Stationary vacuum metrics with smooth null scri

J. Tafel

Institute of Theoretical Physics, University of Warsaw

. Tafel (Institute of Theoretical Physics, UniveStationary vacuum metrics with smooth null sc 1/16



Origins of the null scri

@ Trautman 1958: outgoing radiation conditions in null directions,
E,<O0

@ Bondi 1960, Bondi, van der Burg and Metzner 1962:
foliation by null surfaces, asymptotic expansions, Bondi mass and
news (axially symmetric case)

@ Sachs 1962: general case

@ Penrose 1963: conformal compactification, diagrams with null
boundaries (scri) .# T, .#~ etc.
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Origins of the null scri

@ Trautman 1958: outgoing radiation conditions in null directions,
E,<O0

@ Bondi 1960, Bondi, van der Burg and Metzner 1962:
foliation by null surfaces, asymptotic expansions, Bondi mass and
news (axially symmetric case)

@ Sachs 1962: general case
@ Penrose 1963: conformal compactification, diagrams with null
boundaries (scri) .# T, .#~ etc.

About work of Trautman see Chrusciel 2002 Editor’s Note: Lectures on
General Relativity by Andrzej Trautman, Gen. Relat. Grav. 34

About the Bondi-Sachs approach see Madler and Winicour 2016,
Bondi-Sachs formalism, Scholarpedia, 11(12):33528

About Penrose’s compactification see any book
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The Bondi-Sachs metric

The Schwarzschild metric in the Kruskal-Szekeres coordinates = full
conformal compactification (the Penrose diagram).
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The Bondi-Sachs metric

The Schwarzschild metric in the Kruskal-Szekeres coordinates = full
conformal compactification (the Penrose diagram).

Null boundary .#* via the Eddington-Filkenstein coordinates:
. 2M
9=01- W
u=t—r—2Min(r-2M), v®u,=0.

)au? + 2dudr — r’sapdx?ax?
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The Bondi-Sachs metric

The Schwarzschild metric in the Kruskal-Szekeres coordinates = full
conformal compactification (the Penrose diagram).

Null boundary .#* via the Eddington-Filkenstein coordinates
. 2M
9=01- I
u=t—r—2Min(r-2M), v®u,=0.

Conformal metric with @ = 1 (.#* at Q@ = 0)

)au? + 2dudr — r’sapdx?ax?

9 = Q%9 = (1 — 2MQ)Q2du? — 2dudQ — sazdx”dx?
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The Bondi-Sachs metric

The Schwarzschild metric in the Kruskal-Szekeres coordinates = full
conformal compactification (the Penrose diagram).

Null boundary .#* via the Eddington-Filkenstein coordinates:
. 2M
g=01- I
u=t—r—2Min(r-2M), v®u,=0.

Conformal metric with @ = 1 (.#* at Q@ = 0)

)au? + 2dudr — r’sapdx?ax?

9 =0%g = (1 — 2MQ)Q2du? — 2dudQ — spgdx?dx? .

Bondi and Sachs: general metric in coordinates adapted to null
foliation u=const (with leaves R x S»)

Q = dU(goodU + 2@01 ar + ZéoAdXA) + gABdXAdXB .
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The Bondi-Sachs metric

The Schwarzschild metric in the Kruskal-Szekeres coordinates = full
conformal compactification (the Penrose diagram).
Null boundary .#* via the Eddington-Filkenstein coordinates:

2M

r

u=t—r—2Min(r-2M), v®u,=0.
Conformal metric with @ = 1 (.#* at Q@ = 0)
9 =0%g = (1 — 2MQ)Q2du? — 2dudQ — spgdx?dx? .
Bondi and Sachs: general metric in coordinates adapted to null
foliation u=const (with leaves R x S,)
Q = dU(goodU + 2@01 ar + ZéoAdXA) + QABdXAdXB .
Extra gauge: the luminosity condition
v/ det QAB = f2\/ det SAB

Assumption of asymptotical flatness, E(u) = 417 J Mdo.
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The conformal approach

Let metric g be smooth in a neighbourhood of .#+ = R x S,. Define
coordinates u, xA on .#* such that u = const on leaves S, and 9, is
orthogonal to them. Extend foliation to the neighbourhood emitting
past null geodesics orthogonally to u=const. Propagate coordinates
u, x” along these geodesics and choose Q to be the affine parameter
of geodesics such that

9 = du(goodu — 2dQ + 2gpadx?) + gagdx?adx®

Joa=0o0n.7" .
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The conformal approach

