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Advanced LIGO and Advanced Virgo



The coalescence of compact binaries



The first 50 detections

• Mostly binary black holes
• Binary neutron stars: GW170817, GW190425

LIGO + Virgo, arXiv:2010.14527 



Access to strongly curved, dynamical spacetime

Characteristic timescale
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Yunes et al., PRD 94, 084002 (2016) 



Ø Lovelock’s theorem:
“In four spacetime dimensions the only divergence-free symmetric rank-2 tensor constructed solely from 
the metric gμν and its derivatives up to second differential order, and preserving diffeomorphism 
invariance, is the Einstein tensor plus a cosmological term.”

Ø Relaxing one or more of the assumptions allows for a plethora of alternative theories:

Ø Most alternative theories: no full inspiral-merger-ringdown waveforms known
§ Most current tests are model-independent 

The nature of gravity

Berti et al., CQG 32, 243001 (2015)



1. The strong-field dynamics of spacetime
• Is the inspiral-merger-ringdown process consistent with 

the predictions of GR?

2. The propagation of gravitational waves
• Evidence for dispersion?

3. What is the nature of compact objects?                                                                          
Are the observed massive objects the “standard” black 
holes of classical general relativity?
• Are there unexpected effects during inspiral?
• Is the remnant object consistent with the no-hair conjecture? 

Is it consistent with Hawking’s area increase theorem?
• Searching for gravitational wave echoes

Fundamental physics with gravitational waves



Ø Inspiral-merger-ringdown process
• Post-Newtonian description of inspiral phase

• Merger-ringdown governed by additional parameters βn, ⍺n

Ø Place bounds on deviations in these parameters:

Ø Rich physics:                                                                                                                
Dynamical self-interaction of spacetime, spin-orbit and spin-spin interactions

Ø Can combine information from multiple detections
• Bounds will get tighter roughly as 

1. The strong-field dynamics of spacetime

LIGO + Virgo, PRL 118, 221101 (2017) 
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Ø Dispersion of gravitational waves?                                                                           
E.g. as a result of non-zero graviton mass:
• Dispersion relation:

• Group velocity:

• Modification to gravitational wave phase:

Ø Bound on graviton mass:

2. The propagation of gravitational waves
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Ø More general forms of dispersion:

§ corresponds to violation of local Lorentz invariance
§ multi-fractal spacetime
§ doubly special relativity
§ higher-dimensional theories

2. The propagation of gravitational waves
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R ê(t)

E2 = p2c2 + Ap↵c↵

1

2
A(ts(f)) e

�i'0 ei(2⇡fts(f)��(ts(f)))

✓
2

�̈(ts(f))

◆ Z 1

�1
dx e�ix2

Lint = �
1X

`=1

1

2`!�`
QLQL =

1X

`=1

1

2`!
QLEL

dxµ = (dx0, dx1, dx2, dx3)

hc(t
ret
s ) =

4

a(temis)r

✓
GMc

c2

◆5/3 ✓⇡f (s)(trets )

c

◆2/3

�x = 0

Z
dn̂

4⇡

X

A

FA
1 (n̂)F

A
2 (n̂)

t

1

E2 = p2c2 + Ap↵c↵

↵ 6= 0

1

E2 = p2c2 + Ap↵c↵

↵ = 2.5

1

E2 = p2c2 + Ap↵c↵

↵ = 3

1

E2 = p2c2 + Ap↵c↵

↵ = 4

1

LIGO + Virgo, arXiv:2010.14529



Ø Does the speed of gravity equal the speed of light?
Ø The binary neutron star coalescence GW170817 came with gamma ray 

burst, 1.74 seconds afterwards

Ø With a conservative lower bound on the distance to the source:

Ø Excluded certain alternative theories of gravity designed to explain 
dark matter or dark energy in a dynamical way

2. The propagation of gravitational waves

-3 x 10-15 < (vGW – vEM)/vEM < +7 x 10-16

LIGO + Virgo + Fermi-GBM + INTEGRAL, ApJ. 848, L13 (2017)
LIGO + Virgo, PRL 123, 011102 (2019)



Ø Black holes, or still more exotic objects?

