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Motivation

@ Two crucial properties of the (semi)quantum spacetime are its ef-
fective dimension and the fate of relativistic symmetries
@ It is conceivable that the (spectral) dimension ds(o =~ 0) # 4 due
to some small-scale structure of spacetime
@ Such results were indeed obtained in e.g. Dynamical Triangula-
tions, Hofava-Lifschitz gravity, Asymptotic Safety and Causal Sets
@ Almost always ds(o =~ 0) < 4 and most often ds(c = 0) =2
@ Similar behaviour has been observed for QG models in d # 4
topological dimensions
@ In the context of (spectral) noncommutative geometry, the heat
trace is instead characterized by the dimension spectrum
@ Related issues include calculations of the vacuum energy density,
Casimir effect and entanglement entropy
S. Carlip, Class. Quant. Grav. 34, 193001 (2017)
J. Mielczarek & T. T., Gen. Relativ. Gravit. 50, 68 (2018)

A. Connes & H. Moscovici, Geom. Funct. Anal. 5, 174 (1995)
M. Eckstein & B. lochum, Springer, New York 2018
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Two-faced spectral dimensionality Spectral dimension
Dimension spectrum

Spectral dimension out of diffusion

On a Riemannian manifold (M, h) of dimension d, let us consider a
(fictitious) diffusion process with the (auxiliary) time parameter o:

0 5D (x — x)

—K(x,x0;0) = —AK(x,X;,0), K(x,x0;0) = —=, (1

55 [((X: X0 0) (X, Xo; ) (X, X0 0) Get A (1)
where the LaplacianA:—h’fV;V/, i,j =1,...,d oris a more gen-

eral (pseudo)differential operator. The diffusion is characterized by the
average return probability (the heat trace)

P(0) = Trycye 2 = v~! / d% /|det h(x)| K(x,x;0). (2
v

Then the spectral dimension of M can be extracted via the formula

P dlogP(0) '

ds(o) = dlogo

(3)

In particular, for RY with A = —9'9; we recover ds(c) = d.
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Two-faced spectral dimensionality Spectral dimension

Dimension spectrum

Spectral dimension out of the heat operator

Heat trace definition extends from a Laplacian A acting on a manifold
M to a closed operator T on a separable Hilbert space #H,

o
P(o) :=Trye T =) e "M, (4)
n=0

where \, are eigenvalues of T. To this end e~ “T needs to be trace-
class, which is not always true for an abstract T.

@ On a non-compact manifold M or for H with a non-compact alge-
bra of observables, one has to introduce an IR cutoff F, so that

P(o,F) :=TryFe T, (5)
F may either factor out or lead to the IR/UV mixing.
@ If the order of T isn:= ordT # 2, we should modify (3) to

dlogP(o)

ds(7) = =1 =100

(6)

but ord T is ambiguous for an abstract T — cf. k-Minkowski space.
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Two-faced spectral dimensionality Spectral dimension
Dimension spectrum

Further subtleties of the spectral dimension

@ In the case of a compact or curved classical-limit spacetime
o if the kernel of T is trivial, ds(¢) — oo in the IR and has to be
supplemented with the classical profile;
e otherwise, ds(c) — 0 in the IR, which can be remedied by replacing
ds(o) with the spectral variance

 ds(o). 7

@ If the full spectrum of T is unknown, ds(c) can be approximated
using a heat trace expansion but only deep in the UV regime?.

@ In order to calculate ds(o) in a pseudo-Riemannian case, one first
has to perform the Wick rotation, which is generally cumbersome.

vs(o) :==ds(o) — o

2M. Eckstein & T. T., in preparation
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Two-faced spectral dimensionality Spectra ension
Dimension spectrum

Heat trace in the general setting

The heat trace of a (pseudo)differential operator T on a manifold M
has the asymptotic expansion at o = 0,

P(o) ~ iak(T) olk=d)/n 4 ib/( T)o! logo; (8)
=0

0
013

e if T is differential, coefficients a,(T) are given by integrals of the
geometric invariants of (the bundle over) M, while all b;(T) = 0;

@ in the case of a non-compact M, the expansion coefficients will
generally depend on an IR cutoff F.

