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Abstract

Elimination of constraints leads to new effective interactions for scalar fields with SSB and
to gauge invariant Lagrangean in QED.

1. Introduction

It often happens in field theory that a dynamical system has constraints, eg. gauge theories,
or fields quantized on the light front, where we observe the halving of degrees of freedom as
compared with t=0 quantization. The rôle of constant fields (so called zero modes) also needs
elucidation: on one hand there are to be considered as nondynamical constraints and on the
other hand they describe normally the non vanishing vacuum expectation values of the fields.
I developed recently a method to deal simply and explicitely with constraints1, which I will
illustrate here on the example of scalar field theory with "mexican hat" potential. As will be
shown elimination of zero mode in this case has far reaching consequences: new interactions
apear which lead to Bose-Einstein condensation. Perturbative vacuum is no longer the lowest
energy state of the theory. The physical vacuum is populated by condensates of particles and
their number increase with decreasingx+. The same procedure is then applied to QED, where
there are no condensates.

2. Real scalar field

Constraint eleimination1 is simply done by integrating out the variables lacking time deriva-
tive in the Feynman path integral. We will apply our procedure to the "mexican hat" scalar field
theory with the Lagrangean density

L =
1

2
∂µφ∂µφ +

1

2
m2φ2 − λ

24
φ4 (2.1)

Notice the "wrong" mass term sign.
We see immediatly that for fields constant along directionx− the time derivative is multi-

plied by 0, i.e. these fields are constraints. It is therefore judicious to extract explicitely this
constant in view of integrating over it. Let us therefore put (φ0 is the constant field i.e. zero
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mode)

φ = φ0 + φ̃ ⇒
∫

φ̃dξ = 0 (2.2)

Introducing the useful notation and concentrating, for simplicity, on one dimensional case,
we have

Σn =
∫

φ̃n (2.3)

our Lagrangean takes form

L =
∫

˙̃φφ̃′ +
m2

2
(φ2

0 + Σ2)−
λ

24

[
φ4

0 + 6φ2
0Σ2 + 4φ0Σ3 + Σ4

]
(2.4)

We must now perform the path integral with this Lagrangean. At each point in time the
integration overφ0 is doable but since in this variable the exponent is quartic this leads to
complicated cylinder functions. Therefore it is better to do the integrals by stationary phase
approximation; this procedure is justified by the fact that in any case we have to assume small
λ. The stationaryφ0 is, to the lowest nontrivial order,

φ2
0 =

6m2

λ
− 3Σ2 (2.5)

and this gives us the final effective Lagrangean

L =
∫

˙̃φφ̃′ − 3m4

2λ
− 2m2

2
Σ2 −

λ

24
Σ4 −

m
√

λ√
6

Σ3 +
3λ

8
Σ2

2 (2.6)

We recover in this way all the terms of the analysis done witht = 0 approach, with the
exception of the last term, which is new. Its appearence is really astounding since it implies
Bose-Einstein condensation in the system (notice the sign!). In order to see it more clearly let
us write the new term explicitely

3λ

8
Σ2

2 =
3λ

8V

∫
φ̃2dξ

∫
φ̃2dξ (2.7)

where V is the volume of the system (we assume quantization in a box). It is easy to see that, for
each momentumk+ its action lowers theP− and hence the energy of the system by an amount
wchich is quadratic in the number of particles: a close analogy to Gross-Pitayevsky equation.
Recall that in terms of cration and anihilation operatorsa†k, ak we have

∫
φ̃2dξ =

∫ ∞

0

dk+

2k+
a†kak (2.8)

hence its action on a state containing n particles of momentumk+ is
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Σ2
2 | n particles with k+ >∼ n2

k+2 | n particles with k+ > (2.9)

The new term therefore destabilizes the perturbative vacuum and its action is stronger for
smallk+. TheΣ4 is not able to stabilize the condensate and to get precise numerical estimates
we need to go beyond our simple approximations.

