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PLAN OF THE TALK

e The Ashtekar-Baez-Corichi-Krasnov QBH
e Combinatoric formulation of the QBH entropy calculation
e Results:

— Constribution of higher spins is not negligible
— A correct value of entropy from the ABCK model

— The puncture spin statistics
e The status of the Quasinormal Modes relation

e What else could we count?

The issue of a quantum black hole from Quantum Geometry was
raised by Krasnov (1998) and Rovelli (1996). The (classical and)
quantum Isolated Horizon framework was introduced by Ashtekar,
Baez, Corichi and Krasnov (1999, 2000).



I. THE ABCK QUANTUM BLACK HOLE

The classical phase space: the set of space-times containing
an isolated horizon. a location of the horizon and the area a are fixed.

In the 3+1 framework: horizon is represented by a 2-sphere S,
the bulk is a 3-manifold ¥ bounded by S.

The degrees of freedom:

-a U(1) spin connection defined on the horizon S

- gravitational field data in X

such that a consistency condition is satisfied ensuring that the world-
surface of S is an isolated horizon.

The quantum Hilbert space: Hy;, C Hs ® Hs

Hs: the horizon Hilbert space is understood as the space of the
black-hole quantum states. Mathematically, this is the union of the
quantum U(1) Chern-Simons theories on a punctured sphere, where
all possible sets of punctures are admitted.

Hs: the bulk Hilbert space is described by Quantum Geometry,
consists of excitations of the 3-geometry. which define the quantum
area of the horizon.

The quantum consistency condition is equivalent to the quantum
Gauss constraint in Hg ® Hyx at S.

The quantum constraints commute with the quantum horizon
area operator. All the solutions whose quantum areas fall into any
given finite interval [a — da, a + da] can be labeled by a finite number
of the quantum black hole states and bulk labels.



II. THE BULK QUANTUM GEOMETRY, Hsx

Consider a finite set of points,

P = {p17 ---apn} C 5, (1)

and a labeling by numbers j = (41, ..., J,), and m = (my, ..., m,,)
where

1 . .
0 £ 5; € §N’ m; € {—]1, ---Jz'} (2)

The space Hsy is the orthogonal sum

= D H 3)
(P.j.m)
where P runs through all the finite subsets of S, (7, m) through all
the finite labelings (2).
The meaning of the quantum numbers j;, m;: consider a piece

S'cS

area of S': a?,J = Smyly, Z V3ilgi + 1), (4)
p;€PNS!

flux across S’ : e?,m = 8wyl Z m; (5)
p;ePNS!

where only those points p; € P contribute which are contained also
in S, and v > 0 is a free parameter of Quantum Geometry known
as Barbero-Immirzi parameter.

In particular, the area and flux of the horizon S are

o = Smylh 12 Jilgi + 1), (6)

e?,’m = SWWZPIZmZ (7)



III. THE HORIZON GEOMETRY, Hs, THE FULL Hkin

In order to quantize consistently the horizon degrees of freedom,
it is assumed that the fixed classical area a is,

a = 4nylak, kéeN (8)

where k is arbitrary.
Orthogonal decomposition:

labels:

—

P = (p1,sPa) b =
b, € L., pZ'ES Zbi:(). (10)

the decomposition:

Hs = EPH:, (11)

(P.b)
: P.b
The meaning of b;s:
7b;
holonomy/(4.5") H ¢iF (13)

5 pZESI
Now, the quantum condition that S be a section of a spherically
symmetric isolated horizon is

73: (pl;---;pn); P = {pl,---,pn} (14>

bz' = —Qmi mod k. (15)

%kin _ @ %Eb(m) ® Hg;j,M) (16)
ﬁ,j,m



IV. Hpuys AND THE ENTROPY DEFINITION

Solving the vector constraints amounts to the averaging with re-
spect to the S prerving diffeomorphisms. The scalar constraint and
the Gauss are already solved on S.

The physical quantum horizon states:
an orthogonal basis |by, ..., b, is labelled by all the sequences,

b= (bl, bn), b, € b, € 7. (17)

The full, horizon-bulk physical quantum states:
Honys = @ Fbm).gm. (18)
7.m

where
(19)

The horizon area operator Ag commutes with all the constraints
in this framework, and passes to the physical Hilbert space. The
sequences j = (J1,...Jn) are responsible for the area assigned to
the 2-surface S of the horizon by the bulk Quantum Geometry,
whereas the sequences b represent the intrinsic quantum degrees
of freedom of the horizon.

The ABCK horizon entropy is defined by the number of the quan-
tum horizon states |by,...b, >€ Hg pnys which correspond to non-
trivial subspaces H(™)3™ such that

o = 8y » Vii+1) < a (20)
1=1



V. A SIMPLER, COMBINATORIC FORMULATION

The entropy S of a quantum horizon of the classical area a accord-
ing to Quantum Geometry and the Ashtekar-Baez-Corichi-Krasnov
framework is

S = InN(a), (21)

where N(a) is 1 plus the number of all the finite sequences
(my, ....,my) of non-zero elements of %Z, such that the following
equality and inequality are satisfied:

zn: m; = O, (22)
1=1

- a
> VImdm 41 < (23)
1=1

Pl

where v is the Barbero-Immirzi parameter of Quantum Geometry:.