More generally, the asymptotic expansion of the heat trace of an un-
bounded operator T on a separable Hilbert space # is

P(o) = Trye 7" oy Z Z Z az(k,my,n (logo)" o —etm) 9)
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Two-faced spectral dimensionality

The dimension spectrum of an operator

The dimension spectrum of an operator T is the set of exponents

Sd(T) = Jz(k.m) c C (10)
k,m
and (p + 1) is called the order of Sd(T).
@ If we define the maximal real dimension

dsq := sup Re(2), (11)
zeSd

then the UV limit of the spectral dimension lim,_o ds(o) = 71 dsa.

@ Dimensions z(k,m) ¢ R correspond to oscillations of P(o) at
small scales, leading to oscillations of ds(¢’) —cf. quantum sphere.

@ Sd does not tell about the dimensional flow or the IR limit.
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Two-faced spectral dimensionality Spectra ension
Dimension spectrum

Other properties of the dimension spectrum

Existence of the asymptotic heat trace expansion is not proven in gen-
eral. Moreover, sometimes it is easier to apply the Mellin transform

/ Tre=T 05" dor = I(s) Cr(8) (12)
0
and consider the associated spectral zeta function

Cr(8):=TrT~°, Re(s)>0; (13)

poles of ' - (7 correspond to elements of Sd.

At a higher level, the dimension spectrum is defined for a spectral
triple (A, H, D), where A is an algebra of observables represented on
a Hilbert space ‘H and D is an unbounded operator acting on .
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Two kinds of Examples

Topology of the (Podle$) quantum sphere

The quantum sphere is a homogeneous space of the g-deformed group
SU,4(2), described by a *-algebra with the generators A, B and B*,

AB = ¢°BA, BB =q 2A(1-A),
AB* = g 2B*A, B*B=A(1-qg%A), (14)

where g € (0, 1). In the classical limit g — 1 we recover the algebra of
continuous functions on S2. The algebra (14) can be represented on
either of the SU(2) Hilbert spaces that are spanned by vectors:

|j7m>7 m€{7j77j+17"'7j}7j€]N;
mye, me{-l,—I+1,.... I}, e N+1. (15)

The classical scalar and spinorial Laplacians act in these spaces as

A*|jymy =j(j+1)]j,m),
AP(L,myy = (I+ )2, m)s. (16)
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Quantum sphere
Two kinds of Examples r-Minkowski space

Laplacians on the quantum sphere

The simplified Laplacian is the square of the so-called simplified Dirac
operator, acting on basis states as (ill-defined for g — 1)

’
=———q @ my, . 17
mq_qu |1, m) ¢ (17)

The spinor Laplacian is given by the square of the full Dirac operator
and acts on basis states as

A, m)

@r:ﬁm*W”wm@Wmu.<m>

The scalar Laplacian is defined by the first Casimir of the Hopf algebra
Ug(su(2)) that acts on basis states as

Azp‘lv m>i =

q1 /2

%mm=ﬁ_m2

(g7—1—qg+d™")|j,m). (19)
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Quantum sphere
Two kinds of Examples r-Minkowski space

Calculating the spectral dimension

The spectral dimension for the Laplacian Ag" is given exactly by

[G'(log(uc)) + 4] log(uc) + F'(log(ua))
2log?(uo) + G(log(uo)) log(uc) + F(log(uo)) + R(uo)
+G(log(uc)) + uoR'(uc)

)

dg*"(o) =-2

(20)

where G, F are certain bounded, periodic functions and R is a conver-
gent series. There are no exact formulae for ds for other Laplacians
but in the UV they can be expressed via (20) as

43(0) = d*"(0) + O(0).
dd (o) = dy**"(q7"/20) + O((log 7) 7). 1)

It justifies our choice of = 2in all cases. dg"*™ and dg"*F both diverge
in the IR, hence they little differ in general.
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Quantum sphere
Two kinds of Examples +-Min space

Spectral dims. for different Laplacians and varying q

1078 107 0.01 1 0 1 2 3 4 5

Figure: (left) spectral dim. for A (red) and A7 (blue) with g = 0.15, and for
classical 2-sphere with A* (green) and A (black) Laplacians; (right) spectral
dim. for Ay, with g = 0.9 (green), g = 0.5 (yellow) and g = 0.1 (red), and for
classical 2-sphere with A* Laplacian (blue)

The amplitude of oscillations rapidly decreases with growing g.