3. Electromagnetic field on the light front

We will quantize the electromagnetic field interacting with a general conserved current.
With the introduction of the notation

x ≡ kpk =
[
(k1)2 + (k2)2

]1/2
(3.1)

we have the mode Lagrangian

Lq =
x2

2
(a2

m + b2
m) + x(bmȧp − amḃp)

+am(k2ap − xka‖) + bm(k2bp − xkb‖)

+
1

2
(ȧ2

p + ḃ2
p)− kapḃ‖ + kbpȧ‖

+x(a‖ḃ− b‖ȧ‖)

−x(a⊥ḃ⊥ − b⊥ȧ⊥)− k2

2
(a2

⊥ + b2
⊥)

+apfm + bpgm + amfp + bmgp

−a‖f‖ − b‖g‖ − a⊥f⊥ − b⊥g⊥ (3.2)

where we have used the Fourier components

Aµ(k) = aµ + ibµ , kp > 0 = aµ − ibµ , kp < 0 (3.3)

and similarely for the current
jµ(k) = fµ + igµ (3.4)

and introduced components parallel(a‖) and perpendicular(a⊥) to the 2 dimensional vector
(k1, k2). The dot means thexp derivative ("time" derivative); all indices are written below. The
continuity equation for the current takes now form

ḟp = xgm − kg‖ , ġp = −xfm + kf‖ . (3.5)
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The Lagrangian (3.2) looks and is considerably more complicated than its equal time coun-
terpart. One component only is uncoupled from the others, the Lagrangian for this perpendicular
component is

L⊥ = x(a⊥ḃ⊥ − b⊥ȧ⊥)− k2

2
(a2

⊥ + b2
⊥)− a⊥f⊥ − b⊥g⊥ (3.6)

This is simply the Lagrangian for the scalar field. It displays the halving of degrees of
freedom (a⊥ is conjugated tob⊥). Note also that the continuity equations (3.5) do not restrict
f⊥ andg⊥.

The remaining variables are coupled. The variablesam and bm lack the time derivative:
those are constraint variables and the analogue of the Coulomb gauge at the light front is the
gauge

Am = 0 (3.7)

a fact known2 but seldom used. The variablesa‖ andb‖ have their time derivatives entering
linearly to the Lagrangian (3.2) as expected from light-front formalism. The variablesap andbp

are the most surprising, since their time derivatives enter quadratically so, a priori, no halving
of degrees of freedom is apparent. The canonical analysis would base on the gaugeAm = 0,
which eliminates the constraint variables. However the resulting Lagrangian has still a large
group of symmetries corresponding to time independent gauge transformations; the variables
ap, bp anda‖ andb‖ enter asymmetrically and, last not least, if the vector field is coupled to the
Dirac field, important simplifications occur whenAp = 0, as noted earlier. Again integrating
out the constraint variables clarifies the situation completely. After integrating out variablesam

andbm we are simply left with

L̃ = x(anḃn − bnȧn)− k2

2
(a2

n + b2
n) + an(f‖ −

k

x
fp) + bn(g‖ −

k

x
gp)−

f 2
p + g2

p

2x2
, (3.8)

where we have introduced new variables

an = a‖ +
k

x
apbn = b‖ +

k

x
bp (3.9)

It is seen thatan andbn are the natural counterparts ofa⊥, b⊥: they represent the other photon
polarization. We have also obtained the light front Coulomb term: the last line of eq. 3.8. The
most remarkable is the coupling ofan, bn to the current: the coupling is only to the combination

j‖ −
k

x
jp (3.10)

There is no coupling tojm components, and in the case of Dirac field all the simplifications
of Ap = 0 gauge occur. Our procedure has therefore permitted us to identify the correct dynam-
ical variables for quantization. We can express the projection operator on the physical degrees
of freedom (the polarization sum)

dµν(k) =
∑

λ=1,2

eµ(λ)eν(λ) = −gµν +
nµkν + nνkµ

ηαkα
(3.11)

304



This is precisely what one uses to define Feynman rules. Equation (3.11) has a spurious sin-
gularity atηαkα = 0, i.e. whenkp = 0. At this point relations (3.9) become also singular
and the light front energy becomes infinite. Therefore it is an infinite energy endpoint problem.
In the variational approach to field theory on the light front3 this point is excluded. From the
point of view presented here, since all quantities are taken atpositivekp the singularity is of end
point type. At the level of Feynman graphs it means that this singularity is to be regulated by
principal value prescription.

In conclusion we see that our method of constraint elimination solves simply the liht front
quantization. For tha main topic of interest: QCD zero modes will give new effective interac-
tion, which, it is hoped, will give for the first time the possibility of calculating the condensates
ab initio.
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