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Motivation

Two crucial properties of the (semi)quantum spacetime are its ef-
fective dimension and the fate of relativistic symmetries
It is conceivable that the (spectral) dimension dS(σ ≈ 0) 6= 4 due
to some small-scale structure of spacetime
Such results were indeed obtained in e.g. Dynamical Triangula-
tions, Hořava-Lifschitz gravity, Asymptotic Safety and Causal Sets
Almost always dS(σ ≈ 0) < 4 and most often dS(σ ≈ 0) = 2
Similar behaviour has been observed for QG models in d 6= 4
topological dimensions
In the context of (spectral) noncommutative geometry, the heat
trace is instead characterized by the dimension spectrum
Related issues include calculations of the vacuum energy density,
Casimir effect and entanglement entropy

S. Carlip, Class. Quant. Grav. 34, 193001 (2017)
J. Mielczarek & T. T., Gen. Relativ. Gravit. 50, 68 (2018)
A. Connes & H. Moscovici, Geom. Funct. Anal. 5, 174 (1995)
M. Eckstein & B. Iochum, Springer, New York 2018
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Spectral dimension
Dimension spectrum

Spectral dimension out of diffusion
On a Riemannian manifold (M,h) of dimension d , let us consider a
(fictitious) diffusion process with the (auxiliary) time parameter σ:

∂

∂σ
K (x , x0;σ) = −∆K (x , x0;σ) , K (x , x0; 0) =

δ(d)(x − x0)√
| det h(x)|

, (1)

where the Laplacian ∆ = −hij∇i∇j , i , j = 1, . . . ,d or is a more gen-
eral (pseudo)differential operator. The diffusion is characterized by the
average return probability (the heat trace)

P(σ) = TrV⊂Me−σ∆ = V−1
∫

V
ddx

√
| det h(x)|K (x , x ;σ) . (2)

Then the spectral dimension of M can be extracted via the formula

dS(σ) := −2
d logP(σ)

d log σ
. (3)

In particular, for Rd with ∆ = −∂ i∂i we recover dS(σ) = d .
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Spectral dimension out of the heat operator
Heat trace definition extends from a Laplacian ∆ acting on a manifold
M to a closed operator T on a separable Hilbert space H,

P(σ) := TrHe−σT =
∞∑

n=0

e−σλn(T ) , (4)

where λn are eigenvalues of T . To this end e−σT needs to be trace-
class, which is not always true for an abstract T .

On a non-compact manifold M or for H with a non-compact alge-
bra of observables, one has to introduce an IR cutoff F , so that

P(σ,F ) := TrHF e−σT ; (5)

F may either factor out or lead to the IR/UV mixing.
If the order of T is η := ordT 6= 2, we should modify (3) to

dS(σ) := −η d logP(σ)

d log σ
(6)

but ordT is ambiguous for an abstract T – cf. κ-Minkowski space.
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Further subtleties of the spectral dimension

In the case of a compact or curved classical-limit spacetime
if the kernel of T is trivial, dS(σ) → ∞ in the IR and has to be
supplemented with the classical profile;
otherwise, dS(σ)→ 0 in the IR, which can be remedied by replacing
dS(σ) with the spectral variance

vS(σ) := dS(σ)− σ d
dσ

dS(σ) . (7)

If the full spectrum of T is unknown, dS(σ) can be approximated
using a heat trace expansion but only deep in the UV regime2.
In order to calculate dS(σ) in a pseudo-Riemannian case, one first
has to perform the Wick rotation, which is generally cumbersome.

2M. Eckstein & T. T., in preparation
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Heat trace in the general setting

The heat trace of a (pseudo)differential operator T on a manifold M
has the asymptotic expansion at σ = 0,

P(σ) ∼
σ↓0

∞∑
k=0

ak (T )σ(k−d)/η +
∞∑
l=0

bl (T )σl log σ ; (8)

if T is differential, coefficients ak (T ) are given by integrals of the
geometric invariants of (the bundle over) M, while all bl (T ) = 0;
in the case of a non-compact M, the expansion coefficients will
generally depend on an IR cutoff F .

