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Figure 1: Collective spin excitations in the two- and one-dimensional anti-
ferromagnets: (a) A well-defined spin wave dispersion can be nicely seen in
the inelastic neutron scattering experiment on the two-dimensional antifer-
romagnet (LayCuQOy; symbols) and in the linear spin wave approximation
calculations for the Heisenberg model (solid line); figure adopted from R.
Coldea et al., Phys. Rev. Lett. 86, 5377 (2001). (b) A two- and higher-order
spinon continuum is seen in the the inelastic neutron scattering experiment
on the one-dimensional antiferromagnet (CuSO4-5D20, left panel) which is
confirmed by the theoretical calculations for the one-dimensional model using
the Bethe-Ansatz technique (right panel); figure adopted from M. Mourigal
et al., Nature Physics 9, 435 (2013). These two examples nicely show the
differences in magnetism in one and two dimensions — in particular the more
quantum nature of the one-dimensional magnetism.

The course is a brief introduction to the basic notions of the quantum
theory of magnetism. During the course a particular emphasis will be devoted
to: (i) the differences between quantum and classical effects, and (ii) the
connections between the real materials and the here discussed effective spin
models and its solutions. It is desired that after the exercise classes, the
student should be able to understand the quantum nature of magnetism
present in a number of solids and calculate the basic magnetic properties of
quantum matter — with a particular emphasis on the ‘very quantum’ behavior
of magnetism of the quasi-low-dimensional crystals, cf. Fig. 1.

The plan of the ezercise classes is as follows:

Classes 1-2: Magnetic properties of matter

e Spin and orbital angular momentum and its connection to the magnetic



moment — revisited.

e Hund’s exchange and Hund’s rule in atoms — calculating magnetic
ground states of various atoms.

e Stoner criterion — calculating (ferro)magnetic ground state of metals.
Magnetic properties of matter versus spin and orbital quantum numbers
of electrons.

e Overview of problems to be solved in the exercise classes.

Classses 3-4: Magnetism with localized magnetic moment — modelling

L(ZQ CUO4

e Obtaining the tigh binding Hamiltonian from the LDA—derived bands
for LasCuQOy.

o Schrieffer-Wolff transformation: from Hubbard model to Heisenberg
model.

Classes 3-8: Quantum magnetism — ground state and excitations of 2D
Heisenberg model
(a) Classical (Ising) limit of the 2D Heisenberg model:

e Finding the ground state of the model.

e Calculating excited states using Green’s function formalism.
(b) Ground state and excitations:

e Formal justificiation of the linear spin wave theory.
e Linear spin wave expansion and the Holstein-Primakoff transformation.
e Introduction to Bogoliubov and Fourier transformation.

e (Calculating the ground and excited states of the model.
(c) Spontaneous symmetry breaking:

e Introducing the Lieb-Mattis (LM) toy-model.



e Ground state of the LM model.

e Different orders in taking the two limits of the LM model and the
concept of the spontaneous symmetry breaking.

e (Calculating the reduction of order parameter of the Hesenberg model
by quantum fluctuations and quantum disorder.

(d) What is quantum and what is classical?

e Ground state of the ferromagnetic Heisenberg model.

e Holstein-Primakoff transformation for the ferromagnetic Heisnberg model
and the excited states.

e (Calculating the order parameter of the ferromagnetic Heisenberg model.
(ground state, excitations, order parameter).

Classes 9-10: Rewvisiting Lay CuOy: comparing the above discussed theo-
retical results for the 2D Heisenberg model with experiments

e Understading in detail one experimental technique: resonant inelastic
x-ray scattering (RIXS).

e RIXS cross section and the Kramers-Heisenberg formula.

e Fast collision approximation for RIXS: justification, derivation and ap-
plication.

e (Calculating RIXS cross section for Cu L edge using fast collision ap-
proximation.

Classes 11-14: Properties of other spin models — ground state and collec-
tive excitations with a short discussion on its origin, application to materials,
and experiments:

(a) One-dimensional Heisenberg model

e (Calculating the destruciton of the order parameter of the one-dimensional
Hesenberg model by quantum fluctuations using linear spin wave the-
ory.



e Mean-field approach to the excitations of the model using the con-
strained fermion picture.

e Jordan-Wigner transformation and its utlity in solving this model (and
other models) in one dimension.

e Overview of the Bethe Ansatz technique.
(b) Frustrated spin models

e Showing frusration of interactions on an example of a triangular Heisen-
berg model: calculating ground and excited states.

e Ground and excited states of the Majumdar-Ghosh model.
e Ground and excited states of the bilinear-biquadratic models for S=1.
(c¢) Adding orbital degrees of freedom (Kugel-Khomskii models)

e Derivation of the spin and orbital exchange interactions for an idealized
two-orbital Hubbard model with two equivalent orbitals: introducing
the multiplet structure of the virtual states and the SU(4) symmetric
model in the limit of small Hund’s exchange.

e Derivation of the spin and orbital exchange interactions for the Hub-
bard model with degenerate e, orbitals.

¢ Finding the ground state of the spin-orbital models using mean-field
decoupling.

e Failure of the ‘standard” mean-field decoupling in one dimension and
succes of the the mean-field decoupling using the constrained-fermion
picture.

e (Calculating spin-orbital entanglement.
Class 15: Summary of open problems in the field
e Derivation of the ¢-J mode using Schrieffer-Wolff transformation.

e (Calculating motion of a single hole in the two-dimensional antiferro-
magnet using the retraceable path approximation and the self-consistent
Born approximation: comparison between classical and quantum cases.
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