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Over the last decades, loop quantum gravity (LQG) has been well developed 


—Canonical approach: [Ashtekar & Lewandowski 2004, Han, Ma, Huang 2007, Thiemann 2008, et.al.]


—Spinfoam Model: [Perez 2003, Rovelli & Vidotto 2015, et.al.]


—Group field theory: [Fredel 2005, et.al.]

Some achievements of LQG [Ashtekar, Alesci, Assanioussi, Bodendofer, Dapor, Domagala,  Giesel, Han, Kaminski, Liegener, Lewandowki, Liu, Ma, 

Makinen, Okolow, Pwalowski, Rovelli, Simolin, Sahlmann, Thiemann, Yang, Zhang, et.al. ]:

 

—a well defined kinematic Hilbert space, 

—solving the Gauss and diffeomorphism constraint explicitly, 

—a family of operators representing geometric observables: area, volume, length, curvature et.al. , 

—the dynamics: the Hamiltonian constraint operator, transition amplitude, the attempt to analyze the dynamics et.al. 

—semiclassical analysis: coherent state system, large  limit of spinfoam model et.al.  

—cosmology & BH model: big bounce, BH-WH transition, discreteness of BH mass spectrum et.al. 

…….

j
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Spacetime tells matter how to move; matter tells spacetime how to curve

                                                                             —J. A. Wheeler

LQG sets a stage for incorporating matters into quantum spacetime


—massless Klein-Gordon field, dust field coupled to canonical LQG [Rovelli & Lee 1994, Brown & Karel1995, Giesel &Thiemann 2010, 
Domagala et. al. 2010, Lewandowski et. al. 2011, Han & Rovelli 2013, Bianchi et. al. 2013…]


—minimal coupling of fermions and Yang-Mills fields to covariant LQG [Han & Rovelli 2013, Bianchi et. al. 2013…]

By employing the procedure proposed by [Thiemann 1998], we:

—solve the Gauss constraint explicitly

—regularize and quantize the Hamiltonian constraint by introducing the vertex Hilbert space.


We are concerning about the model of LQG coupled to fermion field
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 A vertex Hilbert space is a Hilbert space group averaged with diffeomorphisms preserving 
some specific vertices

The vertex Hilbert space was introduced for the model of gravity coupled to scalar field 
[Alesci, Assanioussi, Lewandowski & Mäkinen 2015]


—a graph-changing Hamiltonian operator is usually defined as the limit of some regularized Hamiltonian operators as 
the regulator approaches 0,


—introduce the so-called vertex Hilbert space to remove regulators and define limit


—the operator on the vertex Hilbert space carries the diffeomorphism-covariance feature
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Classical model of gravity coupled to the fermion field: 


—First order formulation : fermion couples to the connection  directly.  


—Second order formulation : fermion couples to the spin connection  compatible with , where there is no 
torsion involved.                                                   

S[ω, e, Ψ] ω

S[e, Ψ] Γ e

Classical phase space

—Regular Hamiltonian analysis tells . 


—In our model,  will become an operator: .


—Contradiction: 

One proposed the half-density  for quantization [Thiemann et.al. QSD]

Π = qΨ†

q Π̂† = ̂q Ψ̂

0 = [Π̂, ̂f(A) ]† = [ ̂f(A) , Π̂†] = [ ̂f(A) , ̂q Ψ̂] ≠ 0

Ψ̃ := 4 qΨ  and  Π̃ = Ψ̃ †
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The classical phase space: , 

   : an SU(2) connection on spatial manifold 


   densitized triad 


   

(Ai
a, Eb

j , ξ, ξ†, ν, ν†)
Ai

a

Eb
j = | det(ei

a) |eb
j

ξ := 4 qΨ−, ν := 4 qΨ+

(anti-)Poisson brackets: for 
   

   

   

A, B = ± 1/2
{Ai

a(x), Eb
j (y)} = δb

aδi
jδ(x, y)

{ξA(x), ξ†
B(y)}+ = − iδABδ(x, y)

{νA(x), ν†
B(y)}+ = − iδABδ(x, y)
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Gauss constraint :