Let metric g be smooth in a neighbourhood of .#+ = R x S,. Define
coordinates u, xA on .#* such that u = const on leaves S, and 9, is
orthogonal to them. Extend foliation to the neighbourhood emitting
past null geodesics orthogonally to u=const. Propagate coordinates
u, x” along these geodesics and choose Q to be the affine parameter
of geodesics such that

9 = du(goodu — 2dQ + 2gpadx?) + gagdx?adx®
Joa=0o0n.77" .
The affine gauge is more geometrical and g” is simpler
9% =—1, 9" = —goo + Qags” . 9" =9¢", 9" (raises A, B).
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The Einstein equations

Equations for the physical metric § = Q~?g:

R. =0
or
Ruw —2Yuw — Ygu =0,
where ’ ’
Vi = = + ZQZQ,anl G, Y=Y
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The Einstein equations

Equations for the physical metric § = Q~?g:

R. =0
or
Ruw —2Yuw — Ygu =0,
where ’ ’
Vi = = + @Q,anlagw L, Y=Y,

No second order pole = ©,,Q* = g"" = O(Q) = goo = O(Q).
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The Einstein equations

Equations for the physical metric § = Q~?g:

R. =0
or
Ruw —2Yuw — Ygu =0,
where ’ ’
Vi = = + @Q,anlagw L, Y=Y,

No second order pole = ©,,Q* = g"" = O(Q) = goo = O(Q).

Regularity of Yy4 = goa = O(Q?).
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The Einstein equations

Equations for the physical metric § = Q~?g:

R.,=0
or
Ruw —2Yuw — Ygu =0,
where ’ ’
Vi = = + @Q,anlagw L, Y=Y,

No second order pole = ©,,Q* = g"" = O(Q) = goo = O(Q).
Regularity of Yy4 = goa = O(Q?).
Regularity of YAB = QAB,O = aQAB = QAB = —€%Sp5, a= Q.

We eliminate « by a change of coordinates 2 and v.
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Summary of regularity:
goo = bQ? — 2MQ3 + O(QY)
Joa = qaQ® +2L,0° + O(Q*)
948 = —Sag + NaQ + pasQ? + O(Q%), ny=0.
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Summary of regularity:
goo = bQ? — 2MQ3 + O(QY)
Joa = qaQ® +2L,Q° + O(QY)
9as = —Sag + NagQ + pas® + O(Q%), n}=0.
The Bianchi identity = the independent Einstein equations
Hk) Bk plk
A~ ALY - A~ 0
5(2) B2
HY - A 0.
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Summary of regularity:
goo = bQ? — 2MQ3 + O(QY)
Joa = qaQ® +2L,Q° + O(QY)
9as = —Sag + NagQ + pas® + O(Q%), n}=0.
The Bianchi identity = the independent Einstein equations
Ky _ plk k
A — Y — Al — o
2
HY - A 0.

Ao

1
_E(

1
)11+ ZQAB,1gA,B1 =0

hence ki2) /
§Bg D = (gl 1< k+1), k>0.
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Ra-o |

1

(k= 1)k +2)ght = (k + 1)(g5 )B4+ (gl g 1< k), k=1

uvo
where gag = —Sapg defines covariant derivative |A and raises indices.
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Ra-o |

1
ga = _Ensjq“g, k=0

(k= 1)(k+2)g5s™ = (k+1)(gls )E + (g5a" ", gl 1 < k), k> 1
where gag = —Sapg defines covariant derivative |A and raises indices.
Fork =1

1 1 A -
Pus — g(NCD”CD),A =0 = pag= g(nCDnCD)gAB + Pas
where pyg is a symmetric TT-tensor on the sphere
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Ra-o |

1
ga = _Ensjq“g, k=0

(k= 1)(k+2)g5s™ = (k+1)(gls )E + (g5a" ", gl 1 < k), k> 1
where gag = —Sapg defines covariant derivative |A and raises indices.
Fork =1

1 1 N -
Pus — g(NCD”CD),A =0 = pag= g(nCDnCD)gAB + Pas

where pyg is a symmetric TT-tensor on the sphere
=0, pas=0.

Hence pas = 0 and

CD)

1 n
PAB = g(ncon 9aB -
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RO) — 0 = b =1 (g is asymptotically Minkowskian) and R{}) = 0 is
trivial.
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RY) — 0= b =1 (g is asymptotically Minkowskian) and R{}) = 0 is
trivial. y
Trace g"BRY) = 0 yields

gt = (gD 1< k+1), k>2.
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RY) — 0= b =1 (g is asymptotically Minkowskian) and R{}) = 0 is

trivial. y
Trace gABRY) = 0 yields

gt = (gD 1< k+1), k>2.