VI. THE ENTROPY CALCULATIONS: FIRST INEQUALITIES

To find an upper bound for the number N(a) introduced in the
previous section (recall that @ = 4wyl3k, and k € N), define the
area-flux operator whose eigen subspaces are the spaces ’H;J " but
the eigen-values are given by taking the absolute value of each term

in the sum defining the flux operator, namely
as™ = 8mylp Z Im;|. (24)

Incidently, it may be argued, that this is the way area could be
quantized. Consider the set

1
M = {(mi,...,m,) ‘ 0#m; € §Z’ as™" < a=4dmylik}.
(25)

Let N be the number of elements of M," plus 1 (the empty se-
quence). Certainly,

Na) < Nf (26)

Next. since k is arbitrarily fixed integer, let it become a variable

of the sequence (Ny, Ni", ..., N;',...). To establish a recurrence re-

lation satisfied by the sequence (N7, N, ..., N;f, ...), notice that if
1

(ma, ..., m,) € M;" |, then both (mq, ..., my, £), (M, ..., m,, —3) €

M,F. In the same way, for arbitrary natural 0 < I < &,
1
(my,...,m,) € M;\ | = (ml,...,mn,iél) e Mt (27

Obviously, if we consider all 0 < [ < k, and all the sequences
(ma, ..., my) € M;" . then the resulting (ma, ..., my, £21) form the
entire set M;". Also, for two different | # ',

1 1
(ml,...,mn,iél) + (ml,...,mn,iél'). (28)
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This proves the following recurrence relation,

NI = 2N+ . +2N + 1. (29)
The (unique) solution is
N = 3F (30)
In conclusion,
N(a) < 3%, (31)

Incidently, if we defined the quantum area operator A+(S ) by taking
the absolute value flux above, the entropy (the leading term) would

be

In3 a
St = InN* = —— 32
@) = N = 20 (32
To find a lower bound for N(a), we use the inequality
1
Vimil(mi +1) < |mil + 5, (33)

and consider the number N, equal to 1 plus the number of elements
in the set

1« 1 k
. = ceey My, i € =1, i =) < =
= {my, om0 £ mi e >(m+3) < 3)

(34)

=

Notice that this time, ignoring the constraint that the elements m; of
each sequence sum to zero makes an in-equivalence relation between
N(a) and N, a priori not known. But let us postpone this problem
for a moment. Using the same construction as above, we find the
recurrence relation satisfied by IV,

N, = 2N, ,+...+2Ny + 1. (35)
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The unique solution is

2, (=)
N, = 22b 42 36

k 35 T3 (36)

A lower bound for N(a) is the number N'; of the elements of M,

which additionally satisty m; + ... + m,, = 0.
N’y < Nfa). (37)

A statistical physics argument giving the value of the desired number

' is as follows (this argument is due to Meissner, who also provided
an exact proof). We can think of each sequence (myq, ..., m,,) as of a
sequence of random steps on a line. The total length of each path
is bounded by k owing to the inequality in the definition of the set
M. The number of sequences in M, of a given, fixed value of the

sum
mi+..4+m, =0 (38)

depends on §. The average value of § is & = 0. For large values

of k, the number of the paths corresponding to the random walk

52
distance ¢ should be given by the Gaussian function \%e_ﬁ_k N .

In particular, the value

_ C
N, =—=N, 39
corresponds to § = 0.
Summarizing,
C
CN; < N < N, (40)

vk
where the numbers N and N," were calculated in (31, 36). There-
fore the entropy is bounded in the following way
In 2 In3

‘ < S < —q. 41
47r’y€f)1a +o(a) < S(a) < 47r’y€f)1a (41)




A necessary condition for the agreement of the entropy S(a) with
the Bekenstein-Hawking entropy:

In?2 In3

<y <— (42)
m m

VII. EXACT CALCULATION (MEISSNER)

Generalization of the recurrence relation used above to a relation
satisfied by the desired number N(a) itself:

N(@) = 0(a — V3/2) (QN(a—\/§/2)+2N(a—f2)+...
NG — /| (fm] + 1) + ... +2 \/4a2+1—1]) (43)

where [.] stands for the integer part, and a = a8ny/f3,. The Laplace

transform of N(a):
P(s) = /0 da N(a)e ™ (44)

_ 23 e sVAEA2)/ | (45)
3 (1 . 222021 6—5~/k‘(k+2)/4)

The simple real pole is s, = 2wy, Where

1 — Z e~ 2m i/ Iml(Iml+1) _ (46)

0#£meLZ

And
™ @

S(a) = —— + Ofa). 47
Taking into account the condition ) .m; = 0 produces the sub-
leading term

