

Stochasticity of the BKL scenario

Włodzimierz Piechocki

Department of Fundamental Research
National Centre for Nuclear Research
Warsaw, Poland

Theory of Relativity Seminar

(IFT FUW and DBP NCBJ)

Based on:

- [1] [P. Goldstein and WP](#),
"Generic instability of the dynamics underlying
the Belinski-Khalatnikov-Lifshitz scenario",
[Eur. Phys. J. C \(2022\) 82: 216](#).
- [2] [A. Góźdź, A. Pędrak, and WP](#),
"Quantum dynamics corresponding to chaotic BKL scenario",
[Eur. Phys. J. C \(2023\), to be published](#),
[arXiv:2204.11274 \[gr-qc\]](#).
- [3] [V. Belinski and WP](#), collaboration since 2010.

OUTLINE

- 1 Introduction
- 2 BKL conjecture
- 3 Dynamics of massive model of BKL scenario
- 4 Solution to the BKL scenario
- 5 Chaos of classical BKL scenario
- 6 Quantization of BKL scenario
 - Configuration space
 - Hilbert space
 - Quantum observables
 - Quantum dynamics
- 7 Stochasticity of quantum BKL scenario
- 8 Conclusions
- 9 Appendix A
- 10 Appendix B
- 11 Appendix C

Introduction

- A. Friedmann model (1922)
 - ▶ assumes **isotropy** and **homogeneity** of space
 - ▶ solution includes gravitational **singularity**
- E. Lifshitz analysed Friedmann's solution (1946):
isotropy is **unstable** in the evolution towards singularity
- In late 50-ties relativists (USSR, USA) began examination of models with homogeneous but **anisotropic** space, i.e., Bianchi-type models.

Introduction

- A. Friedmann model (1922)
 - ▶ assumes **isotropy** and **homogeneity** of space
 - ▶ solution includes gravitational **singularity**
- E. Lifshitz analysed Friedmann's solution (1946):
isotropy is **unstable** in the evolution towards singularity

E. M. Lifshitz, J. Phys., U. S. S. R. **10**, 116 (1946); E. M. Lifshitz and I. M. Khalatnikov, Adv. Phys. **12**, 185 (1963)

- In late 50-ties relativists (USSR, USA) began examination of models with homogeneous but **anisotropic** space, i.e., Bianchi-type models.

Introduction

- A. Friedmann model (1922)
 - ▶ assumes **isotropy** and **homogeneity** of space
 - ▶ solution includes gravitational **singularity**
- E. Lifshitz analysed Friedmann's solution (1946):
isotropy is **unstable** in the evolution towards singularity

E. M. Lifshitz, J. Phys., U. S. S. R. **10**, 116 (1946); E. M. Lifshitz and I. M. Khalatnikov, Adv. Phys. **12**, 185 (1963)

- In late 50-ties relativists (USSR, USA) began examination of models with homogeneous but **anisotropic** space, i.e., Bianchi-type models.

Belinskii-Khalatnikov-Lifshitz (BKL) conjecture

- Dynamics of BVIII and BIX was analyzed to get insight into the dynamics of spacetime near the cosmological spacelike singularity

V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, *Adv. Phys.* **19**, 525 (1970)

- BKL conjecture states:
general relativity implies the existence of generic solution that is singular (incomplete geodesics and diverging invariants)
 - ▶ corresponds to non-zero measure subset of all initial data
 - ▶ is stable against perturbation of initial data
 - ▶ depends on proper number of arbitrary functions defined on space part of spacetime

V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, *Adv. Phys.* **31**, 639 (1982)

Belinskii-Khalatnikov-Lifshitz (BKL) conjecture

- Dynamics of BVIII and BIX was analyzed to get insight into the dynamics of spacetime near the cosmological spacelike singularity

V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, *Adv. Phys.* **19**, 525 (1970)

- BKL conjecture states:
general relativity implies the existence of generic solution that is singular (incomplete geodesics and diverging invariants)

- ▶ corresponds to non-zero measure subset of all initial data
- ▶ is stable against perturbation of initial data
- ▶ depends on proper number of arbitrary functions defined on space part of spacetime

V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, *Adv. Phys.* **31**, 639 (1982)

Belinskii-Khalatnikov-Lifshitz (BKL) conjecture

- Dynamics of BVIII and BIX was analyzed to get insight into the dynamics of spacetime near the cosmological spacelike singularity

V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, *Adv. Phys.* **19**, 525 (1970)

- BKL conjecture states:
general relativity implies the existence of generic solution that is singular (incomplete geodesics and diverging invariants)
 - ▶ corresponds to non-zero measure subset of all initial data
 - ▶ is stable against perturbation of initial data
 - ▶ depends on proper number of arbitrary functions defined on space part of spacetime

V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, *Adv. Phys.* **31**, 639 (1982)

BKL conjecture and singularity theorems

- The Penrose-Hawking singularity theorems (of 60-ties) concern possible existence of **incomplete** geodesics in spacetime, but incompleteness does not mean (in general) that the invariants diverge.
- These theorems say **little** about the **dynamics** of gravitational field **near** singularities so that are of **little** usefulness in the context of finding corresponding **quantum** dynamics.
- In what follows we focus our attention on the **BKL treatment** of singularities.

BKL conjecture and singularity theorems

- The Penrose-Hawking singularity theorems (of 60-ties) concern possible existence of **incomplete** geodesics in spacetime, but incompleteness does not mean (in general) that the invariants diverge.
- These theorems say **little** about the **dynamics** of gravitational field **near** singularities so that are of **little** usefulness in the context of finding corresponding **quantum** dynamics.
- In what follows we focus our attention on the **BKL treatment** of singularities.

Models of the BKL scenario

The BKL scenario presents a very **complicated dynamics** so that to work with it one needs to use **models**.

There exist two convenient models:

- the **vacuum** model of the BKL scenario (called mixmaster); vacuum BIX model; **exact** model of the dynamics

V. Belinski and I. Khalatnikov, Soviet Physics JETP **29**, 911 (1969).

C. W. Misner, Phys. Rev. Lett. **22**, 1071 (1969).

- the **massive** model of the BKL scenario; includes effectively some contribution from **matter** field; presents **asymptotic** dynamics near the singularity of BIX model

Derived by V. Belinski, I. Khalatnikov, and M. Ryan in 1971; M. P. Ryan, Ann. Phys. **70**, 301 (1971)

E. Czuchry and W. P., Phys. Rev. D **87**, 084021 (2013)

Models of the BKL scenario

The BKL scenario presents a very **complicated** dynamics so that to work with it one needs to use **models**.

There exist two convenient models:

- the **vacuum** model of the BKL scenario (called mixmaster); vacuum BIX model; **exact** model of the dynamics

V. Belinski and I. Khalatnikov, Soviet Physics JETP **29**, 911 (1969).

C. W. Misner, Phys. Rev. Lett. **22**, 1071 (1969).

- the **massive** model of the BKL scenario; includes effectively some contribution from **matter** field; presents **asymptotic** dynamics near the singularity of BIX model

Derived by V. Belinski, I. Khalatnikov, and M. Ryan in 1971; M. P. Ryan, Ann. Phys. **70**, 301 (1971)

E. Czuchry and W. P., Phys. Rev. D **87**, 084021 (2013)

Models of the BKL scenario

The BKL scenario presents a very **complicated** dynamics so that to work with it one needs to use **models**.

There exist two convenient models:

- the **vacuum** model of the BKL scenario (called mixmaster); vacuum BIX model; **exact** model of the dynamics

V. Belinski and I. Khalatnikov, Soviet Physics JETP **29**, 911 (1969).

C. W. Misner, Phys. Rev. Lett. **22**, 1071 (1969).

- the **massive** model of the BKL scenario; includes effectively some contribution from **matter** field; presents **asymptotic** dynamics near the singularity of BIX model

Derived by V. Belinski, I. Khalatnikov, and M. Ryan in 1971; M. P. Ryan, Ann. Phys. **70**, 301 (1971)

E. Czuchry and W. P., Phys. Rev. D **87**, 084021 (2013)

Dynamics of massive model of the BKL scenario

In what follows we consider the dynamics of the massive model:

$$\frac{d^2 \ln a}{dt^2} = \frac{b}{a} - a^2, \quad \frac{d^2 \ln b}{dt^2} = a^2 - \frac{b}{a} + \frac{c}{b}, \quad \frac{d^2 \ln c}{dt^2} = a^2 - \frac{c}{b}, \quad (1)$$

where $a = a(t) > 0$, $b = b(t) > 0$, $c = c(t) > 0$ are effective directional **scale factors**, and $t \in \mathbb{R}$ is a monotonic function of **proper time**.

The solutions to (1) must satisfy the **constraint**

$$\frac{d \ln a}{dt} \frac{d \ln b}{dt} + \frac{d \ln a}{dt} \frac{d \ln c}{dt} + \frac{d \ln b}{dt} \frac{d \ln c}{dt} = a^2 + \frac{b}{a} + \frac{c}{b}. \quad (2)$$

Eqs (1)-(2) present the **essence** of the dynamics underlying the BKL scenario.

Dynamics of massive model of the BKL scenario

In what follows we consider the dynamics of the massive model:

$$\frac{d^2 \ln a}{dt^2} = \frac{b}{a} - a^2, \quad \frac{d^2 \ln b}{dt^2} = a^2 - \frac{b}{a} + \frac{c}{b}, \quad \frac{d^2 \ln c}{dt^2} = a^2 - \frac{c}{b}, \quad (1)$$

where $a = a(t) > 0$, $b = b(t) > 0$, $c = c(t) > 0$ are effective directional **scale factors**, and $t \in \mathbb{R}$ is a monotonic function of **proper** time.