The traceless part

G = (M, La, g, 1< k), k=2

v (k+1)

defines the traceless part §,5; ' modulo an initial value at u = up.
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Ras =0

? 3
|
1
[N

HSB = 0= b =1 (gis asymptotically Minkowskian) and F{E\B) =0is
trivial.
Trace §*8R, 7 k) — 0 yields
ot = (g 1< k+1), k=2,
The traceless part
G = (M, La, g, 1< k), k=2

k+1)

defines the traceless part g( modulo an initial value at u = uy.

R® —0and RY) =0

Mo = (nag)

)
Lap = _gM,A + (Nag)
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Recursive solving (equivalent to Bondi, Sachs ...

Physical metric
g = du(Goodu + 20r + 2goadx”) + Gagax“dx?

where

. 2M 0o (k+2)
900 =1- - T g(()0+2)r g

) 1 2L —oo (ks2)
QOAZ_E”BA|B+T+22 gon Ik

~ 1 k+1) 41—
Gag = —1°Spg + Mpg — g(nconoD)SAB +I5°ghg ik

Free data: nup (traceless), initial values of M, Ly, 5 with k > 3.

98
Metric components given algebraically or in quadratures.
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Recursive solving (equivalent to Bondi, Sachs ...

Physical metric
g = du(Goodu + 20r + 2goadx”) + Gagax“dx?

where

. 2M 0o (k+2)
900 =1- - T g(()0+2)r g

- 1 2L, 0o (k+2) _
Goa= —5Mhp+ = + 5300 T
D) (k+1)r1—k ]

- 1
Gag = —1°Spg + Mpg — g(ncono SaB + 22 9ap

Free data: nup (traceless), initial values of M, Ly, gi‘kB) with kK > 3.

Metric components given algebraically or in quadratures.

The Bondi mass aspect: M — {(nagn*B) o
The Bondi news function: nag o
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Stationary metrics with scri .+

@ Choose a null surface ¥ intersecting .#* along S..

@ Use the 1-parameter group of motion generated by the Killing
vector K to construct a null foliation u =const.

@ Propagate coordinates r, x# from ¥y along K = 9.
@ Modify r to get go1 = 1.
@ Assure nonsingularity of R,,.
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Stationary metrics with scri .+

@ Choose a null surface ¥ intersecting .#* along S..

@ Use the 1-parameter group of motion generated by the Killing
vector K to construct a null foliation u =const.

@ Propagate coordinates r, x# from ¥y along K = 9.
@ Modify r to get go1 = 1.
@ Assure nonsingularity of R,,.

Metric transforms to the Bondi-Sachs form with asymptotics

Joo = b, 9gag — Gap = —€“SaB
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Stationary metrics with scri .+

@ Choose a null surface ¥ intersecting .#* along S..

@ Use the 1-parameter group of motion generated by the Killing
vector K to construct a null foliation u =const.

@ Propagate coordinates r, x# from ¥y along K = 9.
@ Modify r to get go1 = 1.
@ Assure nonsingularity of R,,.

Metric transforms to the Bondi-Sachs form with asymptotics
9oo — b, gas — GaB = —€“Sas

R — 0= Ab=0= b—const (b= 1 after rescaling u and r)
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Stationary metrics with scri .+

@ Choose a null surface ¥ intersecting .#* along S..

@ Use the 1-parameter group of motion generated by the Killing
vector K to construct a null foliation u =const.

@ Propagate coordinates r, x# from ¥y along K = 9.
@ Modify r to get go1 = 1.
@ Assure nonsingularity of R,,.

Metric transforms to the Bondi-Sachs form with asymptotics
9oo — b, gas — GaB = —€“Sas

R — 0= Ab=0= b—const (b= 1 after rescaling u and r)
Rag = 0= R(9) = —2 = §as = a8
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Stationary metrics with scri .+

@ Choose a null surface ¥ intersecting .#* along S..

@ Use the 1-parameter group of motion generated by the Killing
vector K to construct a null foliation u =const.

@ Propagate coordinates r, x# from ¥y along K = 9.
@ Modify r to get go1 = 1.
@ Assure nonsingularity of R,,.

