ− m2︸︷︷︸
=2α2

φ = 0 then

LYHµ[X]√
| − det g|

= −2∇σ
(
Y [σ∇µ]φXα∇αφ−

1

2
Y [σXµ]

(
∇αφ∇αφ+m2φ2

))
.

(40)

g The energy flux:

dE[T , Cu,R]

du
= −

∫
SR

[
r2
(
∂uφ+

(
α2r2 − 1

)
∂rφ
)
∂uφ

]
r=R

dµγ̊

=

∫
SR

[
α2

(1)

φ∂u
(1)

φR+ α2
(1)

φ∂u
(2)

φ

+

(
2α2

(2)

φ − ∂u
(1)

φ

)
∂u

(1)

φ +O
( 1

R

)]
dµγ̊ . (41)
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Summary

g The asymptotic conditions satisfied by the linearized metric have
been modeled on the asymptotic behavior of the full solutions of
the Einstein equations with positive cosmological constant.

g Near de Sitter spacetime, the canonical charges of weak fields in
Bondi gauge are divergent in general.

g Proposed renormalised energy and flux in the limit Λ = 0 become
classical Trautman-Bondi quantities.

We plan to extend our investigations by:
• Analysis of algebraic structures of renormalised charges.
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Thank for your attention!

Sources:
g Chruściel, P. T., Hoque, J., Smołka, T. (2021). Energy of weak

gravitational waves in spacetimes with a positive cosmological
constant. PRD, 103(6), 064008.

g Chruściel, P. T., Hoque, J., Maliborski, M., Smołka, T. (2021). On
the canonical energy of weak gravitational fields with a
cosmological constant Λ ∈ R. EPJC, 81(8), 1-48.
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