The solutions to (1) must satisfy the **constraint**

$$\frac{d \ln a}{dt} \frac{d \ln b}{dt} + \frac{d \ln a}{dt} \frac{d \ln c}{dt} + \frac{d \ln b}{dt} \frac{d \ln c}{dt} = a^2 + \frac{b}{a} + \frac{c}{b}. \quad (2)$$

Eqs (1)-(2) present the **essence** of the dynamics underlying the BKL scenario.

Dynamics of massive model of the BKL scenario

In what follows we consider the dynamics of the massive model:

$$\frac{d^2 \ln a}{dt^2} = \frac{b}{a} - a^2, \quad \frac{d^2 \ln b}{dt^2} = a^2 - \frac{b}{a} + \frac{c}{b}, \quad \frac{d^2 \ln c}{dt^2} = a^2 - \frac{c}{b}, \quad (1)$$

where $a = a(t) > 0$, $b = b(t) > 0$, $c = c(t) > 0$ are effective directional **scale factors**, and $t \in \mathbb{R}$ is a monotonic function of **proper** time.

The solutions to (1) must satisfy the **constraint**

$$\frac{d \ln a}{dt} \frac{d \ln b}{dt} + \frac{d \ln a}{dt} \frac{d \ln c}{dt} + \frac{d \ln b}{dt} \frac{d \ln c}{dt} = a^2 + \frac{b}{a} + \frac{c}{b}. \quad (2)$$

Eqs (1)-(2) present the **essence** of the dynamics underlying the BKL scenario.

BKL scenario (cont)

Massive model of BKL scenario has numerical support (via considering general BIX):

- Simulations of the dynamics near the singularity confirm the asymptotic dynamics

C. Kiefer, N. Kwidzinski, and W.P., Eur. Phys. J. C (2018) 78:691

- Kretschman's curvature invariant diverge in the evolution towards the singularity

N. Kwidzinski and W.P., Eur. Phys. J. C (2019) 79:199

Solution to the BKL scenario

We have found exact **solution** to the dynamics (1)–(2):

P. Goldstein and W.P., Eur. Phys. J. C (2022) 82: 216

$$\tilde{a}(t) = \frac{3}{t - t_0}, \quad \tilde{b}(t) = \frac{30}{(t - t_0)^3}, \quad \tilde{c}(t) = \frac{120}{(t - t_0)^5}, \quad (3)$$

where $t > t_0$ and where $t_0 < 0$ is an arbitrary real number.

The solution (3) is **unstable** against small **perturbation**:

$$a(t) = \tilde{a}(t) + \epsilon\alpha(t), \quad (4a)$$

$$b(t) = \tilde{b}(t) + \epsilon\beta(t), \quad (4b)$$

$$c(t) = \tilde{c}(t) + \epsilon\gamma(t), \quad (4c)$$

Solution to the BKL scenario

We have found exact **solution** to the dynamics (1)–(2):

P. Goldstein and W.P., Eur. Phys. J. C (2022) 82: 216

$$\tilde{a}(t) = \frac{3}{t - t_0}, \quad \tilde{b}(t) = \frac{30}{(t - t_0)^3}, \quad \tilde{c}(t) = \frac{120}{(t - t_0)^5}, \quad (3)$$

where $t > t_0$ and where $t_0 < 0$ is an arbitrary real number.

The solution (3) is **unstable** against small **perturbation**:

$$a(t) = \tilde{a}(t) + \epsilon\alpha(t), \quad (4a)$$

$$b(t) = \tilde{b}(t) + \epsilon\beta(t), \quad (4b)$$

$$c(t) = \tilde{c}(t) + \epsilon\gamma(t), \quad (4c)$$

Solution to the BKL scenario (cont)

Inserting (4) into (1)–(2) leads, in the first order in ϵ , to the following **exact solution** of the resulting equations:

$$\alpha(t) = \exp(-\theta/2) [K_1 \cos(\omega_1 \theta + \varphi_1) + K_2 \cos(\omega_2 \theta + \varphi_2)] + K_3 \exp(-2\theta), \quad (5a)$$

$$\beta(t) = \exp(-5\theta/2) [(4 + 6\sqrt{6})K_1 \cos(\omega_1 \theta + \varphi_1) + (4 - 6\sqrt{6})K_2 \cos(\omega_2 \theta + \varphi_2)] + 30K_3 \exp(-4\theta), \quad (5b)$$

$$+ (26 + 9\sqrt{6})K_1 \cos(\omega_1 \theta + \varphi_1) + (26 - 9\sqrt{6})K_2 \cos(\omega_2 \theta + \varphi_2)] + 200K_3 \exp(-6\theta), \quad (5c)$$

$$\gamma(t) = -4 \exp(-9\theta/2) [(26 + 9\sqrt{6})K_1 \cos(\omega_1 \theta + \varphi_1) + (26 - 9\sqrt{6})K_2 \cos(\omega_2 \theta + \varphi_2)] + 200K_3 \exp(-6\theta), \quad (5d)$$

$$+ (26 + 9\sqrt{6})K_1 \cos(\omega_1 \theta + \varphi_1) + (26 - 9\sqrt{6})K_2 \cos(\omega_2 \theta + \varphi_2)] + 200K_3 \exp(-6\theta), \quad (5e)$$

where $\theta = \ln(t - t_0)$. The two frequencies read

$$\omega_1 = \frac{1}{2} \sqrt{95 - 24\sqrt{6}}, \quad \omega_2 = \frac{1}{2} \sqrt{95 + 24\sqrt{6}},$$

where $K_1, K_2, K_3, \varphi_1, \varphi_2$ are arbitrary (to some extent) **constants**.

Chaotic phase of the BKL scenario

- The manifold \mathcal{M} defined by $\{K_1, K_2, K_3, \varphi_1, \varphi_2\}$ is a submanifold of \mathbb{R}^5 . Thus, (5) presents **generic** solution as the measure of \mathcal{M} is **nonzero**.
- The **relative** perturbations $\alpha/a, \beta/b$, and γ/c grow as $\exp(\frac{1}{2}\theta)$.
 - ▶ The multiplier $1/2$ plays the role of a **Lyapunov** exponent, describing the rate of divergences.
 - ▶ Since it is **positive**, the evolution of the system towards the gravitational singularity ($\theta \rightarrow +\infty$) is **chaotic**.
- **Chaos** results from strong **nonlinearity** of the dynamics and growing **curvature** of spacetime (increasing effectively the nonlinearity) in the evolution towards the **singularity**.

Chaotic phase of the BKL scenario

- The manifold \mathcal{M} defined by $\{K_1, K_2, K_3, \varphi_1, \varphi_2\}$ is a submanifold of \mathbb{R}^5 . Thus, (5) presents **generic** solution as the measure of \mathcal{M} is **nonzero**.
- The **relative** perturbations $\alpha/a, \beta/b$, and γ/c grow as $\exp(\frac{1}{2}\theta)$.
 - ▶ The multiplier $1/2$ plays the role of a **Lyapunov** exponent, describing the rate of divergences.
 - ▶ Since it is **positive**, the evolution of the system towards the gravitational singularity ($\theta \rightarrow +\infty$) is **chaotic**.
- Chaos results from strong **nonlinearity** of the dynamics and growing **curvature** of spacetime (increasing effectively the nonlinearity) in the evolution towards the **singularity**.

Chaotic phase of the BKL scenario

- The manifold \mathcal{M} defined by $\{K_1, K_2, K_3, \varphi_1, \varphi_2\}$ is a submanifold of \mathbb{R}^5 . Thus, (5) presents **generic** solution as the measure of \mathcal{M} is **nonzero**.
- The **relative** perturbations $\alpha/a, \beta/b$, and γ/c grow as $\exp(\frac{1}{2}\theta)$.
 - ▶ The multiplier $1/2$ plays the role of a **Lyapunov** exponent, describing the rate of divergences.
 - ▶ Since it is **positive**, the evolution of the system towards the gravitational singularity ($\theta \rightarrow +\infty$) is **chaotic**.
- **Chaos** results from strong **nonlinearity** of the dynamics and growing **curvature** of spacetime (increasing effectively the nonlinearity) in the evolution towards the **singularity**.

Chaotic phase of BKL scenario (cont)

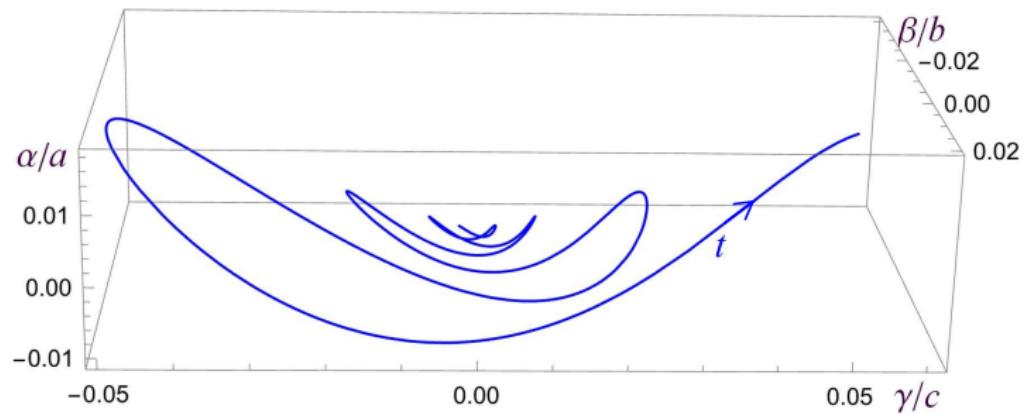


Figure: Linear **instability** of the special solution (3). The graph presents the parametric curve defined by the time dependence of α/a , β/b , and γ/c .

Quantization of the BKL scenario

In what follows, we **quantize** the BKL scenario by making use of the **integral** quantization method (IQM).