• Boson stars

• Dark matter stars

• Gravastars

• Wormholes

• Firewalls, fuzzballs

• The unknown

3. What is the nature of compact objects?



Anomalous effects during inspiral

Ringdown of newly formed object

Gravitational wave echoes

3. What is the nature of compact objects?



Ø Tidal field of one body causes quadrupole 
deformation in the other:                                                           

where                     depends on                       
internal structure (equation of state)
• Black holes: 
• Boson stars, dark matter stars: 
• Gravastars: 

Ø Enters inspiral phase at 5PN order, through

• O(102 - 103) for neutron stars
• Can also be measurable for black hole 

mimickers, e.g. boson stars

Anomalous effects during inspiral
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FIG. 1. Relative percentage errors on the average tidal deformability ⇤ for BS-BS binaries observed by AdLIGO (left panel),
ET (middle panel), and LISA (right panel), as a function of the BS mass and for di↵erent BS models considered in this work
(for each model, we considered the most compact configuration in the stable branch; see main text for details). For terrestrial
interferometers we assume a prototype binary at d = 100Mpc, while for LISA the source is located at d = 500Mpc. The
horizontal dashed line identifies the upper bound �⇤/⇤ = 1. Roughly speaking, a measurement of the TLNs for systems which
lie below the threshold line would be incompatible with zero and, therefore, the corresponding BSs can be distinguished from
BHs. Here ⇤ is given by Eq. (72), the two inspiralling objects have the same mass, and �⇤/⇤ ⇠ �kE

2
/kE

2 .

TABLE I. Tidal Love numbers (TLNs) of some exotic compact objects (ECOs) and BHs in Einstein-Maxwell theory and modified
theories of gravity; details are given in the main text. As a comparison, we provide the order of magnitude of the TLNs for static NSs
with compactness C ⇡ 0.2 (the precise number depends on the neutron-star equation of state; see Table III for more precise fits). For BSs,
the table provides the lowest value of the corresponding TLNs among di↵erent models (cf. Sec. III A) and values of the compactness. In
the polar case, the lowest TLNs correspond to solitonic BSs with compactness C ⇡ 0.18 or C ⇡ 0.20 (when the radius is defined as that
containing 99% or 90% of the total mass, respectively). In the axial case, the lowest TLNs correspond to a massive BS with C ⇡ 0.16 or
C ⇡ 0.2 (again for the two definitions of the radius, respectively) and in the limit of large quartic coupling. For other ECOs, we provide
expressions for very compact configurations where the surface r0 sits at r0 ⇠ 2M and is parametrized by ⇠ := r0/(2M)� 1; the full results
are available online [65]. In the Chern-Simons case, the axial l = 3 TLN is a↵ected by some ambiguity and is denoted by a question mark
[see Sec. IVC for more details]. Note that the TLNs for Einstein-Maxwell and Chern-Simons gravity were obtained under the assumption
of vanishing electromagnetic and scalar tides.

Tidal Love numbers
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NSs 210 1300 11 70

ECOs

Boson star 41.4 402.8 �13.6 �211.8

Wormhole 4
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Gravastar 16
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32
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32
7(307�60 log 2+90 log ⇠)

BHs

Einstein-Maxwell 0 0 0 0

Scalar-tensor 0 0 0 0

Chern-Simons 0 0 1.1
↵2
CS

M4 11.1
↵2
CS

M4 ?

selection rules that allow to define a wider class of “rotational”
TLNs [22, 23, 75, 76]. In this paper, we neglect spin e↵ects to
leading order.

TLNs as [6, 8]
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where M is the mass of the object, whereas El0 (respec-

Cardoso et al., PRD 95, 084014 (2017)
Johnson-McDaniel et al., arXiv:1804.0826 
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Ø Spin of an individual compact object also 
induces a quadrupole moment:

• Black holes: 
• Boson stars, dark matter stars:
• Gravastars:

Ø Allow for deviations from Kerr value: 

Anomalous effects during inspiral
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Possible theoretical 
values for boson stars:

… hence constraints 
are already of interest!