Metric transforms to the Bondi-Sachs form with asymptotics
9oo — b, gas — GaB = —€“Sas

R — 0= Ab=0= b—const (b= 1 after rescaling u and r)
Rag = 0= R(9) = —2 = §as = a8

Conclusion: g is transparently asymptotically flat in coordinates
adapted to the symmetry K = 9.
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s 1 5
Ria =0 = 3Ma= g
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RA =0 = Ma=qg

Applying 7%V ¢ = Asa = 0, where o = 1*Bgy g, hence a=const.
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(2
RiA =0 = zMa= g
; ACS _ _ AB —
Applying n”**V ¢ = Asa = 0, where a = 7”?qu g, hence a=const.

Since [ n*Bgagdo =050 o =0 and

ga=qa, M=const.
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1
3 9
Applying 7%V ¢ = Asa = 0, where o = 1*Bgy g, hence a=const.
Since [ n*Bgagdo =050 o =0 and
ga=qa, M=const.
Equation A{!) = 0 yields
nBA|B = —2Q

Since the r. h. s. is not general we postulate

1 .
Nag = —fiap + E(Asf)SAB , Asf+2f=2q.
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1
3 B
Applying 7%V ¢ = Asa = 0, where o = 1*Bgy g, hence a=const.
Since [ n*Bgagdo =050 o =0 and
ga=qa, M=const.
Equation A{!) = 0 yields
nBA|B =—294
Since the r. h. s. is not general we postulate
1 .
Nag = —fiap + E(Asf)SAB , Asf+2f=2q.

No counterpart for g = ¢™ Yy, but in this case g 4 cannot be obtained

as n’, 5 (no regular solutions for nag).



Nag = —fag + %(Asf)sAB can be gauged away by means of
transformation induced by v/ = u+ fon . % and r’ = r — JAsf.
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Nag = —fag + %(Asf)sAB can be gauged away by means of
transformation induced by v/ = u+fon . andr' =r — —Asf.
Conclusion: there are coordinates such that nyg = 0 and

2LA

- 1
gas = —r’sag + O(;) , Joa=——+ O(r ) -

They are given up to translation of u and r with f = b"Y;, + c.
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Nag = —fag + %(Asf)sAB can be gauged away by means of
transformation induced by v/ = u+fon . andr' =r — —Asf
Conclusion: there are coordinates such that nyg = 0 and

2LA

- 1
gas = —r’sag + O(;) , Joa=——+ O(r ) -

They are given up to translation of u and r with f = b"Y;, + c.

ﬁfg =0= L(A|B) = aSpp , hence LAaA is a conformal Killing field of
the spherical metric

Ladx? = A(F x dF) + Bdr, Fe S, c R®.
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Nag = —fag + %(Asf)sAB can be gauged away by means of
transformation induced by v/ = u+fon . andr' =r — —Asf
Conclusion: there are coordinates such that nyg = 0 and

- 1 2L
gas = —r’sag + O(;) , QoA = 7A + O(r ) -

They are given up to translation of u and r with f = b"Y;, + c.

ﬁﬁfg =0= L(A|B) = aSpp , hence LAaA is a conformal Killing field of
the spherical metric

Ladx? = A(F x dF) + Bdr, Fe S, c R®.

Residual transformations allow to remove Bif M + 0 since
Ly = Lo+ Mf 4. This and rotation of A leads to Kerr-like expression

Ladx? =2aMsin?6dy, M+£0.
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a8, gl with k > 4 and s”Bg{) with k > 3 can be recursively found
from :‘:_1’11 = ’EﬁA = SABIEI’AB =0.
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g(()o), g(()';\) with k > 4 and sABg,(qB) with k > 3 can be recursively found
from Ry1 = Bya = s"BR5 = 0.

Traceless part of R{Y = 0 with k > 3 does not define gA’EJ) only

—280n ) + kg = lower order
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a8, g(()';\) with k > 4 and s*8g{%) with k > 3 can be recursively found
from Ry1 = Bya = s"BR5 = 0.

Traceless part of R{Y = 0 with k > 3 does not define gA’EJ) only

—280n ) + kg = lower order

Substituting (from R;4 = 0)

K+1
g(()A )=

yields
NG + (K2 —k—4)g) =10, k>3.
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a8, gl with k > 4 and s”Bg{) with k > 3 can be recursively found
from :E)’11 = ’EﬁA = SABIEI’AB =0.

k) k+1)

Traceless part of f?ﬁ\B = 0 with k > 3 does not define gﬁ\B o only

_ZQ(()IE:FH}B)) + kévl,(4k5)» = lower order

Substituting (from R;4 = 0)

(k+1) _ (k)|c

Gor = k—g)k 1) o

yields
NG + (K2 —k—4)g) =10, k>3.