More generally, the asymptotic expansion of the heat trace of an un-
bounded operator T on a separable Hilbert space H is

P(σ) = TrHe−σT ∼
σ↓0

∞∑
k=0

∑
m∈Z

p∑
n=0

az(k,m),n (log σ)n σ−z(k,m) . (9)
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The dimension spectrum of an operator

The dimension spectrum of an operator T is the set of exponents

Sd(T ) :=
⋃
k,m

z(k ,m) ⊂ C (10)

and (p + 1) is called the order of Sd(T ).
If we define the maximal real dimension

dSd := sup
z∈Sd

Re(z) , (11)

then the UV limit of the spectral dimension limσ→0 dS(σ) = η dSd.
Dimensions z(k ,m) 6⊂ R correspond to oscillations of P(σ) at
small scales, leading to oscillations of dS(σ) – cf. quantum sphere.
Sd does not tell about the dimensional flow or the IR limit.

T. Trześniewski On the spectral dimensionality of quantum space(time)s 7 / 22
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Other properties of the dimension spectrum

Existence of the asymptotic heat trace expansion is not proven in gen-
eral. Moreover, sometimes it is easier to apply the Mellin transform∫ ∞

0
Tre−σT σs−1 dσ = Γ(s) ζT (s) (12)

and consider the associated spectral zeta function

ζT (s) := TrT−s , Re(s)� 0 ; (13)

poles of Γ · ζT correspond to elements of Sd.

At a higher level, the dimension spectrum is defined for a spectral
triple (A,H,D), where A is an algebra of observables represented on
a Hilbert space H and D is an unbounded operator acting on H.

T. Trześniewski On the spectral dimensionality of quantum space(time)s 8 / 22
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Quantum sphere
κ-Minkowski space

Topology of the (Podleś) quantum sphere
The quantum sphere is a homogeneous space of the q-deformed group
SUq(2), described by a ∗-algebra with the generators A, B and B∗,

AB = q2BA , BB∗ = q−2A (1− A) ,

AB∗ = q−2B∗A , B∗B = A (1− q2A) , (14)

where q ∈ (0,1). In the classical limit q → 1 we recover the algebra of
continuous functions on S2. The algebra (14) can be represented on
either of the SU(2) Hilbert spaces that are spanned by vectors:

|j ,m〉 , m ∈ {−j ,−j + 1, . . . , j} , j ∈ N ;

|l ,m〉± , m ∈ {−l ,−l + 1, . . . , l} , l ∈ N+ 1
2 . (15)

The classical scalar and spinorial Laplacians act in these spaces as

∆sc|j ,m〉 = j (j + 1) |j ,m〉 ,
∆sp|l ,m〉± = (l + 1

2 )2|l ,m〉± . (16)
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Laplacians on the quantum sphere

The simplified Laplacian is the square of the so-called simplified Dirac
operator, acting on basis states as (ill-defined for q → 1)

∆sm
q |l ,m〉± =

1
(q−1 − q)2 q−(2l+1)|l ,m〉± . (17)

The spinor Laplacian is given by the square of the full Dirac operator
and acts on basis states as

∆sp
q |l ,m〉± =

1
(q−1 − q)2

(
q−(l+1/2) − q l+1/2)2|l ,m〉± . (18)

The scalar Laplacian is defined by the first Casimir of the Hopf algebra
Uq(su(2)) that acts on basis states as

∆sc
q |j ,m〉 =

q1/2

(1− q)2

(
q−j − 1− q + q j+1) |j ,m〉 . (19)
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Calculating the spectral dimension

The spectral dimension for the Laplacian ∆sm
q is given exactly by

d q,sm
S (σ) =− 2

[
G′
(

log(uσ)
)

+ 4
]

log(uσ) + F ′
(

log(uσ)
)

2 log2(uσ) + G
(

log(uσ)
)

log(uσ) + F
(

log(uσ)
)

+ R(uσ)

+G
(

log(uσ)
)

+ uσR′(uσ)
, (20)

where G, F are certain bounded, periodic functions and R is a conver-
gent series. There are no exact formulae for dS for other Laplacians
but in the UV they can be expressed via (20) as

d q,sp
S (σ) = d q,sm

S (σ) +O(σ) ,

d q,sc
S (σ) = d

√
q,sm

S (q−1/2σ) +O
(
(log σ)−2) . (21)

It justifies our choice of η = 2 in all cases. d q,sm
S and d q,sp

S both diverge
in the IR, hence they little differ in general.
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Spectral dims. for different Laplacians and varying q
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Figure: (left) spectral dim. for ∆sc
q (red) and ∆sp

q (blue) with q = 0.15, and for
classical 2-sphere with ∆sc (green) and ∆sp (black) Laplacians; (right) spectral
dim. for ∆sc

q , with q = 0.9 (green), q = 0.5 (yellow) and q = 0.1 (red), and for
classical 2-sphere with ∆sc Laplacian (blue)

The amplitude of oscillations rapidly decreases with growing q.