Krishnendu et al., PRD 100, 104019 (2019)
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Ø Ringdown regime: Kerr metric + linear perturbations
• Ringdown signal is a superposition of quasi-normal modes 

• Characteristic frequencies            and damping times

Ø No-hair conjecture: stationary, electrically neutral black hole 
completely characterized by mass      , spin 
• Linearized Einstein equations around Kerr background enforce specific 

dependences:

• Look for deviations from the expressions for frequencies, damping times:

Ringdown of newly formed black hole
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Ø Look for deviations from the expressions for frequencies, damping times:

Ø First measurements: 

Ringdown of newly formed black hole

!lmn(Mf , af ) ! (1 + �!̂lmn)!lmn(Mf , af )

⌧lmn(Mf , af ) ! (1 + �⌧̂lmn) ⌧lmn(Mf , af )

1

LIGO + Virgo, arXiv:2010.14529

21

TABLE IX. The median value and symmetric 90% credible interval
of the redshifted frequency and damping time estimated using the
full IMR analysis (IMR), the pyRing analysis with a single damped
sinusoid (DS), and the pSEOBNRv4HM analysis (pSEOB).

Event Redshifted Redshifted
frequency [Hz] damping time [ms]

IMR DS pSEOB IMR DS pSEOB

GW150914 248+8
�7 247+14

�16 � 4.2+0.3
�0.2 4.8+3.7

�1.9 �
GW170104 287+15

�25 228+71
�102 � 3.5+0.4

�0.3 3.6+36.2
�2.1 �

GW170814 293+11
�14 527+340

�332 � 3.7+0.3
�0.2 25.1+22.2

�19.0 �
GW170823 197+17

�17 222+664
�62 � 5.5+1.0

�0.8 13.4+31.8
�9.8 �

GW190408 181802 319+11
�20 504+479

�459 � 3.2+0.3
�0.3 10.0+32.5

�8.9 �
GW190421 213856 162+13

�14 � 171+50
�16 6.3+1.2

�0.8 � 8.5+5.3
�4.2

GW190503 185404 190+17
�15 � 265+501

�79 5.3+0.8
�0.8 � 3.5+3.4

�1.8

GW190512 180714 382+32
�42 220+686

�42 � 2.6+0.2
�0.2 26.1+21.3

�22.9 �
GW190513 205428 242+25

�27 250+493
�88 � 4.3+1.2

�0.4 5.3+19.2
�3.8 �

GW190519 153544 127+10
�9 123+11

�19 124+12
�13 9.7+1.7

�1.6 9.7+9.0
�3.8 10.3+3.6

�3.1

GW190521 68+3
�4 65+3

�3 67+2
�2 16.0+4.0

�2.5 22.1+12.4
�7.4 30.7+7.7

�7.4

GW190521 074359 198+7
�8 197+15

�15 205+15
�12 5.4+0.4

�0.4 7.7+6.4
�3.3 5.3+1.5

�1.2

GW190602 175927 105+10
�9 93+13

�22 99+15
�15 10.2+2.0

�1.5 10.0+17.2
�4.5 8.8+5.4

�3.6

GW190706 222641 109+11
�10 109+7

�12 112+7
�8 11.3+2.3

�2.3 20.4+25.2
�12.9 19.4+7.2

�8.9

GW190708 232457 497+10
�46 642+279

�596 � 2.1+0.2
�0.1 24.6+23.0

�22.6 �
GW190727 060333 178+17

�16 345+587
�267 201+11

�21 6.2+1.1
�0.8 21.1+25.6

�17.9 15.4+5.3
�6.1

GW190828 063405 239+10
�11 247+350

�15 � 4.8+0.6
�0.5 17.3+25.3

�10.4 �
GW190910 112807 177+8

�8 166+9
�8 174+12

�8 5.9+0.9
�0.5 13.2+17.1

�6.2 9.5+3.1
�2.7

GW190915 235702 232+13
�18 534+371

�493 � 4.6+0.7
�0.6 15.0+30.1

�13.1 �

set of simulated numerical relativity signals with parameters
consistent with GW190521 into real data immediately adja-
cent to the event, and ran the pSEOB analysis on them. For
3 out of 5 injections around the event we recover posteriors
that overestimate the damping time and for which the injected
GR value lies outside the 90% credible interval, suggesting
that the overestimation of the damping time for GW190521 is
a possible artifact of noise fluctuations. A similar study was
conducted with pyRing using the damped sinusoid model for
GW190828 063405 and we also observed overestimations of
the damping time. This suggests that the overestimation of
the damping time is a common systematic error for low-SNR
signals.

