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Introduction

A. Friedmann model (1922)
▶ assumes isotropy and homogeneity of space
▶ solution includes gravitational singularity

E. Lifshitz analysed Friedmann’s solution (1946):
isotropy is unstable in the evolution towards singularity
E. M. Lifshitz, J. Phys., U. S. S. R. 10, 116 (1946); E. M. Lifshitz and I. M. Khalatnikov, Adv. Phys. 12, 185 (1963)

In late 50-ties relativists (USSR, USA) began examination
of models with homogeneous but anisotropic space,
i.e., Bianchi-type models.
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Belinskii-Khalatnikov-Lifshitz (BKL) conjecture

Dynamics of BVIII and BIX was analyzed to get insight into
the dynamics of spacetime near the cosmological spacelike
singularity
V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, Adv. Phys. 19, 525 (1970)

BKL conjecture states:
general relativity implies the existence of generic solution that
is singular (incomplete geodesics and diverging invariants)

▶ corresponds to non-zero measure subset of all initial data
▶ is stable against perturbation of initial data
▶ depends on proper number of arbitrary functions defined

on space part of spacetime

V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, Adv. Phys. 31, 639 (1982)
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BKL conjecture and singularity theorems

The Penrose-Hawking singularity theorems (of 60-ties) concern
possible existence of incomplete geodesics in spacetime, but
incompleteness does not mean (in general) that the invariants
diverge.
These theorems say little about the dynamics of gravitational field
near singularities so that are of little usefulness in the context of
finding corresponding quantum dynamics.
In what follows we focus our attention on the BKL treatment of
singularities.
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Models of the BKL scenario

The BKL scenario presents a very complicated dynamics
so that to work with it one needs to use models.
There exist two convenient models:

the vacuum model of the BKL scenario (called mixmaster);
vacuum BIX model; exact model of the dynamics
V. Belinski and I. Khalatnikov, Soviet Physics JETP 29, 911 (1969).

C. W. Misner, Phys. Rev. Lett. 22, 1071 (1969).

the massive model of the BKL scenario; includes effectively
some contribution from matter field; presents asymptotic
dynamics near the singularity of BIX model
Derived by V. Belinski, I. Khalatnikov, and M. Ryan in 1971; M. P. Ryan, Ann. Phys. 70, 301 (1971)

E. Czuchry and W. P., Phys. Rev. D 87, 084021 (2013)

Włodzimierz Piechocki (NCBJ) Stochasticity of the BKL scenario Jan 20, 2023 7 / 34



Models of the BKL scenario

The BKL scenario presents a very complicated dynamics
so that to work with it one needs to use models.
There exist two convenient models:

the vacuum model of the BKL scenario (called mixmaster);
vacuum BIX model; exact model of the dynamics
V. Belinski and I. Khalatnikov, Soviet Physics JETP 29, 911 (1969).

C. W. Misner, Phys. Rev. Lett. 22, 1071 (1969).

the massive model of the BKL scenario; includes effectively
some contribution from matter field; presents asymptotic
dynamics near the singularity of BIX model
Derived by V. Belinski, I. Khalatnikov, and M. Ryan in 1971; M. P. Ryan, Ann. Phys. 70, 301 (1971)

E. Czuchry and W. P., Phys. Rev. D 87, 084021 (2013)

Włodzimierz Piechocki (NCBJ) Stochasticity of the BKL scenario Jan 20, 2023 7 / 34



Models of the BKL scenario

The BKL scenario presents a very complicated dynamics
so that to work with it one needs to use models.
There exist two convenient models:

the vacuum model of the BKL scenario (called mixmaster);
vacuum BIX model; exact model of the dynamics
V. Belinski and I. Khalatnikov, Soviet Physics JETP 29, 911 (1969).

C. W. Misner, Phys. Rev. Lett. 22, 1071 (1969).

the massive model of the BKL scenario; includes effectively
some contribution from matter field; presents asymptotic
dynamics near the singularity of BIX model
Derived by V. Belinski, I. Khalatnikov, and M. Ryan in 1971; M. P. Ryan, Ann. Phys. 70, 301 (1971)

E. Czuchry and W. P., Phys. Rev. D 87, 084021 (2013)

Włodzimierz Piechocki (NCBJ) Stochasticity of the BKL scenario Jan 20, 2023 7 / 34



Dynamics of massive model of the BKL scenario

In what follows we consider the dynamics of the massive model:

d2 lna
dt2 =

b
a
− a2,

d2 lnb
dt2 = a2 − b

a
+

c
b
,

d2 ln c
dt2 = a2 − c

b
, (1)

where a = a(t) > 0, b = b(t) > 0, c = c(t) > 0 are effective
directional scale factors, and t ∈ R is a monotonic function
of proper time.

