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Origins of the null scri

Trautman 1958: outgoing radiation conditions in null directions,
E,u ≤ 0
Bondi 1960, Bondi, van der Burg and Metzner 1962:
foliation by null surfaces, asymptotic expansions, Bondi mass and
news (axially symmetric case)
Sachs 1962: general case
Penrose 1963: conformal compactification, diagrams with null
boundaries (scri) I +, I − etc.

About work of Trautman see Chruściel 2002 Editor’s Note: Lectures on
General Relativity by Andrzej Trautman, Gen. Relat. Grav. 34

About the Bondi-Sachs approach see Mädler and Winicour 2016,
Bondi-Sachs formalism, Scholarpedia, 11(12):33528

About Penrose’s compactification see any book
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The Bondi-Sachs metric

The Schwarzschild metric in the Kruskal-Szekeres coordinates⇒ full
conformal compactification (the Penrose diagram).

Null boundary I + via the Eddington-Filkenstein coordinates:

g̃ = (1− 2M
r

)du2 + 2dudr − r2sABdxAdxB ,

u = t − r − 2M ln (r − 2M) , u,αu,α = 0 .

Conformal metric with Ω = 1
r (I + at Ω = 0)

g = Ω2g̃ = (1− 2MΩ)Ω2du2 − 2dudΩ− sABdxAdxB .

Bondi and Sachs: general metric in coordinates adapted to null
foliation u=const (with leaves R × S2)

g̃ = du(g̃00du + 2g̃01dr + 2g̃0AdxA) + g̃ABdxAdxB .

Extra gauge: the luminosity condition√
det g̃AB = r2

√
det sAB

Assumption of asymptotical flatness, E(u) = 1
4π

∫
Mdσ.
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The conformal approach

Let metric g be smooth in a neighbourhood of I + = R × S2. Define
coordinates u, xA on I + such that u = const on leaves S2 and ∂u is
orthogonal to them. Extend foliation to the neighbourhood emitting
past null geodesics orthogonally to u=const. Propagate coordinates
u, xA along these geodesics and choose Ω to be the affine parameter
of geodesics such that

g = du(g00du − 2dΩ + 2g0AdxA) + gABdxAdxB

ĝ0A = 0 on I + .

The affine gauge is more geometrical and gµν is simpler

g01 = −1 , g11 = −g00 + g0Ag A
0 , g1A = g A

0 , gAB (raises A,B) .
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The Einstein equations

Equations for the physical metric g̃ = Ω−2g:

R̃µν = 0

or
Rµν − 2Yµν − Ygµν = 0 ,

where
Yµν = − 1

Ω
Ω|µν +

1
2Ω2 Ω|αΩ|αgµν , Y = Y α

α .

No second order pole⇒ Ω|αΩ|α = g11 = O(Ω)⇒ g00 = O(Ω).

Regularity of Y1A ⇒ g0A = O(Ω2).

Regularity of YAB ⇒ ĝAB,0 = aĝAB ⇒ ĝAB = −eαsAB , a = α,0.

We eliminate α by a change of coordinates Ω and u.
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Summary of regularity:

g00 = bΩ2 − 2MΩ3 + O(Ω4)

g0A = qAΩ2 + 2LAΩ3 + O(Ω4)

gAB = −sAB + nABΩ + pABΩ2 + O(Ω3) , nA
A = 0 .

The Bianchi identity⇒ the independent Einstein equations

R̃(k)
11 = R̃(k)

1A = R̃(k)
AB = 0

R̃(2)
00 = R̃(2)

0A = 0 .

R̃11 = 0

−1
2

(ln |g|),11 +
1
4

gAB,1gAB
,1 = 0 ,

hence
ĝABg(k+2)

AB = 〈g(l)
AB, l ≤ k + 1〉 , k ≥ 0 .
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R̃1A = 0

qA = −1
2

nB
A|B , k = 0

(k − 1)(k + 2)g(k+2)
0A = (k + 1)(g(k+1)

AB )|B + 〈g(k+1)
0A , g(l)

µν , l ≤ k〉 , k ≥ 1

where ĝAB = −sAB defines covariant derivative |A and raises indices.