In Fig. 14, we show the 90% credible region of the joint
posterior distribution of the frequency and damping time devia-
tions, as well as their respective marginalized distributions. We
only include events that have SNR > 8 in both the inspiral and
postinspiral regimes, with cuto↵ frequencies as in Table IV.
This is because, in order to make meaningful inferences about
� f̂220 and �⌧̂220 with pSEOB in the absence of measurable HMs,
the signal must contain su�cient information in the inspiral
and merger stages to break the degeneracy between the binary
total mass and the GR deviations. The fractional deviations
obtained this way quantify the agreement between the pre- and
postmerger portions of the waveform, and are thus not fully
analogous to the pyRing quantities.

From Fig. 14, the frequency and the damping time of the 220
mode are consistent with the GR prediction (� f̂220 = �⌧̂220 = 0)
for GW190519 153544 and GW190521 074359, while for

�0.5 0.0 0.5 1.0 1.5

�f̂220

�0.5

0.0

0.5

1.0

1.5

��̂
22

0

GW190519 153544

GW190521 074359

GW190910 112807

hierarchically
combined

FIG. 14. The 90% credible region of the joint posterior distribution
of the fractional deviations of the frequency � f̂220 and the damping
time �⌧̂220, and their marginalized posterior distributions, for the
` = |m| = 2, n = 0 mode from the pSEOBNRv4HM analysis. We only
include events that have SNR > 8 in both the inspiral and postinspiral
stage in this plot where we have su�cient information to break the
degeneracy between the binary total mass and the fractional deviation
parameters in the absence of measurable HMs. The measurements
of the fractional deviations for individual events, and as a set of
measurements, both show consistency with GR.

GW190910 112807 it shows excellent agreement with GR
for � f̂220 but the GR prediction has only little support in the
marginalized posterior distribution of �⌧̂220.

In spite of the low number of events, we also apply the
hierarchical framework to the marginal distributions in Fig. 14.
The population-marginalized constraints are � f̂220 = 0.03+0.38

�0.35
and �⌧̂220 = 0.16+0.98

�0.98, which are consistent with GR for both
parameters. The �⌧̂220 measurement is uninformative, which
is not surprising given the spread of the GW190910 112807
result and the low number of events. The hyperparameters also
reflect this, since they are constrained for � f̂220 (µ = 0.03+0.17

�0.18,
� < 0.37) but uninformative for �⌧̂220 (µ = 0.16+0.47

�0.46, � <
0.88). The bounds for the fractional deviation in frequency
for the 220 mode, from the pSEOB analysis, and for the 221
mode, from the pyRing analysis, can be used to cast constraints
on specific theories of modified gravity that predict non-zero
values of these deviations [234, 235], as well as to bound
possible deviations in the ringdown spectrum caused by a non-
Kerr-BH remnant object (see, e.g., [236]).

B. Echoes

It is hypothesized that there may be compact objects having
a light ring and a reflective surface located between the light



Ø During binary black hole merger, horizon area should not decrease

Ø “Ingoing” black holes considered Kerr
§ Measure masses        ,        and initial spins      ,       from inspiral signal
§ Total initial horizon area:

where

Ø Final black hole also Kerr
§ Obtain mass        and spin       from ringdown frequencies and damping times
§ Final horizon area:   

Ø According to the theorem: 

First tests of Hawking’s area increase theorem
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Ø According to the theorem: 

Ø Measurement on GW150914:

§ Agreement at > 95% probability

First tests of Hawking’s area increase theorem
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• Exotic objects with corrections near 
horizon: inner potential barrier for 
radial motion

• After formation/ringdown: continuing 
bursts of radiation called echoes

• If microscopic horizon modification                                
then time between 

successive echoes                               

where n set by nature of object:
• n = 8 for wormholes
• n = 6 for thin-shell gravastars
• n = 4 for empty shell 

• For GW150914 (M = 65 Msun),          
taking ℓ = ℓPlanck, and n = 4:          
𝚫t = 117 ms

