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Objects on a 2-sphere

For an asymptotically flat spacetime:

gµν = Minkowski + hµν , hµν ∼ O(r−1),

Arnowitt–Deser–Misner mass (1961)

HADM = lim
r→∞

1
16π

∮
S(r)

(hj
k,j − hj

j,k)dSk

“Measured” at spatial infinity
It takes into account both the energy of gravity and that of
matter fields.
Positive definite (Schoen–Yau 1979)
MADM = 0 ⇐⇒ gµν = Minkowski.

Notable example of a non-asymptotically-flat spacetime : FLRW.
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Quasi-local mass — assigned to an extended, but finite region of spacetime.

Hawking energy

HHawking :=
√

Area S
16π

(
1− 1

16π

∫
S
HµHµda

)
Where Hµ is the extrinsic curvature of the 2-surface S in the enveloping
spacetime.
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Extrinsic curvature and torsion

Let S be a 2D submanifold inM.
Extrinsic curvature

Hµ
AB XAY B :=

( 4
∇X Y

)⊥
X ,Y ∈ TS ∼ Ln

2gAB

Mean curvature

Hµ := Hµ
AB

2gAB ∈ (TS)⊥ ∼ grad
√

det 2gAB

Extrinsic torsion

tA XA := Tµ
||T ||

4
∇X

( Hµ

||H||

)
X ∈ TS,T ∈ (TS)⊥ ,TµHµ = 0

Piotr Waluk Quasi-local mass of weak gravity 5/26



Technical introduction
Rigid Sphere condition

The linearized Cauchy problem
Quasi-local mass

ADM mass
Quasi-local mass
Objects on a 2-sphere

Spherical harmonics

The Laplace–Beltrami operator on a unit sphere S2:

◦
∆ := ◦

σAB ◦∇A
◦
∇B

defines a decomposition of functions into spherical harmonics.
(eigenfunctions of

◦
∆, eigenvalues: −l(l + 1), l ∈ N)

S — 2D spacelike topological sphere.

S2 φ−→ S

φ∗
2gAB = p · ◦σAB

The operator
◦
∆φ∗ defines spherical harmonics on S. Condition

dip(p) = 0 makes the definition unique.
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Interpretation?

Energy is the generator of time evolution. To define it, we need a
notion of time direction — a frame of reference!

H1 H2H3
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In search of lost time

Hµ

Tµ

·

Tµ

·

Perhaps asking for a well-behaved quasi-local mass for any region
is just too greedy?
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Rigid spheres (H.P.Gittel, J.Jezierski, J.Kijowski)
We call S a rigid sphere if:

1 Hµ is spacelike
2

◦
∆(

◦
∆ + 2) ||H|| = 0

3
◦
∆(

◦
∆ + 2) tA

||A = 0

A general spacetime sufficiently close to the Minkowski metric
allows an eight-parameter family of rigid spheres.
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Einstein field equations

2
4
Rµν −

4
Rgµν + 2Λgµν = 16πTµν

⇑ EOM

(g1
kl ,P1

kl ) + constraints

(g2
kl ,P2

kl ) + constraints

Pkl := √g(gklK − K kl )
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1+1+2 splitting

Σt = {x0 = t, r1 ≤ x3 ≤ r2} =
⋃

r∈[r1,r2]
Sr

Sr = {x ∈ Σt0 : x3 = r}

Sr1

Sr2Σt

(x0, x1, x2, x3) = ( t , ϑ , ϕ , r )

Indices and covariant derivatives associated with geometry levels:
α, β, γ - Whole spacetime (0, 1, 2, 3) ;
a, b, c - Cauchy surface (1, 2, 3) |
A,B,C - 2D Spheres (1, 2) ||
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Background metric: spherically symmetric solutions

Generalized Birkhoff’s Theorem
Tµν = 0
Spherical symmetry

Imply a locally unique solution, the Kottler metric:

ηµν = −f dt2 + 1
f dr2 + r2

[
dϑ2 + sin2 ϑdϕ2

]

f (r) = 1− 2m
r −

r2

3 Λ
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Perturbative expansion

gµν = ηµν︸︷︷︸
background

+ hµν︸︷︷︸
perturbation

ADM data for the Kottler metric: (ηµν , 0)

First-order perturbation of ADM data on a Kottler background

(hkl ,Pkl ) hkl = gkl − ηkl Pkl = Pkl

4 constraints (linearized Gauss–Codazzi constraints)
4-parameter family of gauge transformations

hµν → hµν + Lξηµν = hµν + ξµ;ν + ξν;µ
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The formalism of reduced linear Cauchy data
(hkl ,Pkl )⇒ (x,X, y,Y)

Axial invariants
y := 2Π−1r2P3A||BεAB

Y := Π(
◦
∆ + 2)h3A||Bε

AB − Π(r2hC
A||CBε

AB), 3

Polar invarants
x := r2hAB

||AB − (
◦
∆ + 1)H + B

[
2h33 + 2rh3C

||C − rfH, 3
]
,

X := 2r2PAB
||AB −

◦
∆(PABηAB) + B

[
2rP3A

||A +
◦
∆P3

3

]
.