We have already quantized **Hamilton's** dynamics of that scenario **ignoring** its **chaotic** phase

- quantum singularity **turns** into quantum bounce
- quantum evolution is **unitary** across quantum bounce

A. Góźdź, W.P., and G. Plewa, Eur. Phys. J. C **79**, 45 (2019); A. Góźdź and W.P., Eur. Phys. J. C **80**, 142 (2020)

Quantization of the **chaotic** phase of the BKL scenario:

- we do not quantize Hamilton's dynamics, but the **solution** to the BKL scenario
- we quantize both **temporal** and **spatial** variables to support general covariance of GR

Quantization of the BKL scenario

In what follows, we **quantize** the BKL scenario by making use of the **integral** quantization method (IQM).

We have already quantized **Hamilton's** dynamics of that scenario **ignoring** its **chaotic** phase

- quantum singularity **turns** into quantum bounce
- quantum evolution is **unitary** across quantum bounce

A. Góźdź, W.P., and G. Plewa, Eur. Phys. J. C **79**, 45 (2019); A. Góźdź and W.P., Eur. Phys. J. C **80**, 142 (2020)

Quantization of the **chaotic** phase of the BKL scenario:

- we do not quantize Hamilton's dynamics, but the **solution** to the BKL scenario
- we quantize both **temporal** and **spatial** variables to support general covariance of GR

Quantization of the BKL scenario

In what follows, we **quantize** the BKL scenario by making use of the **integral** quantization method (IQM).

We have already quantized **Hamilton's** dynamics of that scenario **ignoring** its **chaotic** phase

- quantum singularity **turns** into quantum bounce
- quantum evolution is **unitary** across quantum bounce

A. Góźdź, W.P., and G. Plewa, Eur. Phys. J. C **79**, 45 (2019); A. Góźdź and W.P., Eur. Phys. J. C **80**, 142 (2020)

Quantization of the **chaotic** phase of the BKL scenario:

- we do not quantize Hamilton's dynamics, but the **solution** to the BKL scenario
- we quantize both **temporal** and **spatial** variables to support general covariance of GR

Quantization of the BKL scenario

In what follows, we **quantize** the BKL scenario by making use of the **integral** quantization method (IQM).

We have already quantized **Hamilton's** dynamics of that scenario **ignoring** its **chaotic** phase

- quantum singularity **turns** into quantum bounce
- quantum evolution is **unitary** across quantum bounce

A. Góźdź, W.P., and G. Plewa, Eur. Phys. J. C **79**, 45 (2019); A. Góźdź and W.P., Eur. Phys. J. C **80**, 142 (2020)

Quantization of the **chaotic** phase of the BKL scenario:

- we do not quantize Hamilton's dynamics, but the **solution** to the BKL scenario
- we quantize both **temporal** and **spatial** variables to support general covariance of GR

Quantization of the BKL scenario (cont)

Two **novelties**:

- direct quantization of the **solution** to the classical dynamics instead of physical Hamiltonian
- quantization of time variable **on the same footing** as spatial variables

In what follows we apply the **IQM** to the **chaotic BKL scenario**.

For details of IQM, see Appendix A.

Quantization of the BKL scenario (cont)

Two **novelties**:

- direct quantization of the **solution** to the classical dynamics instead of physical Hamiltonian
- quantization of time variable **on the same footing** as spatial variables

In what follows we apply the **IQM** to the **chaotic** BKL scenario.

For details of IQM, see [Appendix A](#).

Configuration space

Definition of the configuration space:

$$T = \{\xi = (\xi_1, \xi_2, \xi_3, \xi_4, \xi_5, \xi_6) : \xi \in (\mathbb{R} \times \mathbb{R}_+) \times (\mathbb{R} \times \mathbb{R}_+) \times (\mathbb{R} \times \mathbb{R}_+)\}, \quad (6)$$

where every pair (ξ_k, ξ_{k+1}) , $(k = 1, 3, 5)$, parameterizes the affine group $\text{Aff}(\mathbb{R})$.

ξ_1, ξ_3 , and ξ_5 denote 3 **time** variable;

scale factors are denoted as follows: $\xi_2 = a, \xi_4 = b, \xi_6 = c$.

Because $a, b, c > 0$ and $\xi_1, \xi_3, \xi_5 \in \mathbb{R}$, the configuration space parameterizes the simple product of 3 affine groups

$\text{Aff}(\mathbb{R}) \times \text{Aff}(\mathbb{R}) \times \text{Aff}(\mathbb{R}) =: G$ to be used in quantization.

As the observational **data** are parameterized by a **single** time parameter, the variables $\{\xi_1, \xi_3, \xi_5\}$ should be mapped onto a single variable representing **time**.

Configuration space

Definition of the **configuration** space:

$$T = \{\xi = (\xi_1, \xi_2, \xi_3, \xi_4, \xi_5, \xi_6) : \xi \in (\mathbb{R} \times \mathbb{R}_+) \times (\mathbb{R} \times \mathbb{R}_+) \times (\mathbb{R} \times \mathbb{R}_+) \}, \quad (6)$$

where every pair (ξ_k, ξ_{k+1}) , $(k = 1, 3, 5)$, parameterizes the affine group $\text{Aff}(\mathbb{R})$.

ξ_1, ξ_3 , and ξ_5 denote 3 **time** variable;

scale factors are denoted as follows: $\xi_2 = a, \xi_4 = b, \xi_6 = c$.

Because $a, b, c > 0$ and $\xi_1, \xi_3, \xi_5 \in \mathbb{R}$, the configuration space parameterizes the simple product of 3 affine groups

$\text{Aff}(\mathbb{R}) \times \text{Aff}(\mathbb{R}) \times \text{Aff}(\mathbb{R}) =: G$ to be used in quantization.

As the observational **data** are parameterized by a **single** time parameter, the variables $\{\xi_1, \xi_3, \xi_5\}$ should be mapped onto a single variable representing **time**.

Configuration space

Definition of the **configuration** space:

$$T = \{\xi = (\xi_1, \xi_2, \xi_3, \xi_4, \xi_5, \xi_6) : \xi \in (\mathbb{R} \times \mathbb{R}_+) \times (\mathbb{R} \times \mathbb{R}_+) \times (\mathbb{R} \times \mathbb{R}_+)\}, \quad (6)$$

where every pair (ξ_k, ξ_{k+1}) , $(k = 1, 3, 5)$, parameterizes the affine group $\text{Aff}(\mathbb{R})$.

ξ_1, ξ_3 , and ξ_5 denote 3 **time** variable;

scale factors are denoted as follows: $\xi_2 = a, \xi_4 = b, \xi_6 = c$.

Because $a, b, c > 0$ and $\xi_1, \xi_3, \xi_5 \in \mathbb{R}$, the configuration space parameterizes the simple product of 3 affine groups

$\text{Aff}(\mathbb{R}) \times \text{Aff}(\mathbb{R}) \times \text{Aff}(\mathbb{R}) =: G$ to be used in quantization.

As the observational **data** are parameterized by a **single** time parameter, the variables $\{\xi_1, \xi_3, \xi_5\}$ should be mapped onto a single variable representing **time**.

Hilbert space

The direct product of three affine groups G has the unitary irreducible representation in the following Hilbert space:

$\mathcal{H} = \mathcal{H}_{x_1} \otimes \mathcal{H}_{x_2} \otimes \mathcal{H}_{x_3} = L^2(\mathbb{R}_+^3, d\nu(x_1, x_2, x_3)),$
where $d\nu(x_1, x_2, x_3) = d\nu(x_1)d\nu(x_2)d\nu(x_3)$.

It enables defining in \mathcal{H} the continuous family of affine coherent states $\langle x_1, x_2, x_3 | \xi_1, \xi_2; \xi_3, \xi_4; \xi_5, \xi_6 \rangle := \langle x_1 | \xi_1, \xi_2 \rangle \langle x_2 | \xi_3, \xi_4 \rangle \langle x_3 | \xi_5, \xi_6 \rangle$, as follows

$$\mathcal{H} \ni \langle x_1, x_2, x_3 | \xi_1, \xi_2; \xi_3, \xi_4; \xi_5, \xi_6 \rangle := U(\xi) \Phi_0(x_1, x_2, x_3), \quad (7)$$

where $U(\xi) := U(\xi_1, \xi_2)U(\xi_3, \xi_4)U(\xi_5, \xi_6)$, and

$|\xi_1, \xi_2; \xi_3, \xi_4; \xi_5, \xi_6 \rangle := |\xi_1, \xi_2\rangle |\xi_3, \xi_4\rangle |\xi_5, \xi_6\rangle$ and where

$$\mathcal{H} \ni \Phi_0(x_1, x_2, x_3) = \Phi_1(x_1)\Phi_2(x_2)\Phi_3(x_3). \quad (8)$$

Hilbert space

The direct product of three affine groups G has the unitary irreducible representation in the following Hilbert space:

$$\mathcal{H} = \mathcal{H}_{x_1} \otimes \mathcal{H}_{x_2} \otimes \mathcal{H}_{x_3} = L^2(\mathbb{R}_+^3, d\nu(x_1, x_2, x_3)),$$

where $d\nu(x_1, x_2, x_3) = d\nu(x_1)d\nu(x_2)d\nu(x_3)$.