Gravitational wave echoes
3

0.00

0.05

0.10

0.15

V(
r *) M

2

0.00

0.05

0.10

0.15

-50 -40 -30 -20 -10 0 10 20 30 40 50
r*/M

0.00

0.05

0.10

0.15

wormhole

black hole

outgoing at infinity

trapped outgoing at infinityoutgoing at infinity

ingoing at horizon

star-like ECO

trapped
outgoing at infinity

regular at the center

centrifugal barrier

FIG. 1. Qualitative features of the e↵ective potential felt by
perturbations of a Schwarzschild BH compared to the case
of wormholes [12] and of star-like ECOs with a regular cen-
ter [22]. The precise location of the center of the star is model-
dependent and was chosen for visual clarity. The maximum
and minimum of the potential corresponds approximately to
the location of the unstable and stable PS, and the correspon-
dence is exact in the eikonal limit of large angular number l.
In the wormhole case, modes can be trapped between the
PSs in the two “universes”. In the star-like case, modes are
trapped between the PS and the centrifugal barrier near the
center of the star [28–30]. In all cases the potential is of fi-
nite height, and the modes leak away, with higher-frequency
modes leaking on shorter timescales.

where rmin is the location of the minimum of the potential
shown in Fig. 1. If we consider a microscopic correction
at the horizon scale (` ⌧ M), then the main contribution
to the time delay comes near the radius of the star and
therefore,

�t ⇠ �nM log

✓
`

M

◆
, ` ⌧ M , (6)

where n is a factor of order unity that takes into account
the structure of the objects. For wormholes, n = 8 to
account for the fact that the signal is reflected by the
two maxima in Fig. 1, whereas for our thin-shell gravas-
tar model and the empty-shell model it is easy to check
that n = 6 and n = 4, respectively. The results shown in
Fig. 2 for ` = 10�6M are perfectly consistent with this
picture, with the wormhole case displaying longer echo
delays than the other cases with the same compactness.
Our results show that the dependence on ` is indeed log-
arithmically for all the ECOs we studied.

As argued in Ref. [12], the logarithmic dependence dis-
played in Eq. (6) implies that even Planckian corrections
(` ⇡ LP = 2 ⇥ 10�33 cm) appear relatively soon after
the main burst of radiation, so they might leave an ob-

servable imprint in the GW signal at late times. From
Eq. (6), a typical time delay reads

�t ⇠ 54(n/4)M30


1� 0.01 log

✓
`/LP

M30

◆�
ms , (7)

where M30 := M/(30M�).
The picture of GW signal scattered o↵ the potential

barrier is also supported by two further features shown
in Fig. 2, namely the modulation and the distortion of
the echo signal. In general, modulation is due to the
slow leaking of the echo modes, which contain less en-
ergy than the initial one. In the wormhole case, this
e↵ect is stronger due to the fact that modes can also leak
to the “other universe” through tunneling at the second
peak of the potential. While the amplitude of the echoes
is model-dependent, for a given model it depends only
mildly on `. Distortion is also due to the potential bar-
rier, which acts as a low-pass filter and reflects only the
low-frequency, quasibound echo modes. This implies that
each echo is a low-frequency filtered version of the previ-
ous one and the original shape of the mode gets quickly
washed out after a few echoes1.

B. Waves generated by infalling or scattered
particles

The features above are observed in a simple scattering
process, but are also evident in the GW signal produced
by head-on collisions or close encounters, in the test-
particle limit. The latter di↵er from the radial plunge
studied in Ref. [12] in that their pericenter rmin > 3M ,
i.e. the particle does not cross the radius of the PS
(in fact, scattered particles in the Schwarzschild geom-
etry can never get inside the r = 4M surface). In
order to compute the GW signal, we use the Regge-
Wheeler-Zerilli decomposition reviewed in Appendix B
(cf. Ref. [31] for details).
We have studied the GW emitted during collisions or

scatters between point particles and ECOs; again the
general qualitative features are the same as those dis-
cussed in Section IIA and independent of the nature
of the ECO. To be specific, we show in Fig. 3 the Zer-
illi wavefunction for a point particle plunging into (left
panel) or scattering o↵ a wormhole with ` = 10�6M , with
initial Lorentz boost E = 1.5. The coordinate system we
use is such that the particles are moving along the equa-
tor, and it di↵ers - by a ⇡/2 rotation - from the coordinate
axis used in Ref. [12]. As such, the l = 2 Zerilli-Moncrief
wavefunction, for example, has contributions from az-
imuthal numbers m = 0,±2. Note also that it is easy to

1 Incidentally, we note that all these features (namely time delay,
echoes, modulation, and high-frequency filtering) are precisely
what one would expect by the scattering of sound waves in a
finite-size cavity.
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express these results in a rotated frame [32, 33], and we
checked that the waveforms agree up to numerical errors

with our previous study [12] 2.