M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)

T. Trze$niewski On the spectral dimensionality of quantum space(time)s 12/22



Quantum sphere
Two kinds of Examples +-Minko pace

Dim. spectra in the classical and quantum cases

Im(s) Im(s) Im(s)

3p * * ok * 3¢
2p * * * * 2p
¥ * % x ok ®
4 -3 -2 -1 |0 1 Re(s) 4 -3 -2 -1 |o Re(s) 4 -3 =2 -1 o Re(s)
-9 * ok x ok -
—20 * k% * —2p
—3p * * * * =3¢
a) b) c)

Figure: Dimension spectrum for different Laplacians (a) on classical 2-sphere
Sd(A®) = Sd(A*) and quantum sphere (b) Sd(AF"), (c) SA(AF) = SA(AY);
where ¢ = 7'r/ log @ (and the symbols x, * and e denote elements of Sd corresponding to
poles of the function I - ¢ of order 1, 2 and 3, respectively)

In particular, dsq = 0 and ord Sd = 3 for all quantum Laplacians.

M. Eckstein, B. lochum & A. Sitarz, Commun. in Math. Phys. 332, 627 (2014)
M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)
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Quantum sphere
Two kinds of Examples r-Minkowski space

n+1-dimensional x-Minkowski space

k-Minkowski space is the spacetime covariant under the action of
r-Poincaré (Hopf) algebra. lts time and spatial coordinates satisfy

Xo, Xa] = “Xa,  [XaXo] =0, ab=1,....n, (22
K

spanning the Lie algebra an(n), which is a subalgebra of so(n+ 1,1).
In turn, an(n) generates the group AN(n), whose elements are defined
as the ordered exponentials of algebra elements, e.g. in the time-to-
the-right ordering they have the form

g=e PXaghX  np b ecR. (23)
AN(n) (a subgroup of SO(n + 1,1), with a (n+ 2) x (n + 2) matrix

representation) can be seen as the momentum space corresponding
to k-Minkowski space.
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Quantum sphere
Two kinds of Examples r-Minkowski space

Calculating the heat trace

Calculations become simpler in classical coordinates

ko = rsinh (&) — zlﬂepﬂ/“papa,

ka = epo/*”vpa7
k_1 = kcosh (&) + ;—Kep”/“papa, (24)
satisfying k2 + k.k? — k*, = —«? and k_y > 0. The heat kernel

can be expressed, via the noncommutative Fourier transform, in the
momentum space representation

K(x, Xo;0) = 1 - /du(k) o~ LK) gik(x—0) (25)

(@n)?

where L(k) is the momentum-space version of a given Laplacian.
k-Minkowski space is actually non-compact but it has been shown that
the IR regularization factorizes.
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Quantum sphere
Two kinds of Examples r-Minkowski space

Laplacians in the momentum representation

The bicovariant Laplacian, determined by the bicovariant differential cal-
culus on k-Minkowski space, has the form

Lov(Ko, {ka}) = K + kak®. (26)

The bicrossproduct Laplacian is the Euclideanized simplest Casimir of the
k-Poincaré algebra (and satisfies the relation L., = L., + ﬁﬁfp)

Lep(ko, {ka}) =2k (\/kg + kak@ + K2 — fi) . (27)

The relative-locality Laplacian is given by the (squared) distance along
geodesics in Euclidean momentum space

L (ko, {ka}) = rParccosh? (l\/kg + kak@ + nz) . (28)
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Quantum sphere
Two kinds of Examples r-Minkowski space

Results for the spectral dimension

The spectral dimensions for all Laplacians in 3+1, 2+1 and 1+1 dim
can be calculated analytically (some earlier results were numerical®).
In particular, in the case of the bicovariant Laplacian we obtain