It enables defining in \mathcal{H} the continuous family of affine coherent states $\langle x_1, x_2, x_3 | \xi_1, \xi_2; \xi_3, \xi_4; \xi_5, \xi_6 \rangle := \langle x_1 | \xi_1, \xi_2 \rangle \langle x_2 | \xi_3, \xi_4 \rangle \langle x_3 | \xi_5, \xi_6 \rangle$, as follows

$$\mathcal{H} \ni \langle x_1, x_2, x_3 | \xi_1, \xi_2; \xi_3, \xi_4; \xi_5, \xi_6 \rangle := U(\xi) \Phi_0(x_1, x_2, x_3), \quad (7)$$

where $U(\xi) := U(\xi_1, \xi_2)U(\xi_3, \xi_4)U(\xi_5, \xi_6)$, and

$|\xi_1, \xi_2; \xi_3, \xi_4; \xi_5, \xi_6\rangle := |\xi_1, \xi_2\rangle |\xi_3, \xi_4\rangle |\xi_5, \xi_6\rangle$ and where

$$\mathcal{H} \ni \Phi_0(x_1, x_2, x_3) = \Phi_1(x_1)\Phi_2(x_2)\Phi_3(x_3). \quad (8)$$

Quantization of observables

The resolution of the **identity** in \mathcal{H} can be used for **mapping** a classical observable $f : T \rightarrow \mathbb{R}$ into an **operator** $\hat{f} : \mathcal{H} \rightarrow \mathcal{H}$ as follows

$$\begin{aligned}\hat{f} &:= \frac{1}{A_\phi} \int_G d\mu(\xi) |\xi\rangle f(\xi) \langle \xi| \\ &= \frac{1}{A_{\Phi_1} A_{\Phi_3} A_{\Phi_5}} \int_{\text{Aff}(\mathbb{R})} d\mu(\xi_1, \xi_2) \int_{\text{Aff}(\mathbb{R})} d\mu(\xi_3, \xi_4) \int_{\text{Aff}(\mathbb{R})} d\mu(\xi_5, \xi_6) \\ &\quad |\xi_1, \xi_2; \xi_3, \xi_4; \xi_5, \xi_6\rangle f(\xi_1, \xi_2; \xi_3, \xi_4; \xi_5, \xi_6) \langle \xi_1, \xi_2; \xi_3, \xi_4; \xi_5, \xi_6|.\end{aligned}\quad (9)$$

There exist two important characteristics of quantum observables:

- expectation values and variances; they allow to **compare** quantum and classical worlds
- they **correspond** to classical values of **measured** quantities; variances describe quantum **smearing** of observables.

For definition of variance of observable, see Appendix B.

Quantization of observables

The resolution of the **identity** in \mathcal{H} can be used for **mapping** a classical observable $f : T \rightarrow \mathbb{R}$ into an **operator** $\hat{f} : \mathcal{H} \rightarrow \mathcal{H}$ as follows

$$\begin{aligned}\hat{f} &:= \frac{1}{A_\phi} \int_G d\mu(\xi) |\xi\rangle f(\xi) \langle \xi| \\ &= \frac{1}{A_{\Phi_1} A_{\Phi_3} A_{\Phi_5}} \int_{\text{Aff}(\mathbb{R})} d\mu(\xi_1, \xi_2) \int_{\text{Aff}(\mathbb{R})} d\mu(\xi_3, \xi_4) \int_{\text{Aff}(\mathbb{R})} d\mu(\xi_5, \xi_6) \\ &\quad |\xi_1, \xi_2; \xi_3, \xi_4; \xi_5, \xi_6\rangle f(\xi_1, \xi_2; \xi_3, \xi_4; \xi_5, \xi_6) \langle \xi_1, \xi_2; \xi_3, \xi_4; \xi_5, \xi_6|.\end{aligned}\quad (9)$$

There exist two important characteristics of quantum observables:

- expectation values and variances; they allow to **compare** quantum and classical worlds
- they **correspond** to classical values of **measured** quantities; variances describe quantum **smearing** of observables.

For definition of variance of observable, see Appendix B.

Equations of motion

Classical observables should be **related** to their quantum counterparts by the corresponding expectation values.

This idea leads directly to the **conditions** for a family of states

$\{\Psi_\eta(x_1, x_2, x_3) = \langle x_1, x_2, x_3 | \Psi_\eta \rangle, \eta \in \mathbb{R}^s\}$ parameterized by a set of evolution parameters $\eta = (\eta_1, \eta_2, \dots, \eta_s)$ enumerating the set of trial functions. We **require** the states $|\Psi_\eta\rangle$ to satisfy:

$$\langle \Psi_\eta | \hat{\xi}_k | \Psi_\eta \rangle = t, \quad k = 1, 3, 5 \quad (10)$$

$$\langle \Psi_\eta | \hat{\xi}_2 | \Psi_\eta \rangle = a(t), \quad (11)$$

$$\langle \Psi_\eta | \hat{\xi}_4 | \Psi_\eta \rangle = b(t), \quad (12)$$

$$\langle \Psi_\eta | \hat{\xi}_6 | \Psi_\eta \rangle = c(t). \quad (13)$$

Eq. (10) represents the single **time** constraint. The parameter η labels the family of states to be found, and it **should** be a function of t as the r.h.s. of (10)–(13) depends on t . The **solution** of Eqs. (10)–(13) allows to construct the vector state dependent on classical time, $|\Psi_{\eta(t)}\rangle \in \mathcal{H}$. Eqs. (10)–(13) define quantum **equations of motion**.

Equations of motion

Classical observables should be **related** to their quantum counterparts by the corresponding expectation values.

This idea leads directly to the **conditions** for a family of states

$\{\Psi_\eta(x_1, x_2, x_3) = \langle x_1, x_2, x_3 | \Psi_\eta \rangle, \eta \in \mathbb{R}^s\}$ parameterized by a set of evolution parameters $\eta = (\eta_1, \eta_2, \dots, \eta_s)$ enumerating the set of trial functions. We **require** the states $|\Psi_\eta\rangle$ to satisfy:

$$\langle \Psi_\eta | \hat{\xi}_k | \Psi_\eta \rangle = t, \quad k = 1, 3, 5 \quad (10)$$

$$\langle \Psi_\eta | \hat{\xi}_2 | \Psi_\eta \rangle = a(t), \quad (11)$$

$$\langle \Psi_\eta | \hat{\xi}_4 | \Psi_\eta \rangle = b(t), \quad (12)$$

$$\langle \Psi_\eta | \hat{\xi}_6 | \Psi_\eta \rangle = c(t). \quad (13)$$

Eq. (10) represents the single **time** constraint. The parameter η labels the family of states to be found, and it **should** be a function of t as the r.h.s. of (10)–(13) depends on t . The **solution** of Eqs. (10)–(13) allows to construct the vector state dependent on classical time, $|\Psi_{\eta(t)}\rangle \in \mathcal{H}$. Eqs. (10)–(13) define quantum **equations of motion**.

Equations of motion

Classical observables should be **related** to their quantum counterparts by the corresponding expectation values.

This idea leads directly to the **conditions** for a family of states

$\{\Psi_\eta(x_1, x_2, x_3) = \langle x_1, x_2, x_3 | \Psi_\eta \rangle, \eta \in \mathbb{R}^s\}$ parameterized by a set of evolution parameters $\eta = (\eta_1, \eta_2, \dots, \eta_s)$ enumerating the set of trial functions. We **require** the states $|\Psi_\eta\rangle$ to satisfy:

$$\langle \Psi_\eta | \hat{\xi}_k | \Psi_\eta \rangle = t, \quad k = 1, 3, 5 \quad (10)$$

$$\langle \Psi_\eta | \hat{\xi}_2 | \Psi_\eta \rangle = a(t), \quad (11)$$

$$\langle \Psi_\eta | \hat{\xi}_4 | \Psi_\eta \rangle = b(t), \quad (12)$$

$$\langle \Psi_\eta | \hat{\xi}_6 | \Psi_\eta \rangle = c(t). \quad (13)$$

Eq. (10) represents the single **time** constraint. The parameter η labels the family of states to be found, and it **should** be a function of t as the r.h.s. of (10)–(13) depends on t . The **solution** of Eqs. (10)–(13) allows to construct the vector state dependent on classical time, $|\Psi_{\eta(t)}\rangle \in \mathcal{H}$. Eqs. (10)–(13) define quantum **equations of motion**.

Equations of motion

Classical observables should be **related** to their quantum counterparts by the corresponding expectation values.

This idea leads directly to the **conditions** for a family of states

$\{\Psi_\eta(x_1, x_2, x_3) = \langle x_1, x_2, x_3 | \Psi_\eta \rangle, \eta \in \mathbb{R}^s\}$ parameterized by a set of evolution parameters $\eta = (\eta_1, \eta_2, \dots, \eta_s)$ enumerating the set of trial functions. We **require** the states $|\Psi_\eta\rangle$ to satisfy:

$$\langle \Psi_\eta | \hat{\xi}_k | \Psi_\eta \rangle = t, \quad k = 1, 3, 5 \quad (10)$$

$$\langle \Psi_\eta | \hat{\xi}_2 | \Psi_\eta \rangle = a(t), \quad (11)$$

$$\langle \Psi_\eta | \hat{\xi}_4 | \Psi_\eta \rangle = b(t), \quad (12)$$

$$\langle \Psi_\eta | \hat{\xi}_6 | \Psi_\eta \rangle = c(t). \quad (13)$$

Eq. (10) represents the single **time** constraint. The parameter η labels the family of states to be found, and it **should** be a function of t as the r.h.s. of (10)–(13) depends on t . The **solution** of Eqs. (10)–(13) allows to construct the vector state dependent on classical time, $|\Psi_{\eta(t)}\rangle \in \mathcal{H}$. Eqs. (10)–(13) define quantum **equations of motion**.

Equations of motion

Classical observables should be **related** to their quantum counterparts by the corresponding expectation values.