For k = 1

pB
A|B −

1
8

(nCDnCD),A = 0 ⇒ pAB =
1
8

(nCDnCD)ĝAB + p̃AB ,

where p̃AB is a symmetric TT-tensor on the sphere

p̃A
A = 0 , p̃B

A|B = 0 .

Hence p̃AB = 0 and

pAB =
1
8

(nCDnCD)ĝAB .
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R̃AB = 0

R̃(0)
AB = 0⇒ b = 1 (g is asymptotically Minkowskian) and R̃(1)

AB = 0 is
trivial.

Trace ĝABR̃(k)
AB = 0 yields

g(k+2)
00 = 〈g(l)

µν , l ≤ k + 1〉 , k ≥ 2 .

The traceless part

ǧ(k+1)
AB,0 = 〈M, LA, g(l)

µν , l ≤ k〉 , k ≥ 2

defines the traceless part ǧ(k+1)
AB modulo an initial value at u = u0.

R̃(2)
00 = 0 and R̃(2)

0A = 0

M,0 = 〈nAB〉

LA,0 = −1
3

M,A + 〈nAB〉
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Trace ĝABR̃(k)

AB = 0 yields

g(k+2)
00 = 〈g(l)

µν , l ≤ k + 1〉 , k ≥ 2 .

The traceless part
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Recursive solving (equivalent to Bondi, Sachs ...)

Physical metric

g̃ = du(g̃00du + 2dr + 2g̃0AdxA) + g̃ABdxAdxB ,

where
g̃00 = 1− 2M

r
+ Σ∞2 g(k+2)

00 r−k

g̃0A = −1
2

nB
A|B +

2LA

r
+ Σ∞2 g(k+2)

0A r−k

g̃AB = −r2sAB + rnAB −
1
8

(nCDnCD)sAB + Σ∞2 g(k+1)
AB r1−k .

Free data: nAB (traceless), initial values of M, LA, ǧ(k)
AB with k ≥ 3.

Metric components given algebraically or in quadratures.

The Bondi mass aspect: M − 1
16(nABnAB),0

The Bondi news function: nAB,0
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Stationary metrics with scri I +

Choose a null surface Σ0 intersecting I + along S2.
Use the 1-parameter group of motion generated by the Killing
vector K to construct a null foliation u =const.
Propagate coordinates r , xA from Σ0 along K = ∂u.
Modify r to get g̃01 = 1.
Assure nonsingularity of R̃µν .

Metric transforms to the Bondi-Sachs form with asymptotics

g̃00 → b , gAB → ĝAB = −eαsAB

R̃(2)
00 = 0⇒ ∆̂b = 0⇒ b =const (b = 1 after rescaling u and r )

R̃(0)
AB = 0⇒ R(ĝ) = −2⇒ ĝAB = −sAB

Conclusion: g̃ is transparently asymptotically flat in coordinates
adapted to the symmetry K = ∂u.
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R̃(2)
00 = 0⇒ ∆̂b = 0⇒ b =const (b = 1 after rescaling u and r )

R̃(0)
AB = 0⇒ R(ĝ) = −2⇒ ĝAB = −sAB

Conclusion: g̃ is transparently asymptotically flat in coordinates
adapted to the symmetry K = ∂u.
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R̃(2)
0A = 0 ⇒ 1

3
M,A = q B

[B|A]

Applying ηAC∇̂C ⇒ ∆sα = 0, where α = ηABqA|B, hence α=const.
Since

∫
ηABqA|Bdσ = 0 so α = 0 and

qA = q,A , M = const .

Equation R̃(1)
1A = 0 yields

nB
A|B = −2q,A

Since the r. h. s. is not general we postulate

nAB = −f|AB +
1
2

(∆̂sf )sAB , ∆sf + 2f = 2q .

No counterpart for q = cmY1m, but in this case q,A cannot be obtained
as nB

A|B (no regular solutions for nAB).
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nAB = −f|AB + 1
2(∆̂sf )sAB can be gauged away by means of

transformation induced by u′ = u + f on I + and r ′ = r − 1
4∆sf .

Conclusion: there are coordinates such that nAB = 0 and

g̃AB = −r2sAB + O(
1
r

) , g̃0A =
2LA

r
+ O(

1
r2 ) .