By, 25,/ — /T €7 (2620 + 1)(1 — erf(k\/7))
ds"(0) =3+ 200 2o + /T e (2r20 — 1)(1 — erf(ir/T)) |

w20 U(3,1, K20)

d(2+1) ) 25 1
s ) U(%,O,KZO')
1 g—r’o
(1+1) _ 2 .
dg (0)—1+2ﬁ0<ﬁmﬁ1—erf(nﬁ) 1) , (29)

where erf(.) is the error function and U(.,.,.) a Tricomi confluent hy-
pergeometric function.
Formulae for the relative-locality Laplacian are similarly complicated.

3p. Benedetti, Phys. Rev. Lett. 102, 111303 (2009)
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Quantum sphere
Two kinds of Examples r-Minkowski space

Results for the spectral dimension — cont.

In the bicrossproduct Laplacian case, the expressions are simpler

2
(3+1) _ 4ko

ds (U)_6_2n20+1’
(2+1) A _ 4.2 _ Ko(2K%0)

dg /(o) =4 —4k"0c <1 Ki(2n20) @20))

dl V(o) =2, (30)

where K,(.) is a modified Bessel function of the second kind. At small
scales ox? ~ 0, we observe the dimensional drop for L., dimensional
rise for L, and divergence for L,

li (n+1,cv) —n li (n+1,cp) —92n 1
UILPO ds ’ UIL;nO ds ’ (3 )

while at large scales we always recover lim,_, o, dg’“) =n+1.Inthe
above it was assumed that , = 2 for all Laplacians.
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Quantum sphere

Two kinds of Examples r-Minkowski space

Comparing spectral dims. for different Laplacians

6 2 4 6 8 10 T 0 2 4 6 8 10 T
Figure: Spectral dims. for L., (black), L., (red) and L. (green) Laplacians in
3+1 dim (left) and 2+1 dim (right)

Looking at (27), (28), one may argue that n(£.,) = 1 and (L) = 0.
Thus, all ds(c) curves could in principle be superimposed by using
n = n(k), such that lim,_, . n(x) = 2 and the appropriate n(x ~ 0).

M. Arzano & T. T., Phys. Rev. D 89, 124024 (2014)
M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)
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Quantum sphere
Two kinds of Examples r-Minkowski space

Dimension spectrum for different Laplacians

Expanding heat traces, we can read out the dimension spectra
Sd(3+1) = {g} U {1%”“7 € N} = {%7%3077%7717"'}7 ord Sd = 1 )
Sdiz;1)=1-N={1,0,—-1,-2,...}, ordSd=2,

Sd(141) = (1 —=N)={},0,—%,—1,...}, ordSd =1 (32)

for L., and

Sd(3+1) = {372}, ordSd = 1 y

Sde4+1y=2-N=1{2,1,0,-1,-2,...}, ordSd=2,

Sd(1+1) = {1}, ordSd = 1 (33)
for L.,. Here we assumed that n = 2 for both Laplacians, which is

not necessarily accurate. In the £,; case the dimension spectra do not
exist due to the divergent factor e'/? in the heat traces.

M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)
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Comparison of two quantum spaces

How differences in geometry are uncovered:

qS? ordSd = 3 corresponds to ds(o ~ 0) ~ —4/log o
gS? Identical Sd’s but different ds(c)’s for the Laplacians A7 and Ay

%M ord Sd = 2 corresponds to ds(o ~ 0) ~ 2a/(a + Sologo) for L,
and ds(c = 0) ~ 2+ 2a/(a+ Bologo) for L,

kM Sd’s cannot coincide even for the order n = 7(x) defined so that
dé”“)(o) would not depend on a Laplacian

Independent on a choice of Laplacian:

qS? The presence of oscillations in ds(o) — IR/UV mixing?
qS? Third order poles in Sd — presence of singularities?

kM The lack of oscillations in ds(c) — less fractal structure?
xM Second order poles in Sd in 2+1d — a distinguished case?
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Summary

Conclusions and open questions

@ It is much more informative to study all heat trace properties than
only the spectral dimension or dimension spectrum

@ The spectral dimension does not easily see the possible structure
of complex exponents and oscillations

@ The latter arise in systems with the discrete scale invariance

@ The dimension spectrum does not capture the scale dependence,
including the classical (IR) limit

@ The latter may track the emergence of self-similarity in the UV

@ The oscillations may possibly affect CMB, stochastic GW back-
ground, thermodynamics of photons...