M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)
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Dim. spectra in the classical and quantum cases
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Figure: Dimension spectrum for different Laplacians (a) on classical 2-sphere
Sd(∆sp) = Sd(∆sc) and quantum sphere (b) Sd(∆sm

q ) , (c) Sd(∆sp
q ) = Sd(∆sc

q ) ;
where ϕ = π/ log q (and the symbols ×, ∗ and • denote elements of Sd corresponding to
poles of the function Γ · ζ of order 1, 2 and 3, respectively)

In particular, dSd = 0 and ord Sd = 3 for all quantum Laplacians.

M. Eckstein, B. Iochum & A. Sitarz, Commun. in Math. Phys. 332, 627 (2014)
M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)
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n+1-dimensional κ-Minkowski space

κ-Minkowski space is the spacetime covariant under the action of
κ-Poincaré (Hopf) algebra. Its time and spatial coordinates satisfy

[X0,Xa] =
i
κ

Xa , [Xa,Xb] = 0 , a,b = 1, . . . ,n , (22)

spanning the Lie algebra an(n), which is a subalgebra of so(n + 1,1).
In turn, an(n) generates the group AN(n), whose elements are defined
as the ordered exponentials of algebra elements, e.g. in the time-to-
the-right ordering they have the form

g = e−ipaXaeip0X0 , p0,pa ∈ R . (23)

AN(n) (a subgroup of SO(n + 1,1), with a (n + 2) × (n + 2) matrix
representation) can be seen as the momentum space corresponding
to κ-Minkowski space.

T. Trześniewski On the spectral dimensionality of quantum space(time)s 14 / 22
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Quantum sphere
κ-Minkowski space

Calculating the heat trace

Calculations become simpler in classical coordinates

k0 = κ sinh
( p0
κ

)
− 1

2κ
ep0/κpapa ,

ka = ep0/κpa ,

k−1 = κ cosh
( p0
κ

)
+

1
2κ

ep0/κpapa , (24)

satisfying k2
0 + kaka − k2

−1 = −κ2 and k−1 > 0. The heat kernel
can be expressed, via the noncommutative Fourier transform, in the
momentum space representation

K (x , x0;σ) =
1

(2π)d

∫
dµ(k) e−σL(k)eik(x−x0) , (25)

where L(k) is the momentum-space version of a given Laplacian.
κ-Minkowski space is actually non-compact but it has been shown that
the IR regularization factorizes.

T. Trześniewski On the spectral dimensionality of quantum space(time)s 15 / 22
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Laplacians in the momentum representation

The bicovariant Laplacian, determined by the bicovariant differential cal-
culus on κ-Minkowski space, has the form

Lcv(k0, {ka}) = k2
0 + kaka . (26)

The bicrossproduct Laplacian is the Euclideanized simplest Casimir of the
κ-Poincaré algebra (and satisfies the relation Lcv = Lcp + 1

4κ2L2
cp)

Lcp(k0, {ka}) = 2κ
(√

k2
0 + kaka + κ2 − κ

)
. (27)

The relative-locality Laplacian is given by the (squared) distance along
geodesics in Euclidean momentum space

Lrl(k0, {ka}) = κ2arccosh2
(

1
κ

√
k2

0 + kaka + κ2

)
. (28)

T. Trześniewski On the spectral dimensionality of quantum space(time)s 16 / 22
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Results for the spectral dimension

The spectral dimensions for all Laplacians in 3+1, 2+1 and 1+1 dim
can be calculated analytically (some earlier results were numerical3).
In particular, in the case of the bicovariant Laplacian we obtain

d (3+1)
S (σ) = 3 + 2κ2σ

2κ
√
σ −√π eκ

2σ(2κ2σ + 1)(1− erf(κ
√
σ))

−2κ
√
σ +
√
π eκ2σ(2κ2σ − 1)(1− erf(κ

√
σ))

,

d (2+1)
S (σ) = 2 +

κ2σU( 3
2 ,1, κ

2σ)

U( 1
2 ,0, κ

2σ)
,

d (1+1)
S (σ) = 1 + 2κ2σ

(
1√

π κ
√
σ

e−κ
2σ

1− erf(κ
√
σ)
− 1

)
, (29)

where erf(.) is the error function and U(., ., .) a Tricomi confluent hy-
pergeometric function.
Formulae for the relative-locality Laplacian are similarly complicated.