2 Note however the following typo in the original publication: the

3

0.00

0.05

0.10

0.15

V(
r *) 

M
2

0.00

0.05

0.10

0.15

-50 -40 -30 -20 -10 0 10 20 30 40 50
r*/M

0.00

0.05

0.10

0.15

wormhole

black hole

outgoing at infinity

trapped outgoing at infinityoutgoing at infinity

ingoing at horizon

star-like ECO

trapped
outgoing at infinity

regular at the center

centrifugal barrier

FIG. 1. Qualitative features of the e↵ective potential felt by
perturbations of a Schwarzschild BH compared to the case
of wormholes [12] and of star-like ECOs with a regular cen-
ter [22]. The precise location of the center of the star is model-
dependent and was chosen for visual clarity. The maximum
and minimum of the potential corresponds approximately to
the location of the unstable and stable PS, and the correspon-
dence is exact in the eikonal limit of large angular number l.
In the wormhole case, modes can be trapped between the
PSs in the two “universes”. In the star-like case, modes are
trapped between the PS and the centrifugal barrier near the
center of the star [28–30]. In all cases the potential is of fi-
nite height, and the modes leak away, with higher-frequency
modes leaking on shorter timescales.

where rmin is the location of the minimum of the potential
shown in Fig. 1. If we consider a microscopic correction
at the horizon scale (` ⌧ M), then the main contribution
to the time delay comes near the radius of the star and
therefore,

�t ⇠ �nM log
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where n is a factor of order unity that takes into account
the structure of the objects. For wormholes, n = 8 to
account for the fact that the signal is reflected by the
two maxima in Fig. 1, whereas for our thin-shell gravas-
tar model and the empty-shell model it is easy to check
that n = 6 and n = 4, respectively. The results shown in
Fig. 2 for ` = 10�6M are perfectly consistent with this
picture, with the wormhole case displaying longer echo
delays than the other cases with the same compactness.
Our results show that the dependence on ` is indeed log-
arithmically for all the ECOs we studied.

As argued in Ref. [12], the logarithmic dependence dis-
played in Eq. (6) implies that even Planckian corrections
(` ⇡ LP = 2 ⇥ 10�33 cm) appear relatively soon after
the main burst of radiation, so they might leave an ob-

servable imprint in the GW signal at late times. From
Eq. (6), a typical time delay reads

�t ⇠ 54(n/4)M30
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where M30 := M/(30M�).
The picture of GW signal scattered o↵ the potential

barrier is also supported by two further features shown
in Fig. 2, namely the modulation and the distortion of
the echo signal. In general, modulation is due to the
slow leaking of the echo modes, which contain less en-
ergy than the initial one. In the wormhole case, this
e↵ect is stronger due to the fact that modes can also leak
to the “other universe” through tunneling at the second
peak of the potential. While the amplitude of the echoes
is model-dependent, for a given model it depends only
mildly on `. Distortion is also due to the potential bar-
rier, which acts as a low-pass filter and reflects only the
low-frequency, quasibound echo modes. This implies that
each echo is a low-frequency filtered version of the previ-
ous one and the original shape of the mode gets quickly
washed out after a few echoes1.

B. Waves generated by infalling or scattered
particles

The features above are observed in a simple scattering
process, but are also evident in the GW signal produced
by head-on collisions or close encounters, in the test-
particle limit. The latter di↵er from the radial plunge
studied in Ref. [12] in that their pericenter rmin > 3M ,
i.e. the particle does not cross the radius of the PS
(in fact, scattered particles in the Schwarzschild geom-
etry can never get inside the r = 4M surface). In
order to compute the GW signal, we use the Regge-
Wheeler-Zerilli decomposition reviewed in Appendix B
(cf. Ref. [31] for details).
We have studied the GW emitted during collisions or

scatters between point particles and ECOs; again the
general qualitative features are the same as those dis-
cussed in Section IIA and independent of the nature
of the ECO. To be specific, we show in Fig. 3 the Zer-
illi wavefunction for a point particle plunging into (left
panel) or scattering o↵ a wormhole with ` = 10�6M , with
initial Lorentz boost E = 1.5. The coordinate system we
use is such that the particles are moving along the equa-
tor, and it di↵ers - by a ⇡/2 rotation - from the coordinate
axis used in Ref. [12]. As such, the l = 2 Zerilli-Moncrief
wavefunction, for example, has contributions from az-
imuthal numbers m = 0,±2. Note also that it is easy to