@ What is the reason for radical differences between our examples?
@ Should the order of an operator be defined as scale-dependent?
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r-Poincaré (Hopf) algebra in 3+1 dim

The x-Poincaré algebra is a particular deformation of the Poincaré al-
gebra. In the so-called bicrossproduct basis, its Lorentz subalgebra is
undeformed, to wit (a=1,2,3, 1 =0,1,2,3)

[Ma Mb] = /GabcMca [Maa Nb] = ieachC» [Naa Nb] = _ieabcMc»
[Ma, Po] =0, [Ma, Pp) = icapcP°, [Pu,P,]=0 (34)

and the deformation occurs only for the brackets
[NaaPO] = iPa7

1

. K —oP /k i
[Na, Po] = i0ap (2 (1 — e 2P/ )+2I€PCPC>_ﬁPan) (33)

where k € R, while the classical limit is given by x — +o00. The
r-Poincaré algebra is also a non-trivial coalgebra with the antipode.
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r-Poincaré algebra — the coalgebra

The coproducts and antipodes for its Lorentz generators have the form
AMy=M;01+1Q M,, S(My) = —M,,
ANy =N, @1+ e M/" o N, + %eabch ® M°,
S(N,) = —eP/*N, + %eabcePO/"PbM". (36)

The k-Poincaré algebra can be obtained from the g-deformed anti-de
Sitter algebra Uq(so0(3,2)) by taking the limit of the de Sitter radius
R — oo and the deformation parameter g — 1, with the fixed ratio

Rlogg=rx"". (37)

In the bicrossproduct basis used above, this Hopf algebra becomes
U(so(3,1)) »a T, where T is the enveloping algebra of translations.
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Coalgebraic structure of momenta

The product of two plane waves g = e~ P"XagitoXo h — g=10"XagidXo jg

gh= e (P*®a) Xa gi(P )Xo _ g—i(PP+e7P/"q%) Xa gi(Po+G0) Xo (38)

The non-abelian addition p,, @ g, can be reconstructed by the trans-
lation generators P, acting as P,(p) = p., P.(q) = q, on a pair of
points (p, @) in momentum space via the coproducts

APy =Py21+1® Py, AP,=P,@1+e P/"gpP,. (39

The inverse element g—1 = e~ (EP)Xagi(EmIX — i€ P"Xag—ipoXo jg
similarly given by the action of the antipodes

S(Py) = —Py, S(P,) = —e/"p,. (40)

T. Trze$niewski On the spectral dimensionality of quantum space(time)s 25/22



Lorentzian mapping of momentum space

Acting with g on a spacelike vector
(0,...,0,x) one obtains g > (0,...,0,k) =
(ko, {Kka}, k—1), where
Ko = esinh () + 5 e®/"pgpf
K
ka = epO/HPa,
1
k_1 = kcosh (&) — Zepf’/“papa. (41)
The coordinates obey —k? + kak? + k% = K?

and kg + k_1 > 0. In the classical limit K — oo
we recover

Figure: Lorentzian space of

KIme Ko =po, Klem Ka = Pa, momenta
lim k.1 = 0. (42)
K— 00
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Euclidean mapping of momentum space

Acting with g on a timelike vector (x,0,...,0)
one obtains g (k,0,...,0) = (k_1, {Kka}, ko),
where
1
— ksi P _ __gho/kp pna
ko nsmh(n) 2Ke pPap?,
ka = em/npaa

k_1 = rcosh (&) + ;—Hepo/ﬁpapa. (43)

The coordinates obey k2 + kak@ — k? | = —k?
and k_y > 0. This can also be achieved

via the Wick rotation (x + i, po — ipg) and  Figure: Euclidean space of

(ko — kg, K_1 — I.k,1). momenta
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