3D. Benedetti, Phys. Rev. Lett. 102, 111303 (2009)
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Results for the spectral dimension – cont.

In the bicrossproduct Laplacian case, the expressions are simpler

d (3+1)
S (σ) = 6− 4κ2σ

2κ2σ + 1
,

d (2+1)
S (σ) = 4− 4κ2σ

(
1− K0(2κ2σ)

K1(2κ2σ)

)
,

d (1+1)
S (σ) = 2 , (30)

where Kα(.) is a modified Bessel function of the second kind. At small
scales σκ2 ≈ 0, we observe the dimensional drop for Lcv, dimensional
rise for Lcp and divergence for Lrl,

lim
σ→0

d (n+1,cv)
S = n , lim

σ→0
d (n+1,cp)

S = 2n , (31)

while at large scales we always recover limσ→∞ d (n+1)
S = n + 1. In the

above it was assumed that η = 2 for all Laplacians.

T. Trześniewski On the spectral dimensionality of quantum space(time)s 18 / 22
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Comparing spectral dims. for different Laplacians
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Figure: Spectral dims. for Lcv (black), Lcp (red) and Lrl (green) Laplacians in
3+1 dim (left) and 2+1 dim (right)

Looking at (27), (28), one may argue that η(Lcp) = 1 and η(Lcp) = 0.
Thus, all dS(σ) curves could in principle be superimposed by using
η = η(κ), such that limκ→∞ η(κ) = 2 and the appropriate η(κ ≈ 0).

M. Arzano & T. T., Phys. Rev. D 89, 124024 (2014)
M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)
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Dimension spectrum for different Laplacians

Expanding heat traces, we can read out the dimension spectra

Sd(3+1) = { 3
2} ∪ { 1−n

2 |n ∈ N} = { 3
2 ,

1
2 ,0,− 1

2 ,−1, . . .} , ord Sd = 1 ,
Sd(2+1) = 1−N = {1,0,−1,−2, . . .} , ord Sd = 2 ,

Sd(1+1) = 1
2 (1−N) = { 1

2 ,0,− 1
2 ,−1, . . .} , ord Sd = 1 (32)

for Lcv and

Sd(3+1) = {3,2} , ord Sd = 1 ,
Sd(2+1) = 2−N = {2,1,0,−1,−2, . . .} , ord Sd = 2 ,
Sd(1+1) = {1} , ord Sd = 1 (33)

for Lcp. Here we assumed that η = 2 for both Laplacians, which is
not necessarily accurate. In the Lrl case the dimension spectra do not
exist due to the divergent factor e1/σ in the heat traces.

M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)
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Comparison of two quantum spaces

How differences in geometry are uncovered:

qS2 ord Sd = 3 corresponds to dS(σ ≈ 0) ∼ −4/ log σ

qS2 Identical Sd’s but different dS(σ)’s for the Laplacians ∆sp
q and ∆sc

q

κM ord Sd = 2 corresponds to dS(σ ≈ 0) ∼ 2α/(α + β σ log σ) for Lcv
and dS(σ ≈ 0) ∼ 2 + 2α/(α + β σ log σ) for Lcp

κM Sd’s cannot coincide even for the order η = η(κ) defined so that
d (n+1)

S (σ) would not depend on a Laplacian

Independent on a choice of Laplacian:

qS2 The presence of oscillations in dS(σ) – IR/UV mixing?
qS2 Third order poles in Sd – presence of singularities?
κM The lack of oscillations in dS(σ) – less fractal structure?
κM Second order poles in Sd in 2+1d – a distinguished case?

T. Trześniewski On the spectral dimensionality of quantum space(time)s 21 / 22
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Summary

Conclusions and open questions

It is much more informative to study all heat trace properties than
only the spectral dimension or dimension spectrum
The spectral dimension does not easily see the possible structure
of complex exponents and oscillations
The latter arise in systems with the discrete scale invariance
The dimension spectrum does not capture the scale dependence,
including the classical (IR) limit
The latter may track the emergence of self-similarity in the UV
The oscillations may possibly affect CMB, stochastic GW back-
ground, thermodynamics of photons...
What is the reason for radical differences between our examples?
Should the order of an operator be defined as scale-dependent?