™ @ 1
Sa) = —— — =1 O(1). 48

10



The numerically calculated value:

7y = 0.23753295796592 . .. (49)

VIII. THE SPIN PROBABILITY DISTRIBUTION

Given any value a of the classical horizon area, and the N(a)
quantum states of the horizon labeled by all the finite sequences
(ma, ..., m,) which contrubute to the entropy, one can fix any arbi-
trary value

O#mE%Z (50)

and consider the subset of states corresponding to the sequences such
that

m; =m. (51)

Denote the number of the elements of this subset by N, (m). The
ratio

(52)

can be considered as the probability that the first puncture is labeled
by mi = m. The question is, what Py,)(m) is when a is large
compared to the minimal area a,, created at the puncture!,

an = 8tylpy/|ml(Im| +1). (53)

(Notice, that the answer could make no probabilistic sense, if the
limy_yoc Pqy(m) were 0 for all the values of m. for example.) The

IThis issue has been raised recently by John Baez.
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number N,)(m) defined above can be also thought of as a number
of all the finite sequences (ma, ..., m,,) such that

- - a— a,,
Somio= —my S Vmil(Im] 1 1) < T (54)
1=2 i=2

8myl3,

By the same randon walk argument as the one used above in the
treatment of the number N’ we have

2

Niy(m) = e =mN(a — a,,) + ... (55)

where the other terms can be neglected when we go to the limit
a — 00. Since the number N(a) is given by exponentiating (47), we
can see that in the limit a — oo

Py(m) — e ™M mlm+1) = P(m). (56)

Now, the equality defining vy means that the limits P(m) of the
probabilities still sum to 1.

> P(m) =1 (57)
0£meLZ

That (limit) probability distribution P(m) can also be written in
terms of the entropy S(a,,) corresponding to the area a,,, namely

P(m) = e ), (58)

regardless of whether we fix the value of v by the agreement with
the Bekenstein-Hawking entropy or not.
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IX. REANIMATION OF THE QUASI NORMAL MODES LINK

Dreyer’s calculations connecting the ABCK entropy from Quan-
tum Geometry, the BH entropy, the quasinormal-modes and the
quantum mechanical formula AE = wh rely on the ‘entropy’ de-
rived from the number of states of the type (4jwmin, -+, £ Jmin only.
Our results show. this is not the full entropy.

Remarkably however (Baez, private communication), the link can
be found if we use instead of our area operator the flux-area operator
defined above by the eigen values

ot = sy S il 59)

(G = h = 1) which also arguably corresponds to the classical area
observable. Recall, that the corresponding entropy was

S*(a) = WN*(a) = ﬁ—j%ﬁ (60)
The consistency with BH implies
In3
= (61)
The area spectrum gap is a multiple of
Aad = 87r7% = 47y = 4In3 (62)
Defining after Dreyer the frequency wsy(2) by
Aaf = 32rMAM = 321 Mwgy () (63)
we find
Mgy = 23 (64)

8
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and notice, that wsy(2) coincides with the limit of the quasinormal-
mode frequences in which the dumping is maximal.

Remarks:

- the calculation uses the SU(2) gauge group of Quantum Geom-
etry

- if one assumes that Quantum Geometry is an SO(3) theory and
repeats the calculation of the area, entropy, v and finally wsg(3), the
resulting value of wgq3) 1s

Ws0(3) = Wsu(2)- (65)

- The status of the flux-area operator: there are several remarks
related to this point. The flux-area operator used above is given
by the flux of the vector field normal to the horizon. The ACBK
framework distinguishes this operator in a very special way, speci-
phic for the horizon only. The normal vector field is defined by the
extra structure provided at the horizon. namely the given internal.
su(2) valued vector field r. Contracted with the Ashtekar frame field
E!. r'E¢ defines the vector normal to the horizon. Itself 7 is NOT
a dynamical field. The flux-area operator Baez proposes to use is
obtained from the flux integral corresponding to r with the extra
absolute value inserted under the integral defining the flux. Clas-
sically this an equivalent to the usual definition of the area of the
horizon. The quantum operators. on the other hand. are different.
If we want to take the QN mode relation seriously, we choose the
flux-area definition. Consider now instead of the horizon, a regular
2-surface contained in the bulk. Do we have again two area opera-
totrs? In this case the internal vector field r normal (via the soldering
form) to the surface is not apriori given. We need to construct it from
the surface and from the frame. Therefore it involves the dynamical
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fields which get quantized,
r = r[E]. (66)

[ have calculated the resulting flux operator. It COINCIDES with
our legal AREA OPERATOR.

Conclusion: it is not radicules to assume that the classical area of
the BH should be replaced by the flux area in the quantum theory:;
thus the quanta are just |m|s. However, this new operator does NOT
generalize to other surfaces contained in the bulk.,

- the Quantum Geometry quantum flux-area becomes compatible
with the CS quantum consistency condition

X. WHAT ELSE SHOULD WE COUNT? (DISCUSSION)

15