This idea leads directly to the **conditions** for a family of states

$\{\Psi_\eta(x_1, x_2, x_3) = \langle x_1, x_2, x_3 | \Psi_\eta \rangle, \eta \in \mathbb{R}^s\}$ parameterized by a set of evolution parameters $\eta = (\eta_1, \eta_2, \dots, \eta_s)$ enumerating the set of trial functions. We **require** the states $|\Psi_\eta\rangle$ to satisfy:

$$\langle \Psi_\eta | \hat{\xi}_k | \Psi_\eta \rangle = t, \quad k = 1, 3, 5 \quad (10)$$

$$\langle \Psi_\eta | \hat{\xi}_2 | \Psi_\eta \rangle = a(t), \quad (11)$$

$$\langle \Psi_\eta | \hat{\xi}_4 | \Psi_\eta \rangle = b(t), \quad (12)$$

$$\langle \Psi_\eta | \hat{\xi}_6 | \Psi_\eta \rangle = c(t). \quad (13)$$

Eq. (10) represents the single **time** constraint. The parameter η labels the family of states to be found, and it **should** be a function of t as the r.h.s. of (10)–(13) depends on t . The **solution** of Eqs. (10)–(13) allows to construct the vector state dependent on classical time, $|\Psi_{\eta(t)}\rangle \in \mathcal{H}$. Eqs. (10)–(13) define quantum **equations of motion**.

Equations of motion

Classical observables should be **related** to their quantum counterparts by the corresponding expectation values.

This idea leads directly to the **conditions** for a family of states

$\{\Psi_\eta(x_1, x_2, x_3) = \langle x_1, x_2, x_3 | \Psi_\eta \rangle, \eta \in \mathbb{R}^s\}$ parameterized by a set of evolution parameters $\eta = (\eta_1, \eta_2, \dots, \eta_s)$ enumerating the set of trial functions. We **require** the states $|\Psi_\eta\rangle$ to satisfy:

$$\langle \Psi_\eta | \hat{\xi}_k | \Psi_\eta \rangle = t, \quad k = 1, 3, 5 \quad (10)$$

$$\langle \Psi_\eta | \hat{\xi}_2 | \Psi_\eta \rangle = a(t), \quad (11)$$

$$\langle \Psi_\eta | \hat{\xi}_4 | \Psi_\eta \rangle = b(t), \quad (12)$$

$$\langle \Psi_\eta | \hat{\xi}_6 | \Psi_\eta \rangle = c(t). \quad (13)$$

Eq. (10) represents the single **time** constraint. The parameter η labels the family of states to be found, and it **should** be a function of t as the r.h.s. of (10)–(13) depends on t . The **solution** of Eqs. (10)–(13) allows to construct the vector state dependent on classical time, $|\Psi_{\eta(t)}\rangle \in \mathcal{H}$. Eqs. (10)–(13) define quantum **equations of motion**.

Evolving wave packets

Example 1:

The coherent states

$$|CS_\epsilon; t\rangle := |t, a(t), b(t), c(t)\rangle \quad (14)$$

satisfy the equations of motions (10)–(13) with $\tau = t$.

Realization of (14) as a wave packet constructed in the space of square integrable functions $L^2(\mathbb{R}_+^3, d\nu(x_1, x_2, x_3))$ reads

$$\begin{aligned} \Psi_{CS_\epsilon}(t, x_1, x_2, x_3) &= \langle x_1, x_2, x_3 | CS_\epsilon; t \rangle \\ &= e^{it(x_1+x_2+x_3)} \Phi_1(a(t)x_1) \Phi_2(b(t)x_2) \Phi_3(c(t)x_3). \end{aligned} \quad (15)$$

Evolving wave packets

Example 1:

The coherent states

$$|CS_\epsilon; t\rangle := |t, a(t), b(t), c(t)\rangle \quad (14)$$

satisfy the equations of motions (10)–(13) with $\tau = t$.

Realization of (14) as a wave packet constructed in the space of square integrable functions $L^2(\mathbb{R}_+^3, d\nu(x_1, x_2, x_3))$ reads

$$\begin{aligned} \Psi_{CS_\epsilon}(t, x_1, x_2, x_3) &= \langle x_1, x_2, x_3 | CS_\epsilon; t \rangle \\ &= e^{it(x_1+x_2+x_3)} \Phi_1(a(t)x_1) \Phi_2(b(t)x_2) \Phi_3(c(t)x_3). \end{aligned} \quad (15)$$

Evolving wave packets

Example 1:

The coherent states

$$|CS_\epsilon; t\rangle := |t, a(t), b(t), c(t)\rangle \quad (14)$$

satisfy the equations of motions (10)–(13) with $\tau = t$.

Realization of (14) as a wave packet constructed in the space of square integrable functions $L^2(\mathbb{R}_+^3, d\nu(x_1, x_2, x_3))$ reads

$$\begin{aligned} \Psi_{CS_\epsilon}(t, x_1, x_2, x_3) &= \langle x_1, x_2, x_3 | CS_\epsilon; t \rangle \\ &= e^{it(x_1+x_2+x_3)} \Phi_1(a(t)x_1) \Phi_2(b(t)x_2) \Phi_3(c(t)x_3). \end{aligned} \quad (15)$$

Evolving wave packets (cont)

Example 2:

The Gaussian distribution wave packets:

$$\Psi_n(x; \tau, \gamma) = N x^n \exp \left[i \tau x - \frac{\gamma^2 x^2}{2} \right], \quad N^2 = \frac{2\gamma^n}{(n-1)!}, \quad (16)$$

which are **dense** in $L^2(\mathbb{R}_+, d\nu(x))$.

Expectation values and variances of $\hat{\xi}_k$ and $\hat{\xi}_{k+1}$ are:

$$\langle \Psi_n | \hat{\xi}_k | \Psi_n \rangle = \tau, \quad k = 1, 3, 5, \quad (17)$$

$$\langle \Psi_n | \hat{\xi}_{k+1} | \Psi_n \rangle = \frac{1}{A_\Phi} \frac{\Gamma(n - \frac{1}{2})}{(n-1)!} \gamma, \quad (18)$$

$$\text{var}(\hat{\xi}_k; \Psi_n) = \frac{4n-3}{4(n-1)} \gamma^2, \quad (19)$$

$$\text{var}(\hat{\xi}_{k+1}; \Psi_n) = \frac{1}{A_\Phi^2} \left(\frac{1}{n-1} - \frac{\Gamma(n - \frac{1}{2})^2}{(n-1)!^2} \right) \gamma^2. \quad (20)$$

Evolving wave packets (cont)

Example 2:

The Gaussian distribution wave packets:

$$\Psi_n(x; \tau, \gamma) = N x^n \exp \left[i \tau x - \frac{\gamma^2 x^2}{2} \right], \quad N^2 = \frac{2\gamma^n}{(n-1)!}, \quad (16)$$

which are **dense** in $L^2(\mathbb{R}_+, d\nu(x))$.

Expectation values and variances of $\hat{\xi}_k$ and $\hat{\xi}_{k+1}$ are:

$$\langle \Psi_n | \hat{\xi}_k | \Psi_n \rangle = \tau, \quad k = 1, 3, 5, \quad (17)$$

$$\langle \Psi_n | \hat{\xi}_{k+1} | \Psi_n \rangle = \frac{1}{A_\Phi} \frac{\Gamma(n - \frac{1}{2})}{(n-1)!} \gamma, \quad (18)$$

$$\text{var}(\hat{\xi}_k; \Psi_n) = \frac{4n-3}{4(n-1)} \gamma^2, \quad (19)$$

$$\text{var}(\hat{\xi}_{k+1}; \Psi_n) = \frac{1}{A_\Phi^2} \left(\frac{1}{n-1} - \frac{\Gamma(n - \frac{1}{2})^2}{(n-1)!^2} \right) \gamma^2. \quad (20)$$

Evolving wave packets (cont)

In the space $L^2(\mathbb{R}_+^3, d\nu(x_1, x_2, x_3))$, we take the corresponding wave packets:

$$\Psi_{n_1, n_3, n_5}(x_1, x_2, x_3; \tau_1, \tau_3, \tau_5, \gamma_1, \gamma_3, \gamma_5) = \Psi_{n_1}(x_1; \tau_1, \gamma_1) \Psi_{n_3}(x_2; \tau_3, \gamma_3) \Psi_{n_5}(x_3; \tau_5, \gamma_5). \quad (21)$$

To meet the properties (10)–(13) for the wave packets Ψ_{n_1, n_3, n_5} , we choose the parameters τ_k and γ_k as follows:

$$\tau_1 = \tau_3 = \tau_5 = t, \quad (22)$$

$$\gamma_k = A_{\Phi_k} \frac{(n_k - 1)!}{\Gamma(n_k - \frac{1}{2})} \cdot f_k(t), \quad k = 1, 3, 5, \quad (23)$$

where

$$f_k(t) = \begin{cases} \tilde{a}(t) + \epsilon\alpha(t), & k = 1 \\ \tilde{b}(t) + \epsilon\beta(t), & k = 3 \\ \tilde{c}(t) + \epsilon\gamma(t), & k = 5 \end{cases} . \quad (24)$$

Evolving wave packets (cont)

Variances in the Hilbert space \mathcal{H} for the Gaussian wave packets read:

$$\text{var}(\hat{\xi}_k; \Psi_{n_1, n_3, n_5}) = \mathcal{A}_k f_k(t)^2, \quad (25)$$

$$\text{var}(\hat{\xi}_{k+1}; \Psi_{n_1, n_3, n_5}) = \mathcal{B}_k f_k(t)^2, \quad (26)$$

where

$$\mathcal{A}_k = A_{\Phi_k}^2 \frac{(4n_k - 3)(n_k - 1)!(n_k - 2)!}{4\Gamma\left(n_k - \frac{1}{2}\right)^2}, \quad (27)$$

$$\mathcal{B}_k = \frac{(n_k - 1)!(n_k - 2)!}{\Gamma\left(n_k - \frac{1}{2}\right)^2} - 1. \quad (28)$$

These results show that all positions of our system in time and space are **smeared** owing to **nonzero** variances. It is an important fact about possibility of **avoiding singularities** in this dynamics.