Solutions are not unique (otherwise we would end up with the Kerr
metric only).
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Lemma. A traceless tensor Nyg on S, can be decomposed as follows

Nag = fiag — *f|c Sag+1n (Ah|B)C

Functions f and h are given up to b"Y;,, + c.
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Lemma. A traceless tensor Nyg on S, can be decomposed as follows

’
Nag = fiag — 51 cCsas +nT4he)c -
2l (

Functions f and h are given up to b"Y;,, + c.
Proof. Consider

and make the Hodge decomposition on S,:
Fa=Fa+nGHc

Counterimage of F we know from nAB‘B =qa

1
Nag = fag — 5c"sas . Dsf +2f=2F +c.
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Lemma. A traceless tensor Nyg on S, can be decomposed as follows

’
Nag = fiag — 51 cCsas +nT4he)c -
2 (

Functions f and h are given up to b"Y;,, + c.
Proof. Consider

and make the Hodge decomposition on S,:
Fa=Fa+nGHc
Counterimage of F we know from nf 5 = g4
Nag = fiag — %ﬁcCsAB , Asf+2f=2F + .
If F =0 we have equation
"Nig=Ha

where *Ng = n,CNgg is also traceless and symmetric.
A
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Hence 1

and
Nag = UC(AhlB)C
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Hence 1

and
Nag = UC(AhlB)C

U
Let us decompose tensors in equations ﬁﬁ\’g =0

g/(qu) & (f9, Ak .

2gWIC & ((A +2)f0), (A +2)hk)y .
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Hence 1

and
Nag = UC(Ah|B)C
D ~
Let us decompose tensors in equations Rﬁ\’g =0
« (k

2gWIC & ((A +2)f0), (A +2)hk)y .

Equations
(A + k(k —1)f%) = £(l. 0

(A + k(k — 1))A%) = h(l. 0.)
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Hence 1

and
Nag = UC(Ah|B)C
U
Let us decompose tensors in equations If?ﬁ\’(B) =0

é,(qu) & (f9, Ak .

2gWIC & ((A +2)f0), (A +2)hk)y .

Equations
(A + k(k —1)f%) = £(l. 0

(A + k(k — 1))A%) = h(l. 0.)

Thus, f%) and h(%) exist if I. 0. terms do not contain Yj_1 m
If they exist they are given up to b Yx_1 m
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Conclusions

Every stationary metric with smooth scri and nonvanishing energy
(also negative) tends to

g =du((1 —ﬁ)du+2dr+@ sin® Adyp) —(rzsABJrQ;"a)dxAdeJrO(rz)

At each order r=* (k > 1) in gag up to 4k + 6 new parameters can
appear (in combination with derivatives of Yy 1 m). Qap denotes
quadrupole term.
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Conclusions

Every stationary metric with smooth scri and nonvanishing energy
(also negative) tends to

g =du((1 —ﬁ)du+2dr+@ sin® Adyp) —(rzsABJrQ;"a)dxAdeJrO(rz)

At each order r=* (k > 1) in gag up to 4k + 6 new parameters can
appear (in combination with derivatives of Yx.1 m). Qap denotes
quadrupole term.

Only 2 parameters for each k > 1 in the axially symmetric case e. g.
1 1 . ,
§)d02 — = sin?0dy?] + ¢ sin® #ddy

_ in2g _
Q = cy[(sin“ ¢ 3
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Conclusions

Every stationary metric with smooth scri and nonvanishing energy
(also negative) tends to

g =du((1 —ﬁ)du+2dr+@ sin® Adyp) —(rzsAB+(3;‘*’)dxAde+O(r2)

At each order r=* (k > 1) in gag up to 4k + 6 new parameters can
appear (in combination with derivatives of Yx.1 m). Qap denotes
quadrupole term.

Only 2 parameters for each k > 1 in the axially symmetric case e. g.
1

3)de L sin? 0002 + ¢, sin? 0dod

_ in2g _
Q = cy[(sin“ ¢ 3

Tomimatsu-Sato solutions, double Kerr metrics?
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Conclusions

Every stationary metric with smooth scri and nonvanishing energy
(also negative) tends to

g =du((1 —ﬁ)du+2dr+@ sin® Adyp) —(rzsAB+(3;‘*’)dxAde+O(r2)

At each order r=* (k > 1) in gag up to 4k + 6 new parameters can
appear (in combination with derivatives of Yx.1 m). Qap denotes
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