They are given up to translation of u and r with f = bmY1m + c.

R̃(2)
AB = 0⇒ L(A|B) = αsAB , hence LA∂A is a conformal Killing field of

the spherical metric

LAdxA = Ā(r̄ × dr̄) + B̄d r̄ , r̄ ∈ S2 ⊂ R3 .

Residual transformations allow to remove B̄ if M 6= 0 since
L′A = LA + Mf,A. This and rotation of Ā leads to Kerr-like expression

LAdxA = 2aM sin2 θdϕ , M 6= 0 .
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LAdxA = 2aM sin2 θdϕ , M 6= 0 .

J. Tafel (Institute of Theoretical Physics, University of Warsaw )Stationary vacuum metrics with smooth null scri 12 / 16



nAB = −f|AB + 1
2(∆̂sf )sAB can be gauged away by means of

transformation induced by u′ = u + f on I + and r ′ = r − 1
4∆sf .

Conclusion: there are coordinates such that nAB = 0 and

g̃AB = −r2sAB + O(
1
r

) , g̃0A =
2LA

r
+ O(

1
r2 ) .

They are given up to translation of u and r with f = bmY1m + c.

R̃(2)
AB = 0⇒ L(A|B) = αsAB , hence LA∂A is a conformal Killing field of

the spherical metric
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g(k)
00 , g(k)

0A with k ≥ 4 and sABg(k)
AB with k ≥ 3 can be recursively found

from R̃11 = R̃1A = sABR̃AB = 0.

Traceless part of R̃(k)
AB = 0 with k ≥ 3 does not define g(k+1)

AB,0 only

−2ǧ(k+1)
0(A|B) + kǧ(k)

AB = lower order

Substituting (from R̃1A = 0)

g(k+1)
0A =

k
(k − 2)(k + 1)

g(k)
AC
|C + l .o.

yields
∆sǧ(k)

AB + (k2 − k − 4)ǧ(k)
AB = l .o. k ≥ 3 .

Solutions are not unique (otherwise we would end up with the Kerr
metric only).
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Lemma. A traceless tensor NAB on S2 can be decomposed as follows

NAB = f|AB −
1
2

f C
|C sAB + ηC

(Ah|B)C .

Functions f and h are given up to bmY1m + c.

Proof. Consider
N B

A |B = FA

and make the Hodge decomposition on S2:

FA = F,A + ηC
AH,C .

Counterimage of F we know from n B
A |B = q,A

NAB = f|AB −
1
2

f C
|C sAB , ∆sf + 2f = 2F + c .

If F = 0 we have equation

∗N B
A |B = H,A

where ∗NAB = η C
A NCB is also traceless and symmetric.
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Hence
∗NAB = h|AB −

1
2

h C
|C sAB , ∆sh + 2h = 2H + c .

and
NAB = ηC

(Ah|B)C

�

Let us decompose tensors in equations R̃(k)
AB = 0

ǧ(k)
AB ⇔ (f (k), h(k)) .

2g(k)
AC
|C ⇔ ((∆ + 2)f (k), (∆ + 2)h(k)) .

Equations
(∆ + k(k − 1))f (k) = f (l . o.)

(∆ + k(k − 1))h(k) = h(l . o.)

Thus, f (k) and h(k) exist if l. o. terms do not contain Yk−1,m
If they exist they are given up to bmYk−1,m
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Conclusions

Every stationary metric with smooth scri and nonvanishing energy
(also negative) tends to

g̃ = du
(
(1−2M

r
)du+2dr+

2aM
r

sin2 θdϕ
)
−(r2sAB+

QAB

r
)dxAdxB+O(r−2)

At each order r−k (k ≥ 1) in g̃AB up to 4k + 6 new parameters can
appear (in combination with derivatives of Yk+1,m). QAB denotes
quadrupole term.

Only 2 parameters for each k ≥ 1 in the axially symmetric case e. g.

Q = c1[(sin2 θ − 1
3

)dθ2 − 1
3

sin2 θdϕ2] + c2 sin3 θdθdϕ

Tomimatsu-Sato solutions, double Kerr metrics?
Analyticity, relation to space-like infinity and multipole moments of
Geroch and Hansen
Λ 6= 0
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