Evolving wave packets (cont)

Variances in the Hilbert space \mathcal{H} for the Gaussian wave packets read:

$$\text{var}(\hat{\xi}_k; \Psi_{n_1, n_3, n_5}) = \mathcal{A}_k f_k(t)^2, \quad (25)$$

$$\text{var}(\hat{\xi}_{k+1}; \Psi_{n_1, n_3, n_5}) = \mathcal{B}_k f_k(t)^2, \quad (26)$$

where

$$\mathcal{A}_k = A_{\Phi_k}^2 \frac{(4n_k - 3)(n_k - 1)!(n_k - 2)!}{4\Gamma\left(n_k - \frac{1}{2}\right)^2}, \quad (27)$$

$$\mathcal{B}_k = \frac{(n_k - 1)!(n_k - 2)!}{\Gamma\left(n_k - \frac{1}{2}\right)^2} - 1. \quad (28)$$

These results show that all positions of our system in time and space are **smeared** owing to **nonzero** variances. It is an important fact about possibility of **avoiding singularities** in this dynamics.

Stochastic aspects of BKL scenario

Having calculated the **variances** of quantum observables corresponding to **perturbed** $\{a, b, c\}$ and **unperturbed** $\{\tilde{a}, \tilde{b}, \tilde{c}\}$ solutions, we describe the **quantum instabilities** as follows:

$$\kappa_k := \frac{\text{var}(\hat{\xi}_k; \Psi_{\text{pert}}) - \text{var}(\hat{\xi}_k; \Psi_{\text{unpert}})}{\text{var}(\hat{\xi}_k; \Psi_{\text{unpert}})}, \quad k = 2, 4, 6 \quad (29)$$

where $\hat{\xi}_2 = \hat{a}$, $\hat{\xi}_4 = \hat{b}$, $\hat{\xi}_6 = \hat{c}$, and where Ψ_{pert} and Ψ_{unpert} denote perturbed and unperturbed wave packets, respectively.

Stochastic aspects of BKL scenario (cont)

Making use of

$$\begin{aligned} f_2(t)^2 &= (\tilde{a}(t) + \epsilon\alpha(t))^2 = \tilde{a}(t)^2 + 2\epsilon\tilde{a}(t)\alpha(t) + \epsilon^2\alpha(t)^2 \simeq \tilde{a}(t)^2 + 2\epsilon\tilde{a}(t)\alpha(t), \\ f_4(t)^2 &= (\tilde{b}(t) + \epsilon\beta(t))^2 = \tilde{b}(t)^2 + 2\epsilon\tilde{b}(t)\beta(t) + \epsilon^2\beta(t)^2 \simeq \tilde{b}(t)^2 + 2\epsilon\tilde{b}(t)\beta(t), \\ f_6(t)^2 &= (\tilde{c}(t) + \epsilon\gamma(t))^2 = \tilde{c}(t)^2 + 2\epsilon\tilde{c}(t)\gamma(t) + \epsilon^2\gamma(t)^2 \simeq \tilde{c}(t)^2 + 2\epsilon\tilde{c}(t)\gamma(t). \end{aligned}$$

we obtain explicit form of (29), which in [the 1-st order in \$\epsilon\$](#) , reads:

$$\kappa_a(t) := \kappa_2(t) = \frac{2\epsilon\tilde{a}(t)\alpha(t)}{\tilde{a}(t)^2} = 2\epsilon \frac{\alpha(t)}{\tilde{a}(t)}, \quad (30)$$

$$\kappa_b(t) := \kappa_4(t) = \frac{2\epsilon\tilde{b}(t)\beta(t)}{\tilde{b}(t)^2} = 2\epsilon \frac{\beta(t)}{\tilde{b}(t)}, \quad (31)$$

$$\kappa_c(t) := \kappa_6(t) = \frac{2\epsilon\tilde{c}(t)\gamma(t)}{\tilde{c}(t)^2} = 2\epsilon \frac{\gamma(t)}{\tilde{c}(t)}. \quad (32)$$

The relative perturbations (30)–(32) are [the same](#) for the coherent states and the exponential wave packets.

Stochastic aspects of BKL scenario (cont)

Making use of

$$\begin{aligned} f_2(t)^2 &= (\tilde{a}(t) + \epsilon\alpha(t))^2 = \tilde{a}(t)^2 + 2\epsilon\tilde{a}(t)\alpha(t) + \epsilon^2\alpha(t)^2 \simeq \tilde{a}(t)^2 + 2\epsilon\tilde{a}(t)\alpha(t), \\ f_4(t)^2 &= (\tilde{b}(t) + \epsilon\beta(t))^2 = \tilde{b}(t)^2 + 2\epsilon\tilde{b}(t)\beta(t) + \epsilon^2\beta(t)^2 \simeq \tilde{b}(t)^2 + 2\epsilon\tilde{b}(t)\beta(t), \\ f_6(t)^2 &= (\tilde{c}(t) + \epsilon\gamma(t))^2 = \tilde{c}(t)^2 + 2\epsilon\tilde{c}(t)\gamma(t) + \epsilon^2\gamma(t)^2 \simeq \tilde{c}(t)^2 + 2\epsilon\tilde{c}(t)\gamma(t). \end{aligned}$$

we obtain explicit form of (29), which in **the 1-st order in ϵ** , reads:

$$\kappa_a(t) := \kappa_2(t) = \frac{2\epsilon\tilde{a}(t)\alpha(t)}{\tilde{a}(t)^2} = 2\epsilon \frac{\alpha(t)}{\tilde{a}(t)}, \quad (30)$$

$$\kappa_b(t) := \kappa_4(t) = \frac{2\epsilon\tilde{b}(t)\beta(t)}{\tilde{b}(t)^2} = 2\epsilon \frac{\beta(t)}{\tilde{b}(t)}, \quad (31)$$

$$\kappa_c(t) := \kappa_6(t) = \frac{2\epsilon\tilde{c}(t)\gamma(t)}{\tilde{c}(t)^2} = 2\epsilon \frac{\gamma(t)}{\tilde{c}(t)}. \quad (32)$$

The relative perturbations (30)–(32) are **the same** for the coherent states and the exponential wave packets.

Stochastic aspects of quantum evolution (cont)

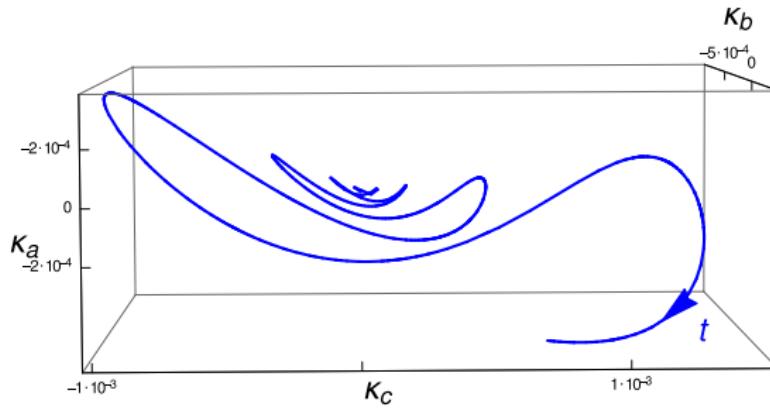


Figure: Parametric curve of relative quantum perturbations

Higher order approximations in ϵ would not change much the plot.

Stochastic aspects of quantum evolution (cont)

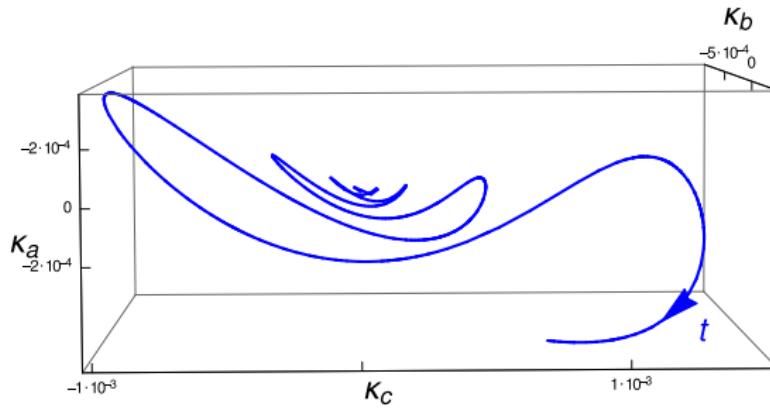


Figure: Parametric curve of relative quantum perturbations

Higher order approximations in ϵ would not change much the plot.

Conclusions

- Since relative quantum and classical perturbations have quite similar time evolutions, we can say that quantization does not destroy classical chaos.
- Quantum chaos corresponds to classical chaos in the lowest order approximation.
- Nonlinearity of classical dynamics creates deterministic chaos. Non-vanishing variances of observables of the corresponding quantum dynamics create stochastic chaos.
- As calculated variances are always non-zero, the probability of obtaining divergencies of quantum observables corresponding to classical gravitational singularity is equal to zero.

A quantum system is in eigenstate of given operator iff its variance equals zero.

Conclusions

- Since relative **quantum** and **classical** perturbations have quite **similar** time evolutions, we can say that quantization **does not** destroy classical chaos.
- Quantum chaos **corresponds** to classical chaos in the lowest order approximation.
- **Nonlinearity** of classical dynamics creates **deterministic chaos**. Non-vanishing **variances** of observables of the corresponding quantum dynamics create **stochastic chaos**.
- As calculated **variances** are always non-zero, the **probability** of obtaining **divergencies** of quantum observables corresponding to classical gravitational **singularity** is equal to **zero**.

A quantum system is in eigenstate of given operator **iff** its variance equals zero.

Conclusions

- Since relative quantum and classical perturbations have quite similar time evolutions, we can say that quantization does not destroy classical chaos.
- Quantum chaos corresponds to classical chaos in the lowest order approximation.
- Nonlinearity of classical dynamics creates deterministic chaos. Non-vanishing variances of observables of the corresponding quantum dynamics create stochastic chaos.
- As calculated variances are always non-zero, the probability of obtaining divergencies of quantum observables corresponding to classical gravitational singularity is equal to zero.