1 Incidentally, we note that all these features (namely time delay,
echoes, modulation, and high-frequency filtering) are precisely
what one would expect by the scattering of sound waves in a
finite-size cavity.
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perturbations of a Schwarzschild BH compared to the case
of wormholes [12] and of star-like ECOs with a regular cen-
ter [22]. The precise location of the center of the star is model-
dependent and was chosen for visual clarity. The maximum
and minimum of the potential corresponds approximately to
the location of the unstable and stable PS, and the correspon-
dence is exact in the eikonal limit of large angular number l.
In the wormhole case, modes can be trapped between the
PSs in the two “universes”. In the star-like case, modes are
trapped between the PS and the centrifugal barrier near the
center of the star [28–30]. In all cases the potential is of fi-
nite height, and the modes leak away, with higher-frequency
modes leaking on shorter timescales.

where rmin is the location of the minimum of the potential
shown in Fig. 1. If we consider a microscopic correction
at the horizon scale (` ⌧ M), then the main contribution
to the time delay comes near the radius of the star and
therefore,
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where n is a factor of order unity that takes into account
the structure of the objects. For wormholes, n = 8 to
account for the fact that the signal is reflected by the
two maxima in Fig. 1, whereas for our thin-shell gravas-
tar model and the empty-shell model it is easy to check
that n = 6 and n = 4, respectively. The results shown in
Fig. 2 for ` = 10�6M are perfectly consistent with this
picture, with the wormhole case displaying longer echo
delays than the other cases with the same compactness.
Our results show that the dependence on ` is indeed log-
arithmically for all the ECOs we studied.

As argued in Ref. [12], the logarithmic dependence dis-
played in Eq. (6) implies that even Planckian corrections
(` ⇡ LP = 2 ⇥ 10�33 cm) appear relatively soon after
the main burst of radiation, so they might leave an ob-

servable imprint in the GW signal at late times. From
Eq. (6), a typical time delay reads

�t ⇠ 54(n/4)M30
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where M30 := M/(30M�).
The picture of GW signal scattered o↵ the potential

barrier is also supported by two further features shown
in Fig. 2, namely the modulation and the distortion of
the echo signal. In general, modulation is due to the
slow leaking of the echo modes, which contain less en-
ergy than the initial one. In the wormhole case, this
e↵ect is stronger due to the fact that modes can also leak
to the “other universe” through tunneling at the second
peak of the potential. While the amplitude of the echoes
is model-dependent, for a given model it depends only
mildly on `. Distortion is also due to the potential bar-
rier, which acts as a low-pass filter and reflects only the
low-frequency, quasibound echo modes. This implies that
each echo is a low-frequency filtered version of the previ-
ous one and the original shape of the mode gets quickly
washed out after a few echoes1.

B. Waves generated by infalling or scattered
particles

The features above are observed in a simple scattering
process, but are also evident in the GW signal produced
by head-on collisions or close encounters, in the test-
particle limit. The latter di↵er from the radial plunge
studied in Ref. [12] in that their pericenter rmin > 3M ,
i.e. the particle does not cross the radius of the PS
(in fact, scattered particles in the Schwarzschild geom-
etry can never get inside the r = 4M surface). In
order to compute the GW signal, we use the Regge-
Wheeler-Zerilli decomposition reviewed in Appendix B
(cf. Ref. [31] for details).
We have studied the GW emitted during collisions or

scatters between point particles and ECOs; again the
general qualitative features are the same as those dis-
cussed in Section IIA and independent of the nature
of the ECO. To be specific, we show in Fig. 3 the Zer-
illi wavefunction for a point particle plunging into (left
panel) or scattering o↵ a wormhole with ` = 10�6M , with
initial Lorentz boost E = 1.5. The coordinate system we
use is such that the particles are moving along the equa-
tor, and it di↵ers - by a ⇡/2 rotation - from the coordinate
axis used in Ref. [12]. As such, the l = 2 Zerilli-Moncrief
wavefunction, for example, has contributions from az-
imuthal numbers m = 0,±2. Note also that it is easy to