 

Diffeomorphism constraint  :


Hamiltonian constraint :


Gm

Gm = ( 1
κβ

DaEa
m +

1
2

ξ†σmξ),

Ha

Ha =
1
κβ

Eb
i Fi

ab +
i
2 {ξ†Daξ − (Daξ)†ξ + ν†Daν − (Daν)†ν} + βKm

a Gm,

H

H = HG +
1
q [i(ξ†Ea

i σiDaξ − (Daξ)†Ea
i σiξ) − βEa

i Ki
aξ†ξ −

1
β

(1 + β2)DaEa
i ξ†σiξ − βEa

i Da(ξ†σiξ)
−i(ν†Ea

i σiDaν − (Daν)†Ea
i σiν) + βEa

i Ki
aν†ν −

1
β

(1 + β2)DaEa
i ν†σiν − β

1
q

Ea
i Da(ν†σiν)] .
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ℋG
γ = L2(SU(2)|E(γ)|, dμH)

Multiplication operator: 

Derivative operator:  (left or right vector field on SU(2))

Dj
mn(he)

̂Jk
e,v

e
Dj

mn(he)
̂Jk
e,v1

̂Jk
e,v2

: parallel transpose from  to 


: Area vector at the 

Dj
mn(he) v1 v2

̂Jk
e,v v
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Canonical transformation :


  ζx =
1

ℏ ∫Σ
d3y

χϵ(x, y)
ϵ3

ξ(y)

ℋF
x = span( |00⟩x, |01⟩x, |10⟩x, |11⟩x)x

V
ℋF

V = ⨂
x∈V

ℋF
x

Ladder operator: , for example:  ,  ̂ζx,A, ̂ζ†
x,A A = ± 1

2
̂ζ†
x, 1

2
|0,i2⟩x = |1,i2⟩x

̂ζ†
x,− 1

2
| i1,0⟩x = (−1)i1 | i1,1⟩x

New anti-commutator relation:


 {ζx,A, ζ†
y,B}+ = −

i
ℏ

δAB δx,y, A, B = ± 1
2
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γ

The Hilbert space:  ℋG
γ ⊗ ℋF

V(γ)

̂ζx,A = ∑
k

ΘA+(k) ̂̃ζk,Beik⋅x

̂ak ∼ ̂̃ζ+,k b̂k ∼ ̂̃ζ†
−,k

  diagonalize the effective Hamiltonian:

 


   

ΘA+(k)eik⋅x

ĤF
eff = ⟨background | ĤF( ̂ζ, ̂ζ†, he, ̂Ji

v,e) |background⟩

in ℋG
γ
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Ĝv,m = ℏ∑
e

̂Jv,e
m + ℏℱ̂v,m

∑
e

̂Jv,e
m = + + +

ℱ̂v,m = ℱ̂v,m |0,0⟩v = 0 = ℱ̂v,m |1,1⟩v

ℱ̂v,m ( |1,0⟩v, |0,1⟩v) = ( |1,0⟩v, |0,1⟩v)
σm

2

  performs like an angular momentum operator: ℱ̂v,m
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Ĝv,m = ℏ∑
e

̂Jv,e
m + ℏℱ̂v,m

ℱ̂v,m |0,0⟩v = 0 = ℱ̂v,m |1,1⟩v

ℱ̂v,m ( |1,0⟩v, |0,1⟩v) = ( |1,0⟩v, |0,1⟩v)
σm

2

  performs like an angular momentum operator: ℱ̂v,m
ℋF

v ≡ ℋ0 ⊕ ℋ0 ⊕ ℋ1/2

|ℱ̂v |2 ℋj = j( j + 1)ℋj

Inv (ℋG
v ⊗ ℋF

v )
(Inv (ℋG

v ) ⊗ |0,0⟩v) ⊕

(Inv (ℋG
v ) ⊗ |1,1⟩v)
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Ĝv,m = ℏ∑
e