B := (
◦
∆ + 2)

( ◦
∆ + 2− 6m

r

)−1
— A quasi-local operator
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The formalism of reduced linear Cauchy data
(hkl ,Pkl )⇒ (x,X, y,Y)

Axial invariants
ẏ = f

Π Y

Ẏ = Π
{
∂3

[ f
r 2 (r 2y), 3

]
+ 1

r 2 (
◦
∆ + 2)y

}
Polar invarants

ẋ = f
Π X

Ẋ = Π
r 2

{(
f r 2x, 3

)
, 3 +

[ ◦
∆ + f (1− 2B) + 1− r 2Λ

]
Bx
}

B := (
◦
∆ + 2)

( ◦
∆ + 2− 6m

r

)−1
— A quasi-local operator
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The formalism of reduced linear Cauchy data

(hkl ,Pkl )⇒ (x,X, y,Y)

1 The four scalar functions (x,X, y,Y) are gauge-invariant.
2 They contain the entire physical information of (hkl ,Pkl ).
3 They are no longer subject to constraints (save for the mono-dipole

part which represents conserved charges).
4 They diagonalize the symplectic form:

Ω =
∫

Σ
δPkl ∧ δhkl =

∫
Σ
δX ∧ A δx + δY ∧ A δy + boundary terms

A :=
◦
∆−1(

◦
∆ + 2)−1 — a quasi-local operator
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The hamiltonian of linearized gravity

By evaluating the symplectic form with the time Killing vector field
we obtain a gauge invariant Hamiltonian:

Ω( ∂
∂t , ·) = −16πδHInvariant + gauge dependent boundary terms

16πHInvariant = 1
2

∫
Σ

f
Π [XAX + YAY] +

+ 1
2

∫
Σ

Π
r 2

[
f (rx),3A(rx),3 + x r

2

f V (+)Ax
]

+

+ 1
2

∫
Σ

Π
r 2

[
f (ry),3A(ry),3 + y r

2

f V (−)Ay
]

V (+), V (−) — quasi-local, positive definite operators.
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D. R. Brill and S. Deser (1968)
For a perturbed Minkowski spacetime:

HADM ≈ HInvariant

A sensible quasi-local mass candidate should possess a similar
property!
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Hawking energy

HHawking :=

√
Area S
16π

(
1− 1

16π

∫
S

(HµHµ + 4
3Λ)da

)
By using the scalar Gauss–Codazzi constraint:

g
3
R − 2Λg = PklPkl −

1
2P2,

along with Gauss–Codazzi geometric identities for the embedding of ∂Σ in Σ,
we can relate the Hawking energy to a volume integral of ADM data:

16πHHawking ≈
∫
∂Σ
F1[

2
R, k,KAB︸ ︷︷ ︸

HµAB

] =
∫

Σ
F2[gkl ,Pkl ]
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g
3
R − 2Λg = PklPkl −

1
2P2

⇓

2(w kk), k − 2∂A

[
λg̃AB

(
1√
g33

)
, B

]
+ λ√

g33

(
2
R + 1

2k
2 − 2Λ

)
=

=
√

g33

λ

(
PklPkl − 1

2P
2
)

+ λ√
g33

(
kABkAB − 1

2k
2
)

λ =
√

det gAB w a = λ
g3a

g33

⇓

∫
∂Σ

r
(
λR − 1

2λk
2 − 2

3λΛ
)

= −
∫

Σ

(√
g33

k + r
2

)[
(k2 + 4

3Λ)w a
]
,a

+∫
Σ

g33

λ

(
PklPkl − 1

2P
2
)

+
∫

Σ
λ
(
kABkAB − 1

2k
2 + 1

2 g̃
AB(log g33), A(log g33), B

)
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16πHHawking ≈ 16πHInvariant −
2m
r2

∫
∂Σ

(λ− Π)

+
1
2

∫
∂Σ

f Π
r

yAy +
f Π
r

x(B − 1)Ax

+ 2
∫
∂Σ

r3f Π δ(tA
||A) AB δ(tA

||A)

− 2
∫
∂Σ

rΠ δ(||H||)
◦
∆AB

[(1
4
◦
∆ −

1
2

f (B − 1)
)
δ(||H||)−

√
f

2r
x
]

1 The coordinate r must be chosen to equal to the areal radius in both ηµν
and gµν :

r =

√∫
S

Π
4π =

√∫
S

λ

4π
2 Quadratic boundary expressions in x and y represent the choice of control

mode
3 By appropriate gauge transformation, we can set δ(||H||) = δ(tA

||A) = 0.
This is a linearization of the rigid sphere condition.
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√√√√√ ∫
S(r1,2)

λ

4π = r1,2 =

√√√√√ ∫
S(r1,2)

Π
4π

S(r1)
S(r2)

gµν

ηµν

Σ
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Conclusions

The boundary of an extended spacelike region defines a distribution of
preferred time directions on itself. The behaviour of such a distribution
can be controlled by imposing some conditions on the shape of the
boundary, e.g. the Rigid Sphere conditions.
Quasi-local energy, as a generator of time evolution, should be
approximated by the Hamiltonian of the linear theory.
Hawking quasi-local mass satisfies this criterion with an appropriate
choice of boundary spheres.
Results suggest that the Q-L mass may be well-defined only for regions
with “good” boundary (Rigid sphere condition).

Piotr Waluk Quasi-local mass of weak gravity 25/26



Technical introduction
Rigid Sphere condition

The linearized Cauchy problem
Quasi-local mass

Scalar constraint in full theory
Second-order approximation
Conclusions

Piotr Waluk Quasi-local mass of weak gravity 26/26


	Technical introduction
	ADM mass
	Quasi-local mass
	Objects on a 2-sphere

	Rigid Sphere condition
	Frame of reference
	Rigid Sphere condition

	The linearized Cauchy problem
	Topology
	The Kottler metric
	Perturbative approximation
	Reduced variables

	Quasi-local mass
	Scalar constraint in full theory
	Second-order approximation
	Conclusions