The solutions to (1) must satisfy the constraint

d lna
dt

d lnb
dt

+
d lna

dt
d ln c

dt
+

d lnb
dt

d ln c
dt

= a2 +
b
a
+

c
b
. (2)

Eqs (1)-(2) present the essence of the dynamics underlying
the BKL scenario.
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BKL scenario (cont)

Massive model of BKL scenario has numerical support
(via considering general BIX):

Simulations of the dynamics near the singularity confirm
the asymptotic dynamics
C. Kiefer, N. Kwidzinski, and W.P., Eur. Phys. J. C (2018) 78:691

Kretschman’s curvature invariant diverge in the evolution
towards the singularity
N. Kwidzinski and W.P., Eur. Phys. J. C (2019) 79:199
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Solution to the BKL scenario

We have found exact solution to the dynamics (1)–(2):
P. Goldstein and W.P., Eur. Phys. J. C (2022) 82: 216

ã(t) =
3

t − t0
, b̃(t) =

30
(t − t0)3 , c̃(t) =

120
(t − t0)5 , (3)

where t > t0 and where t0 < 0 is an arbitrary real number.

The solution (3) is unstable against small perturbation:

a(t) = ã(t) + ϵα(t), (4a)

b(t) = b̃(t) + ϵβ(t), (4b)
c(t) = c̃(t) + ϵγ(t) , (4c)
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Solution to the BKL scenario (cont)

Inserting (4) into (1)–(2) leads, in the first order in ϵ, to the following exact
solution of the resulting equations:

α(t) = exp(−θ/2)
[
K1 cos(ω1θ+φ1)+K2 cos(ω2θ+φ2)

]
+K3 exp(−2θ), (5a)

β(t) = exp(−5θ/2)
[
(4 + 6

√
6)K1 cos(ω1θ + φ1) (5b)

+ (4 − 6
√

6)K2 cos(ω2θ + φ2)
]
+ 30K3 exp(−4θ), (5c)

γ(t) =− 4 exp(−9θ/2)
[
(26 + 9

√
6)K1 cos(ω1θ + φ1) (5d)

+ (26 − 9
√

6)K2 cos(ω2θ + φ2)
]
+ 200K3 exp(−6θ) , (5e)

where θ = ln(t − t0). The two frequencies read

ω1 =
1
2

√
95 − 24

√
6, ω2 =

1
2

√
95 + 24

√
6 ,

where K1,K2,K3, φ1, φ2 are arbitrary (to some extent) constants.
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Chaotic phase of the BKL scenario

The manifold M defined by {K1,K2,K3, φ1, φ2} is a submanifold of
R5. Thus, (5) presents generic solution as the measure of M is
nonzero.
The relative perturbations α/a, β/b, and γ/c grow as exp(1

2θ).
▶ The multiplier 1/2 plays the role of a Lyapunov exponent,

describing the rate of divergences.
▶ Since it is positive, the evolution of the system towards the

gravitational singularity (θ → +∞) is chaotic.

Chaos results from strong nonlinearity of the dynamics
and growing curvature of spacetime (increasing effectively
the nonlinearity) in the evolution towards the singularity.

Włodzimierz Piechocki (NCBJ) Stochasticity of the BKL scenario Jan 20, 2023 12 / 34



Chaotic phase of the BKL scenario

The manifold M defined by {K1,K2,K3, φ1, φ2} is a submanifold of
R5. Thus, (5) presents generic solution as the measure of M is
nonzero.
The relative perturbations α/a, β/b, and γ/c grow as exp(1

2θ).
▶ The multiplier 1/2 plays the role of a Lyapunov exponent,

describing the rate of divergences.
▶ Since it is positive, the evolution of the system towards the

gravitational singularity (θ → +∞) is chaotic.