T. Trześniewski On the spectral dimensionality of quantum space(time)s 22 / 22
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κ-Poincaré (Hopf) algebra in 3+1 dim

The κ-Poincaré algebra is a particular deformation of the Poincaré al-
gebra. In the so-called bicrossproduct basis, its Lorentz subalgebra is
undeformed, to wit (a = 1,2,3, µ = 0,1,2,3)

[Ma,Mb] = iεabcMc , [Ma,Nb] = iεabcNc , [Na,Nb] = −iεabcMc ,

[Ma,P0] = 0 , [Ma,Pb] = iεabcPc , [Pµ,Pν ] = 0 (34)

and the deformation occurs only for the brackets

[Na,P0] = iPa ,

[Na,Pb] = iδab

(
κ

2

(
1− e−2P0/κ

)
+

1
2κ

PcPc
)
− i
κ

PaPb , (35)

where κ ∈ R+, while the classical limit is given by κ → +∞. The
κ-Poincaré algebra is also a non-trivial coalgebra with the antipode.

T. Trześniewski On the spectral dimensionality of quantum space(time)s 23 / 22
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κ-Poincaré algebra – the coalgebra

The coproducts and antipodes for its Lorentz generators have the form

∆Ma = Ma ⊗ 1 + 1⊗Ma , S(Ma) = −Ma ,

∆Na = Na ⊗ 1 + e−K0/κ ⊗ Na +
1
κ
εabcPb ⊗Mc ,

S(Na) = −eP0/κNa +
1
κ
εabceP0/κPbMc . (36)

The κ-Poincaré algebra can be obtained from the q-deformed anti-de
Sitter algebra Uq(so(3,2)) by taking the limit of the de Sitter radius
R →∞ and the deformation parameter q → 1, with the fixed ratio

R log q ≡ κ−1 . (37)

In the bicrossproduct basis used above, this Hopf algebra becomes
U(so(3,1)) IC T , where T is the enveloping algebra of translations.

T. Trześniewski On the spectral dimensionality of quantum space(time)s 24 / 22
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Coalgebraic structure of momenta

The product of two plane waves g = e−ipaXaeip0X0 , h = e−iqaXaeiq0X0 is

g h = e−i(pa⊕qa)Xaei(p0⊕q0)X0 = e−i(pa+e−p0/κqa)Xaei(p0+q0)X0 . (38)

The non-abelian addition pµ ⊕ qµ can be reconstructed by the trans-
lation generators Pµ acting as Pµ(p) = pµ, Pµ(q) = qµ on a pair of
points (p,q) in momentum space via the coproducts

∆P0 = P0 ⊗ 1 + 1⊗ P0 , ∆Pa = Pa ⊗ 1 + e−P0/κ ⊗ Pa . (39)

The inverse element g−1 = e−i(	pa)Xaei(	p0)X0 = eiep0/κpaXae−ip0X0 is
similarly given by the action of the antipodes

S(P0) = −P0 , S(Pa) = −eP0/κPa . (40)

T. Trześniewski On the spectral dimensionality of quantum space(time)s 25 / 22
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Lorentzian mapping of momentum space

Acting with g on a spacelike vector
(0, . . . ,0, κ) one obtains g . (0, . . . ,0, κ) =
(k0, {ka}, k−1), where

k0 = κ sinh
( p0
κ

)
+

1
2κ

ep0/κpapa ,

ka = ep0/κpa ,

k−1 = κ cosh
( p0
κ

)
− 1

2κ
ep0/κpapa . (41)

The coordinates obey −k2
0 + kaka + k2

−1 = κ2

and k0 + k−1 > 0. In the classical limit κ→∞
we recover

lim
κ→∞

k0 = p0 , lim
κ→∞

ka = pa ,

lim
κ→∞

k−1 =∞ . (42)

Figure: Lorentzian space of
momenta
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Two-faced spectral dimensionality
Two kinds of Examples

Euclidean mapping of momentum space

Acting with g on a timelike vector (κ,0, . . . ,0)
one obtains g . (κ,0, . . . ,0) = (k−1, {ka}, k0),
where

k0 = κ sinh
( p0
κ

)
− 1

2κ
ep0/κpapa ,

ka = ep0/κpa ,

k−1 = κ cosh
( p0
κ

)
+

1
2κ

ep0/κpapa . (43)

The coordinates obey k2
0 + kaka − k2

−1 = −κ2

and k−1 > 0. This can also be achieved
via the Wick rotation (κ 7→ iκ,p0 7→ ip0) and
(k0 7→ ik0, k−1 7→ ik−1).

Figure: Euclidean space of
momenta
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