A quantum system is in eigenstate of given operator iff its variance equals zero.

Conclusions

- Since relative quantum and classical perturbations have quite similar time evolutions, we can say that quantization does not destroy classical chaos.
- Quantum chaos corresponds to classical chaos in the lowest order approximation.
- Nonlinearity of classical dynamics creates deterministic chaos. Non-vanishing variances of observables of the corresponding quantum dynamics create stochastic chaos.
- As calculated variances are always non-zero, the probability of obtaining divergencies of quantum observables corresponding to classical gravitational singularity is equal to zero.

A quantum system is in eigenstate of given operator iff its variance equals zero.

Conclusions

- Since relative quantum and classical perturbations have quite similar time evolutions, we can say that quantization does not destroy classical chaos.
- Quantum chaos corresponds to classical chaos in the lowest order approximation.
- Nonlinearity of classical dynamics creates deterministic chaos. Non-vanishing variances of observables of the corresponding quantum dynamics create stochastic chaos.
- As calculated variances are always non-zero, the probability of obtaining divergencies of quantum observables corresponding to classical gravitational singularity is equal to zero.

A quantum system is in eigenstate of given operator iff its variance equals zero.

Thank you!

Essence of integral quantization

If the configuration space Π is a half-plane,

$$\Pi := \{(p, q) \in \mathbb{R} \times \mathbb{R}_+\}, \quad \mathbb{R}_+ := \{x \in \mathbb{R} \mid x > 0\},$$

it can be identified with the affine group $\text{Aff}(\mathbb{R}) =: G$.

Multiplication law reads

$$(p_1, q_1) \cdot (p_2, q_2) := (p_1 + q_1 p_2, q_1 q_2), \quad (33)$$

with the unity $(0, 1)$ and the inverse $(p, q)^{-1} = (-p/q, 1/q)$.

This group has **unitary irreducible representation** realized in the Hilbert space $L^2(\mathbb{R}_+, d\nu(x)) =: \mathcal{H}$, where $d\nu(x) = dx/x$, defined by

$$U(p, q)\psi(x) = e^{ipx} \psi(qx), \quad \psi(x) \in \mathcal{H}. \quad (34)$$

Essence of integral quantization

If the configuration space Π is a half-plane,

$$\Pi := \{(p, q) \in \mathbb{R} \times \mathbb{R}_+\}, \quad \mathbb{R}_+ := \{x \in \mathbb{R} \mid x > 0\},$$

it can be identified with the affine group $\text{Aff}(\mathbb{R}) =: \mathbf{G}$.

Multiplication law reads

$$(p_1, q_1) \cdot (p_2, q_2) := (p_1 + q_1 p_2, q_1 q_2), \quad (33)$$

with the unity $(0, 1)$ and the inverse $(p, q)^{-1} = (-p/q, 1/q)$.

This group has **unitary irreducible representation** realized in the Hilbert space $L^2(\mathbb{R}_+, d\nu(x)) =: \mathcal{H}$, where $d\nu(x) = dx/x$, defined by

$$U(p, q)\psi(x) = e^{ipx}\psi(qx), \quad \psi(x) \in \mathcal{H}. \quad (34)$$

Essence of integral quantization

If the configuration space Π is a half-plane,

$$\Pi := \{(p, q) \in \mathbb{R} \times \mathbb{R}_+\}, \quad \mathbb{R}_+ := \{x \in \mathbb{R} \mid x > 0\},$$

it can be identified with the affine group $\text{Aff}(\mathbb{R}) =: \mathbf{G}$.

Multiplication law reads

$$(p_1, q_1) \cdot (p_2, q_2) := (p_1 + q_1 p_2, q_1 q_2), \quad (33)$$

with the unity $(0, 1)$ and the inverse $(p, q)^{-1} = (-p/q, 1/q)$.

This group has **unitary irreducible representation** realized in the Hilbert space $L^2(\mathbb{R}_+, d\nu(x)) =: \mathcal{H}$, where $d\nu(x) = dx/x$, defined by

$$U(p, q)\psi(x) = e^{ipx} \psi(qx), \quad \psi(x) \in \mathcal{H}. \quad (34)$$

Essence of integral quantization

If the configuration space Π is a half-plane,

$$\Pi := \{(p, q) \in \mathbb{R} \times \mathbb{R}_+\}, \quad \mathbb{R}_+ := \{x \in \mathbb{R} \mid x > 0\},$$

it can be identified with the affine group $\text{Aff}(\mathbb{R}) =: \mathbf{G}$.

Multiplication law reads

$$(p_1, q_1) \cdot (p_2, q_2) := (p_1 + q_1 p_2, q_1 q_2), \quad (33)$$

with the unity $(0, 1)$ and the inverse $(p, q)^{-1} = (-p/q, 1/q)$.

This group has **unitary irreducible representation** realized in the Hilbert space $L^2(\mathbb{R}_+, d\nu(x)) =: \mathcal{H}$, where $d\nu(x) = dx/x$, defined by

$$U(p, q)\psi(x) = e^{ipx}\psi(qx), \quad \psi(x) \in \mathcal{H}. \quad (34)$$

Essence of integral quantization (cont)

Eq. (34) enables defining the **continuous** family of affine coherent states (ACS), denoted $\langle x|p, q\rangle \in \mathcal{H}$, as follows

$$\langle x|p, q\rangle = U(p, q)\langle x|\phi\rangle , \quad (35)$$

where $\langle x|\phi\rangle =: \phi(x) \in \mathcal{H}$ is the so-called **fiducial** vector, which is a free **parameter** (to some extent) of ACS quantization scheme.

Eq. (35) can be interpreted as the **correspondence**

$$(p, q) \longrightarrow |p, q\rangle\langle p, q| \quad (36)$$

between point of configuration space Π and quantum projection operator acting in \mathcal{H} .

The space of coherent states is strongly **entangled**:

$$\langle t, r|t', r'\rangle \neq 0 \quad \text{if} \quad t \neq t' \quad \text{or} \quad r \neq r' , \quad (37)$$

$$\langle t, r|t, r\rangle = 1 \quad \text{if} \quad \langle \phi|\phi\rangle = 1 . \quad (38)$$

Essence of integral quantization (cont)

Eq. (34) enables defining the **continuous** family of affine coherent states (ACS), denoted $\langle x|p, q\rangle \in \mathcal{H}$, as follows

$$\langle x|p, q\rangle = U(p, q)\langle x|\phi\rangle , \quad (35)$$

where $\langle x|\phi\rangle =: \phi(x) \in \mathcal{H}$ is the so-called **fiducial** vector, which is a free **parameter** (to some extent) of ACS quantization scheme. Eq. (35) can be interpreted as the **correspondence**

$$(p, q) \longrightarrow |p, q\rangle\langle p, q| \quad (36)$$

between point of configuration space Π and quantum projection operator acting in \mathcal{H} .

The space of coherent states is strongly **entangled**:

$$\langle t, r|t', r'\rangle \neq 0 \quad \text{if} \quad t \neq t' \quad \text{or} \quad r \neq r' , \quad (37)$$

$$\langle t, r|t, r\rangle = 1 \quad \text{if} \quad \langle \phi|\phi\rangle = 1 . \quad (38)$$

Essence of integral quantization (cont)

Eq. (34) enables defining the **continuous** family of affine coherent states (ACS), denoted $\langle x|p, q\rangle \in \mathcal{H}$, as follows

$$\langle x|p, q\rangle = U(p, q)\langle x|\phi\rangle , \quad (35)$$

where $\langle x|\phi\rangle =: \phi(x) \in \mathcal{H}$ is the so-called **fiducial** vector, which is a free **parameter** (to some extent) of ACS quantization scheme. Eq. (35) can be interpreted as the **correspondence**

$$(p, q) \longrightarrow |p, q\rangle\langle p, q| \quad (36)$$

between point of configuration space Π and quantum projection operator acting in \mathcal{H} .

The space of coherent states is strongly **entangled**:

$$\langle t, r|t', r'\rangle \neq 0 \quad \text{if} \quad t \neq t' \text{ or } r \neq r' , \quad (37)$$

$$\langle t, r|t, r\rangle = 1 \quad \text{if} \quad \langle \phi|\phi\rangle = 1 . \quad (38)$$

Essence of integral quantization (cont)

The **irreducibility** of the representation leads (due to Schur's lemma) to the **resolution of the unity** in $L^2(\mathbb{R}_+, d\nu(x))$:

$$\frac{1}{A_\phi} \int_G d\mu(p, q) |p, q\rangle \langle p, q| = \mathbb{I}, \quad (39)$$

where $d\mu(p, q) := dp \, dq/q^2$ is the left invariant measure on G , and where $A_\phi := \int_0^\infty |\phi(x)|^2 \frac{dx}{x^2} < \infty$ is a constant.

Using (39), enables **quantization** of any observable $f : \Pi \rightarrow \mathbb{R}$

$$f \longrightarrow \hat{f} = \frac{1}{A_\phi} \int_G d\mu(p, q) |p, q\rangle f(p, q) \langle p, q|. \quad (40)$$

The operator $\hat{f} : \mathcal{H} \rightarrow \mathcal{H}$ is **symmetric** by construction.

No ordering **ambiguity** occurs (notorious problem of **canonical quantization**).

A. Góźdź, W.P., and T. Schmitz, Eur. Phys. J. Plus (2021) 136:18

Essence of integral quantization (cont)

The **irreducibility** of the representation leads (due to Schur's lemma) to the **resolution of the unity** in $L^2(\mathbb{R}_+, d\nu(x))$:

$$\frac{1}{A_\phi} \int_G d\mu(p, q) |p, q\rangle \langle p, q| = \mathbb{I}, \quad (39)$$

where $d\mu(p, q) := dp \, dq/q^2$ is the left invariant measure on G , and where $A_\phi := \int_0^\infty |\phi(x)|^2 \frac{dx}{x^2} < \infty$ is a constant.