Chaos results from strong nonlinearity of the dynamics
and growing curvature of spacetime (increasing effectively
the nonlinearity) in the evolution towards the singularity.

Włodzimierz Piechocki (NCBJ) Stochasticity of the BKL scenario Jan 20, 2023 12 / 34



Chaotic phase of the BKL scenario

The manifold M defined by {K1,K2,K3, φ1, φ2} is a submanifold of
R5. Thus, (5) presents generic solution as the measure of M is
nonzero.
The relative perturbations α/a, β/b, and γ/c grow as exp(1

2θ).
▶ The multiplier 1/2 plays the role of a Lyapunov exponent,

describing the rate of divergences.
▶ Since it is positive, the evolution of the system towards the

gravitational singularity (θ → +∞) is chaotic.

Chaos results from strong nonlinearity of the dynamics
and growing curvature of spacetime (increasing effectively
the nonlinearity) in the evolution towards the singularity.

Włodzimierz Piechocki (NCBJ) Stochasticity of the BKL scenario Jan 20, 2023 12 / 34



Chaotic phase of BKL scenario (cont)

Figure: Linear instability of the special solution (3). The graph presents the
parametric curve defined by the time dependence of α/a, β/b, and γ/c.
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Quantization of the BKL scenario

In what follows, we quantize the BKL scenario by making use
of the integral quantization method (IQM).
We have already quantized Hamilton’s dynamics of that scenario
ignoring its chaotic phase

quantum singularity turns into quantum bounce
quantum evolution is unitary across quantum bounce

A. Góźdź, W.P., and G. Plewa, Eur. Phys. J. C 79, 45 (2019); A. Góźdź and W.P., Eur. Phys. J. C 80, 142 (2020)

Quantization of the chaotic phase of the BKL scenario:
we do not quantize Hamilton’s dynamics, but the solution
to the BKL scenario
we quantize both temporal and spatial variables to support
general covariance of GR
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Quantization of the BKL scenario (cont)

Two novelties:
direct quantization of the solution to the classical dynamics
instead of physical Hamiltonian
quantization of time variable on the same footing as spatial
variables

In what follows we apply the IQM to the chaotic BKL scenario.
For details of IQM, see Appendix A.
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Configuration space

Definition of the configuration space:

T = {ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) : ξ ∈ (R×R+)×(R×R+)×(R×R+)} , (6)

where every pair (ξk , ξk+1), (k = 1,3,5), parameterizes the affine
group Aff(R).

ξ1, ξ3, and ξ5 denote 3 time variable;
scale factors are denoted as follows: ξ2 = a, ξ4 = b, ξ6 = c.
Because a,b, c > 0 and ξ1, ξ3, ξ5 ∈ R, the configuration space
parameterizes the simple product of 3 affine groups
Aff(R)× Aff(R)× Aff(R) =: G to be used in quantization.

As the observational data are parameterized by a single time
parameter, the variables {ξ1, ξ3, ξ5} should be mapped onto
a single variable representing time.
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Hilbert space

The direct product of three affine groups G has the unitary irreducible
representation in the following Hilbert space:
H = Hx1 ⊗Hx2 ⊗Hx3 = L2(R3

+,dν(x1, x2, x3)),
where dν(x1, x2, x3) = dν(x1)dν(x2)dν(x3).

It enables defining in H the continuous family of affine coherent states
⟨x1, x2, x3|ξ1, ξ2; ξ3, ξ4; ξ5, ξ6⟩ := ⟨x1|ξ1, ξ2⟩⟨x2|ξ3, ξ4⟩⟨x3|ξ5, ξ6⟩,
as follows

H ∋ ⟨x1, x2, x3|ξ1, ξ2; ξ3, ξ4; ξ5, ξ6⟩ := U(ξ)Φ0(x1, x2, x3) , (7)

where U(ξ) := U(ξ1, ξ2)U(ξ3, ξ4)U(ξ5, ξ6), and
|ξ1, ξ2; ξ3, ξ4; ξ5, ξ6⟩ := |ξ1, ξ2⟩|ξ3, ξ4⟩|ξ5, ξ6⟩ and where

H ∋ Φ0(x1, x2, x3) = Φ1(x1)Φ2(x2)Φ3(x3) . (8)
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Quantization of observables