1 Incidentally, we note that all these features (namely time delay,
echoes, modulation, and high-frequency filtering) are precisely
what one would expect by the scattering of sound waves in a
finite-size cavity.
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Ø Theoretical predictions still in early stages

Ø Numerical waveforms for specific black hole mimickers + smaller object: 
§ “Straw man” exotic object
§ Much higher mass ratio than the systems we currently see with LIGO/Virgo

Ø When searching for echoes, in practice one often assumes that echoes will be 
damped and widened copies of (part of) the merger/ringdown signal

Ø Alternatively: morphology-independent search for echoes

Gravitational wave echoes

Abedi et al., PRD 96, 082004 (2017)
Westerweck et al., PRD 97, 124037 (2018)
Lo et al., PRD 99, 084052 (2019)



Ø Morphology-independent search for echoes:

§ Decompose data into generalized wavelets: succession of sine-Gaussians

§ Compare 3 hypotheses for data from a network of detectors: 
: data consists of signal + noise
: data consists of instrumental glitches + noise
: data consists only of noise 

§ A signal is by definition coherent between detectors, and consistent with a 
particular sky position and source orientation
• If a signal is present,             has less degrees of freedom than
• Bayesian analysis will then favor             over                            

Gravitational wave echoes

Characterized by 9 intrinsic parameters:
overall amplitude
time between sine-Gaussians
damping factor
phase difference
widening factor
time of first echo
central frequency
reference phase
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Ø Ratio of evidences for signal versus glitch: Bayes factor 

Ø Analysis of data following the detections of binary coalescences in the 1st and 
2nd observing runs of Advanced LIGO/Virgo:

Ø Similarly for Bayes factor signal versus noise, 

Ø No statistically significant evidence for echoes following these events

Gravitational wave echoes

Tsang et al., PRD 98, 024023 (2018) 
Tsang et al., PRD 101, 064012 (2020)
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• Signal reconstructions:

Gravitational wave echoes

Tsang et al., PRD 101, 064012 (2020)



Ø Laser Interferometer Space 
Antenna

Ø Three probes in orbit around 
the Sun, exchanging laser 
beams
§ Triangle with sides of a few 

million kilometers
§ Sensitive to low frequencies 

(10-4 Hz - 0.1 Hz)
§ Approved by ESA for launch in 

2034

Ø Different kinds of sources: 
§ Merging supermassive binary 

black holes (105 – 1010 Msun)
§ Smaller objects in 

complicated orbits around 
supermassive black hole

LISA: A gravitational wave detector in space (2034)



Ø Next-generation ground-
based facilities
§ Factor 10 improvement in 

sensitivity over LIGO/Virgo 
design sensitivity

§ Merging binary black holes                        
(3 – 104 Msun) and neutron stars 
throughout the visible Universe

§ 105 detections per year!

Einstein Telescope and Cosmic Explorer (2035?)

Cosmological 
reach of 3G

Stefan Hild LVC Maastricht, Sep 2018 Slide 8
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Ø The first direct detection of gravitational waves has enabled 
unprecedented tests of general relativity:
§ First access to genuinely strong-field dynamics of vacuum spacetime
§ Propagation of gravitational waves over large distances
§ Probing the nature of compact objects

Ø Some highlights:
§ Higher post-Newtonian coefficients constrained at ~10% level
§ Graviton mass mg < 1.76 x 10-23 eV/c2

§ Speed of gravity = speed of light to 1 part in 1015

§ Spin-induced quadrupole moment during inspiral:                             
Access to expected values for boson stars

§ No-hair test consistent with no deviations at 25% level
§ Area increase theorem passes at > 95% probability

Ø Ultra-high precision tests with next-generation observatories:           
LISA, Einstein Telescope, Cosmic Explorer
§ Higher accuracy
§ Larger number of sources
§ Propagation of gravitational waves over cosmological distances

Summary