̂Jv,e
m + ℏℱ̂v,m

Inv (ℋG
v ⊗ ℋF

v )
(Inv (ℋG

v ) ⊗ |0,0⟩v) ⊕

(Inv (ℋG
v ) ⊗ |1,1⟩v)

j1

j2
j3

j4 im1m2m3m4
⊗ |0,0⟩ im1m2m3m4a

j1

j2

j3

j4ℋG
v = ℋj1 ⊗ ℋj2 ⊗ ℋj3 ⊗ ℋj4
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H[N] = ∫ d3x H[Ai
a(x), Eb

j (x), ξv,A, ξ†
v,A]

However, the basic operators in LQG are


 — , 


 — , 


— 

he = 𝒫 exp (∫e
A)

̂Jj
v,e =

1
κβ

̂
∫Se,v

dxadxbϵabcEc
j

̂ζx =
1

ℏ

̂

∫Σ
d3y

χϵ(x, y)
ϵ3

ξ(y)

To quantize the Hamiltonian

1, regularize the classical expression

    


2, quantize the regularized expression

Hδ[N] = ∑
v,e

H[he, ⃗J e,v, ζv,A, ζ†
v,A]
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In our model, the fermion Hamiltonian is given by:



̂HF[N] = lim
δ→0

̂HF
δ [N] + ̂HF

δ [N]†

̂Hδ(v) := ∑
v∈V(γ)

i ̂H(1)
δ (v +

β
2

̂H(2)
δ (v +

1 + β2

2β
̂H(3)

δ (v) + β ̂H(1)
δ (v)

Consider the typical term:  ̂H(1)
δ (v)
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̂H(1)
δ (v) :

Two problems:


—to define the limit as ,


—  is not gauge covariant. 

δ → 0

̂H(1)
δ (v)†
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Problems 1: ⟨ | ⟩ = 0
 cannot be well definedlim

δ→0
̂H(1)

δ (v)

̂H(1)
δ (v) :

Two problems:


—to define the limit as ,


—  is not gauge covariant. 

δ → 0

̂H(1)
δ (v)†
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Problems 2: 

̂H(1)
δ (v)† :

0

̂H(1)
δ (v) :

Two problems:


—to define the limit as ,


—  is not gauge covariant. 

δ → 0

̂H(1)
δ (v)†
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This can be done by group averaging with the diffeomorphisms preserving .

 is a dual space of the cylindrical function space, everything  is well-defined by 

the duality

v
ℋvtx

The vertex Hilbert is defined such that:

∼ ∼ ∼ ⋯
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 is well defined in , because  lim
δ→0

̂H(1)
δ (v)′￼ ℋvtx

̂H(1)
δ (v)′￼ = ̂H(1)

δ′￼
(v)′￼ = ⋯

̂H(1)
δ (v) :

The vertex Hilbert is defined such that:

∼ ∼ ∼ ⋯

Problems 1 is solved
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The vertex Hilbert is defined such that:

∼ ∼ ∼ ⋯

̂H(1)
δ (v)† :

0

 cannot be promoted as an operator in .̂H(1)
δ (v)† ℋvtx

Given up  but use ̂H(1)
δ (v)† ( ̂H(1)

δ (v)′￼)†

Problems 2 is solved



The Hamiltonian Constraint

lim
δ→0

̂H(1)
δ (v)′￼ :

lim
δ→0

( ̂H(1)
δ (v)′￼)† :



The Hamiltonian Constraint

lim
δ→0

̂H(1)
δ (v)′￼ :

lim
δ→0

( ̂H(1)
δ (v)′￼)† :

j1j2
j3

j4

im1m2m3m4a

j′￼1j′￼2
j′￼3

j′￼4

i′￼m1m2m3m4

j′￼1j′￼2
j′￼3

j′￼4

i′￼m1m2m3m4

j1j2
j3

j4

im1m2m3m4a
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Our work considers the coupling of fermion field to canonical LQG.


We investigate the Gauss and the Hamiltonian constraint in this model.


We solve the Gauss constraint explicitly, and regularize and quantize the Hamiltonian 
constraint by introducing the vertex Hilbert space.


This framework will be applied to recover the usual quantum field theory, and consider 
the backreaction between quantum matter and quantum spacetime. 



Thank you 