The resolution of the identity in H can be used for mapping a classical
observable f : T → R into an operator f̂ : H → H as follows

f̂ :=
1

Aϕ

∫
G

dµ(ξ)|ξ⟩f (ξ)⟨ξ|

=
1

AΦ1AΦ3AΦ5

∫
Aff(R)

dµ(ξ1, ξ2)

∫
Aff(R)

dµ(ξ3, ξ4)

∫
Aff(R)

dµ(ξ5, ξ6)

|ξ1, ξ2; ξ3, ξ4; ξ5, ξ6⟩f (ξ1, ξ2; ξ3, ξ4; ξ5, ξ6)⟨ξ1, ξ2; ξ3, ξ4; ξ5, ξ6| . (9)

There exist two important characteristics of quantum observables:
expectation values and variances; they allow to compare quantum
and classical worlds
they correspond to classical values of measured quantities;
variances describe quantum smearing of observables.

For definition of variance of observable, see Appendix B.
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Equations of motion
Classical observables should be related to their quantum counterparts
by the corresponding expectation values.
This idea leads directly to the conditions for a family of states
{Ψη(x1, x2, x3) = ⟨x1, x2, x3|Ψη⟩, η ∈ Rs} parameterized by a set of
evolution parameters η = (η1, η2, . . . ηs) enumerating the set of trial
functions. We require the states |Ψη⟩ to satisfy:

⟨Ψη|ξ̂k |Ψη⟩ = t , k = 1,3,5 (10)
⟨Ψη|ξ̂2|Ψη⟩ = a(t) , (11)
⟨Ψη|ξ̂4|Ψη⟩ = b(t) , (12)
⟨Ψη|ξ̂6|Ψη⟩ = c(t) . (13)

Eq. (10) represents the single time constraint. The parameter η labels
the family of states to be found, and it should be a function of t as the
r.h.s. of (10)–(13) depends on t .The solution of Eqs. (10)–(13) allows
to construct the vector state dependent on classical time, |Ψη(t)⟩ ∈ H.
Eqs. (10)–(13) define quantum equations of motion.
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Evolving wave packets

Example 1:
The coherent states

|CSϵ; t⟩ := |t ,a(t),b(t), c(t)⟩ (14)

satisfy the equations of motions (10)–(13) with τ = t .

Realization of (14) as a wave packet constructed in the space of
square integrable functions L2(R3

+,dν(x1, x2, x3)) reads

ΨCSϵ
(t , x1, x2, x3) = ⟨x1, x2, x3|CSϵ; t⟩

= eit(x1+x2+x3)Φ1(a(t)x1)Φ2(b(t)x2)Φ3(c(t)x3) . (15)
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Evolving wave packets (cont)
Example 2:
The Gaussian distribution wave packets:

Ψn(x ; τ, γ) = Nxn exp

[
iτx − γ2x2

2

]
, N2 =

2γn

(n − 1)!
, (16)

which are dense in L2(R+, dν(x)).

Expectation values and variances of ξ̂k and ξ̂k+1 are:

⟨Ψn|ξ̂k |Ψn⟩ = τ, k = 1, 3, 5 , (17)

⟨Ψn|ξ̂k+1|Ψn⟩ =
1

AΦ

Γ(n − 1
2 )

(n − 1)!
γ , (18)

var(ξ̂k ; Ψn) =
4n − 3

4(n − 1)
γ2 , (19)

var(ξ̂k+1; Ψn) =
1

A2
Φ

( 1
n − 1

−
Γ(n − 1

2

)2

(n − 1)!2
) γ2 . (20)
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Evolving wave packets (cont)

In the space L2(R3
+, dν(x1, x2, x3)), we take the corresponding wave packets:

Ψn1,n3,n5(x1, x2, x3; τ1, τ3, τ5, γ1, γ3, γ5) = Ψn1(x1; τ1, γ1)Ψn3(x2; τ3, γ3)Ψn5(x3; τ5, γ5) .
(21)

To meet the properties (10)–(13) for the wave packets Ψn1,n3,n5 , we choose the
parameters τk and γk as follows:

τ1 = τ3 = τ5 = t , (22)

γk = AΦk

(nk − 1)!
Γ
(
nk − 1

2

) · fk (t) , k = 1, 3, 5 , (23)

where

fk (t) =


ã(t) + ϵα(t) , k = 1
b̃(t) + ϵβ(t) , k = 3
c̃(t) + ϵγ(t) , k = 5

. (24)
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Evolving wave packets (cont)

Variances in the Hilbert space H for the Gaussian wave packets read:

var(ξ̂k ; Ψn1,n3,n5) = Ak fk (t)2 , (25)

var(ξ̂k+1; Ψn1,n3,n5) = Bk fk (t)2 , (26)

where

Ak = A2
Φk

(4nk − 3)(nk − 1)!(nk − 2)!