Using (39), enables **quantization** of **any** observable $f : \Pi \rightarrow \mathbb{R}$

$$f \longrightarrow \hat{f} = \frac{1}{A_\phi} \int_G d\mu(p, q) |p, q\rangle f(p, q) \langle p, q|. \quad (40)$$

The operator $\hat{f} : \mathcal{H} \rightarrow \mathcal{H}$ is **symmetric** by construction.

No ordering **ambiguity** occurs (notorious problem of **canonical quantization**).

Essence of integral quantization (cont)

The **irreducibility** of the representation leads (due to Schur's lemma) to the **resolution of the unity** in $L^2(\mathbb{R}_+, d\nu(x))$:

$$\frac{1}{A_\phi} \int_G d\mu(p, q) |p, q\rangle \langle p, q| = \mathbb{I}, \quad (39)$$

where $d\mu(p, q) := dp \, dq/q^2$ is the left invariant measure on G , and where $A_\phi := \int_0^\infty |\phi(x)|^2 \frac{dx}{x^2} < \infty$ is a constant.

Using (39), enables **quantization** of **any** observable $f : \Pi \rightarrow \mathbb{R}$

$$f \longrightarrow \hat{f} = \frac{1}{A_\phi} \int_G d\mu(p, q) |p, q\rangle f(p, q) \langle p, q|. \quad (40)$$

The operator $\hat{f} : \mathcal{H} \rightarrow \mathcal{H}$ is **symmetric** by construction.

No ordering **ambiguity** occurs (notorious problem of **canonical** quantization).

Essence of integral quantization (cont)

Using **coherent states** in (mathematical) physics is nothing **exotic**.
They have been used by such people as:

E. Schrödinger, J. von Neumann, R. J. Glauber, J. R. Klauder,
A. M. Perelomov, T. W. B. Kibble, L. S. Shapiro, A. A. Kirillov,
B. Kostant, F. A. Berezin, J-P Gazeau, and many others.

Essence of integral quantization (cont)

Using **coherent states** in (mathematical) physics is nothing **exotic**.
They have been used by such people as:

E. Schrödinger, J. von Neumann, R. J. Glauber, J. R. Klauder,
A. M. Perelomov, T. W. B. Kibble, L. S. Shapiro, A. A. Kirillov,
B. Kostant, F. A. Berezin, J-P Gazeau, and many others.

Variance of quantum observable

Variance is a stochastic deviation from expectation value of quantum observable; determines the value of **smearing** of quantum observable; can be used to define quantum **fluctuations**.

In the quantum state ψ , the variance is defined to be

$$\text{var}(\hat{A}; \psi) := \langle (\hat{A} - \langle \hat{A}; \psi \rangle)^2; \psi \rangle = \langle \hat{A}^2; \psi \rangle - \langle \hat{A}; \psi \rangle^2, \quad (41)$$

where $\langle \hat{B}; \psi \rangle := \langle \psi | \hat{B} | \psi \rangle$.

If \hat{A} is self-adjoint operator, we have important statement:

$$\left(\text{var}(\hat{A}; \psi) = 0 \right) \iff \left(\hat{A}\psi = \lambda\psi, \quad \lambda \in \mathbb{R} \right). \quad (42)$$

Using variance, one can construct the **uncertainty principle**:

$$\text{var}(\hat{A}; \psi) \text{var}(\hat{B}; \psi) \geq \frac{1}{4} \left| \langle \psi | [\hat{A}, \hat{B}] | \psi \rangle \right|^2$$

H. P. Robertson, Phys. Rev. 34, 163 (1929).

Variance of quantum observable

Variance is a stochastic deviation from expectation value of quantum observable; determines the value of **smearing** of quantum observable; can be used to define quantum **fluctuations**.

In the quantum state ψ , the variance is defined to be

$$\text{var}(\hat{A}; \psi) := \langle (\hat{A} - \langle \hat{A}; \psi \rangle)^2; \psi \rangle = \langle \hat{A}^2; \psi \rangle - \langle \hat{A}; \psi \rangle^2, \quad (41)$$

where $\langle \hat{B}; \psi \rangle := \langle \psi | \hat{B} | \psi \rangle$.

If \hat{A} is self-adjoint operator, we have important statement:

$$\left(\text{var}(\hat{A}; \psi) = 0 \right) \iff \left(\hat{A}\psi = \lambda\psi, \quad \lambda \in \mathbb{R} \right). \quad (42)$$

Using variance, one can construct the **uncertainty principle**:

$$\text{var}(\hat{A}; \psi) \text{var}(\hat{B}; \psi) \geq \frac{1}{4} \left| \langle \psi | [\hat{A}, \hat{B}] | \psi \rangle \right|^2$$

H. P. Robertson, Phys. Rev. 34, 163 (1929).

Variance of quantum observable

Variance is a stochastic deviation from expectation value of quantum observable; determines the value of **smearing** of quantum observable; can be used to define quantum **fluctuations**.

In the quantum state ψ , the variance is defined to be

$$\text{var}(\hat{A}; \psi) := \langle (\hat{A} - \langle \hat{A}; \psi \rangle)^2; \psi \rangle = \langle \hat{A}^2; \psi \rangle - \langle \hat{A}; \psi \rangle^2, \quad (41)$$

where $\langle \hat{B}; \psi \rangle := \langle \psi | \hat{B} | \psi \rangle$.

If \hat{A} is self-adjoint operator, we have important statement:

$$\left(\text{var}(\hat{A}; \psi) = 0 \right) \iff \left(\hat{A}\psi = \lambda\psi, \quad \lambda \in \mathbb{R} \right). \quad (42)$$

Using variance, one can construct the **uncertainty principle**:

$$\text{var}(\hat{A}; \psi) \text{var}(\hat{B}; \psi) \geq \frac{1}{4} \left| \langle \psi | [\hat{A}, \hat{B}] | \psi \rangle \right|^2$$

H. P. Robertson, Phys. Rev. 34, 163 (1929).

Variance of quantum observable

Variance is a stochastic deviation from expectation value of quantum observable; determines the value of **smearing** of quantum observable; can be used to define quantum **fluctuations**.

In the quantum state ψ , the variance is defined to be

$$\text{var}(\hat{A}; \psi) := \langle (\hat{A} - \langle \hat{A}; \psi \rangle)^2; \psi \rangle = \langle \hat{A}^2; \psi \rangle - \langle \hat{A}; \psi \rangle^2, \quad (41)$$

where $\langle \hat{B}; \psi \rangle := \langle \psi | \hat{B} | \psi \rangle$.

If \hat{A} is self-adjoint operator, we have important statement:

$$\left(\text{var}(\hat{A}; \psi) = 0 \right) \iff \left(\hat{A}\psi = \lambda\psi, \quad \lambda \in \mathbb{R} \right). \quad (42)$$

Using variance, one can construct the **uncertainty principle**:

$$\text{var}(\hat{A}; \psi) \text{var}(\hat{B}; \psi) \geq \frac{1}{4} \left| \langle \psi | [\hat{A}, \hat{B}] | \psi \rangle \right|^2$$

H. P. Robertson, Phys. Rev. 34, 163 (1929).

Variance of quantum observable

Variance is a stochastic deviation from expectation value of quantum observable; determines the value of **smearing** of quantum observable; can be used to define quantum **fluctuations**.

In the quantum state ψ , the variance is defined to be

$$\text{var}(\hat{A}; \psi) := \langle (\hat{A} - \langle \hat{A}; \psi \rangle)^2; \psi \rangle = \langle \hat{A}^2; \psi \rangle - \langle \hat{A}; \psi \rangle^2, \quad (41)$$

where $\langle \hat{B}; \psi \rangle := \langle \psi | \hat{B} | \psi \rangle$.

If \hat{A} is self-adjoint operator, we have important statement:

$$\left(\text{var}(\hat{A}; \psi) = 0 \right) \iff \left(\hat{A}\psi = \lambda\psi, \quad \lambda \in \mathbb{R} \right). \quad (42)$$

Using variance, one can construct the **uncertainty principle**:

$$\text{var}(\hat{A}; \psi) \text{var}(\hat{B}; \psi) \geq \frac{1}{4} \left| \langle \psi | [\hat{A}, \hat{B}] | \psi \rangle \right|^2$$

H. P. Robertson, Phys. Rev. 34, 163 (1929).

BKL conjecture

Vladimir Alekseevich Belinski Isaak Markovich Khalatnikov Evgeny Mikhailovich Lifshitz

- BKL in **string** theory

- ▶ appears in the **low energy** limits of bosonic sectors of all five types of superstring models
- ▶ the Lorenzian hyperbolic **Kac-Moody algebra** underlies asymptotic structure of spacetime near cosmological singularity

T. Damour, M. Henneaux and H. Nicolai, *Class. Quantum Grav.* **20** (2003) R145

BKL conjecture

Vladimir Alekseevich Belinski Isaak Markovich Khalatnikov Evgeny Mikhailovich Lifshitz

- BKL in **string** theory

- ▶ appears in the **low energy** limits of bosonic sectors of all five types of superstring models
- ▶ the Lorenzian hyperbolic **Kac-Moody algebra** underlies asymptotic structure of spacetime near cosmological singularity

T. Damour, M. Henneaux and H. Nicolai, *Class. Quantum Grav.* **20** (2003) R145

BKL conjecture

Vladimir Alekseevich Belinski Isaak Markovich Khalatnikov Evgeny Mikhailovich Lifshitz

- BKL in **string** theory

- ▶ appears in the **low energy** limits of bosonic sectors of all five types of superstring models
- ▶ the Lorenzian hyperbolic **Kac-Moody algebra** underlies asymptotic structure of spacetime near cosmological singularity

T. Damour, M. Henneaux and H. Nicolai, *Class. Quantum Grav.* **20** (2003) R145