4Γ
(
nk − 1

2

)2 , (27)

Bk =
(nk − 1)!(nk − 2)!

Γ
(
nk − 1

2

)2 − 1 . (28)

These results show that all positions of our system in time and space are smeared
owing to nonzero variances. It is an important fact about possibility of avoiding
singularities in this dynamics.
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Stochastic aspects of BKL scenario

Having calculated the variances of quantum observables
corresponding to perturbed {a,b, c} and unperturbed {ã, b̃, c̃}
solutions, we describe the quantum instabilities as follows:

κk :=
var(ξ̂k ; Ψpert)− var(ξ̂k ; Ψunpert)

var(ξ̂k ; Ψunpert)
, k = 2,4,6 (29)

where ξ̂2 = â, ξ̂4 = b̂, ξ̂6 = ĉ, and where Ψpert and Ψunpert
denote perturbed and unperturbed wave packets, respectively.
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Stochastic aspects of BKL scenario (cont)

Making use of

f2(t)2 = (ã(t) + ϵα(t))2 = ã(t)2 + 2ϵã(t)α(t) + ϵ2α(t)2 ≃ ã(t)2 + 2ϵã(t)α(t) ,

f4(t)2 = (b̃(t) + ϵβ(t))2 = b̃(t)2 + 2ϵb̃(t)β(t) + ϵ2β(t)2 ≃ b̃(t)2 + 2ϵb̃(t)β(t) ,

f6(t)2 = (c̃(t) + ϵγ(t))2 = c̃(t)2 + 2ϵc̃(t)γ(t) + ϵ2γ(t)2 ≃ c̃(t)2 + 2ϵc̃(t)γ(t) .

we obtain explicit form of (29), which in the 1-st order in ϵ, reads:

κa(t) := κ2(t) =
2ϵã(t)α(t)

ã(t)2 = 2ϵ
α(t)
ã(t)

, (30)

κb(t) := κ4(t) =
2ϵb̃(t)β(t)

b̃(t)2
= 2ϵ

β(t)
b̃(t)

, (31)

κc(t) := κ6(t) =
2ϵc̃(t)γ(t)

c̃(t)2 = 2ϵ
γ(t)
c̃(t)

. (32)

The relative perturbations (30)–(32) are the same for the coherent states
and the exponential wave packets.
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Stochastic aspects of quantum evolution (cont)

Figure: Parametric curve of relative quantum perturbations

Higher order approximations in ϵ would not change much the plot.
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Conclusions

Since relative quantum and classical perturbations have quite
similar time evolutions, we can say that quantization does not
destroy classical chaos.
Quantum chaos corresponds to classical chaos in the lowest
order approximation.
Nonlinearity of classical dynamics creates deterministic chaos.
Non-vanishing variances of observables of the corresponding
quantum dynamics create stochastic chaos.
As calculated variances are always non-zero, the probability of
obtaining divergencies of quantum observables corresponding
to classical gravitational singularity is equal to zero.
A quantum system is in eigenstate of given operator iff its variance equals zero.
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Thank you!
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Essence of integral quantization

If the configuration space Π is a half-plane,

Π := {(p,q) ∈ R× R+}, R+ := {x ∈ R | x > 0},

it can be identified with the affine group Aff(R) =: G.
Multiplication law reads

(p1,q1) · (p2,q2) := (p1 + q1p2,q1q2) , (33)

with the unity (0,1) and the inverse (p,q)−1 = (−p/q,1/q).
This group has unitary irreducible representation realized
in the Hilbert space L2(R+,dν(x)) =: H, where dν(x) = dx/x ,
defined by

U(p,q)ψ(x) = eipxψ(qx), ψ(x) ∈ H . (34)
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Essence of integral quantization (cont)
Eq. (34) enables defining the continuous family of affine coherent
states (ACS), denoted ⟨x |p,q⟩ ∈ H, as follows

⟨x |p,q⟩ = U(p,q)⟨x |ϕ⟩ , (35)

where ⟨x |ϕ⟩ =: ϕ(x) ∈ H is the so-called fiducial vector, which is
a free parameter (to some extent) of ACS quantization scheme.
Eq. (35) can be interpreted as the correspondence

(p,q) −→ |p,q⟩⟨p,q| (36)

between point of configuration space Π and quantum projection
operator acting in H.
The space of coherent states is strongly entangled:

⟨t , r |t ′, r ′⟩ ≠ 0 if t ̸= t ′ or r ̸= r ′ , (37)

⟨t , r |t , r⟩ = 1 if ⟨ϕ|ϕ⟩ = 1 . (38)
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Essence of integral quantization (cont)
The irreducibility of the representation leads (due to Schur’s lemma)
to the resolution of the unity in L2(R+,dν(x)):

1
Aϕ

∫
G

dµ(p,q)|p,q⟩⟨p,q| = I , (39)

where dµ(p,q) := dp dq/q2 is the left invariant measure on G,
and where Aϕ :=

∫∞
0 |ϕ(x)|2 dx

x2 <∞ is a constant.
Using (39), enables quantization of any observable f : Π → R

f −→ f̂ =
1

Aϕ

∫
G

dµ(p,q)|p,q⟩f (p,q)⟨p,q| . (40)

The operator f̂ : H → H is symmetric by construction.
No ordering ambiguity occurs (notorious problem of canonical
quantization).
A. Góźdź, W.P., and T. Schmitz, Eur. Phys. J. Plus (2021) 136:18
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Essence of integral quantization (cont)

Using coherent states in (mathematical) physics is nothing exotic.
They have been used by such people as:

E. Schrödinger, J. von Neumann, R. J. Glouber, J. R. Klauder,
A. M. Perelomov, T. W. B. Kibble, L. S. Shapiro, A. A. Kirillov,
B. Kostant, F. A. Berezin, J-P Gazeau, and many others.
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Variance of quantum observable
Variance is a stochastic deviation from expectation value of quantum
observable; determines the value of smearing of quantum observable;
can be used to define quantum fluctuations.
In the quantum state ψ, the variance is defined to be

var(Â;ψ) := ⟨(Â − ⟨Â;ψ⟩)2;ψ⟩ = ⟨Â2;ψ⟩ − ⟨Â;ψ⟩2 , (41)

where ⟨B̂;ψ⟩ := ⟨ψ|B̂|ψ⟩.
If Â is self-adjoint operator, we have important statement:(

var(Â;ψ) = 0
)
⇐⇒

(
Âψ = λψ, λ ∈ R

)
. (42)

Using variance, one can construct the uncertainty principle:

var(Â;ψ)var(B̂;ψ) ≥ 1
4

∣∣∣⟨Ψ|[Â, B̂]|Ψ⟩
∣∣∣2

H. P. Robertson, Phys. Rev. 34, 163 (1929).
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If Â is self-adjoint operator, we have important statement:(
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Âψ = λψ, λ ∈ R

)
. (42)

Using variance, one can construct the uncertainty principle:
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∣∣∣⟨Ψ|[Â, B̂]|Ψ⟩
∣∣∣2

H. P. Robertson, Phys. Rev. 34, 163 (1929).

Włodzimierz Piechocki (NCBJ) Stochasticity of the BKL scenario Jan 20, 2023 33 / 34



Variance of quantum observable
Variance is a stochastic deviation from expectation value of quantum
observable; determines the value of smearing of quantum observable;
can be used to define quantum fluctuations.
In the quantum state ψ, the variance is defined to be
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BKL conjecture

Vladimir Alekseevich Belinski Isaak Markovich Khalatnikov Evgeny Mikhailovich Lifshitz

BKL in string theory
▶ appears in the low energy limits of bosonic sectors of all five types

of superstring models
▶ the Lorenzian hyperbolic Kac-Moody algebra underlies asymptotic

structure of spacetime near cosmological singularity

T. Damour, M. Henneaux and H. Nicolai, Class. Quantum Grav. 20 (2003) R145
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